
Appendix

A
Kalman Filter

O
PTIMAL estimation theory has a very broad range of applications which vary
from estimation of river ows to satellite orbit estimation and nuclear reactor

parameter identi�cation. In this appendix we present an informal description of
the Kalman �lter, which is one of the basic tools stemming from estimation theory.
We begin with a short de�nition of the optimal estimation domain to indicate the
role of the Kalman �lter.

According to (Gelb, 1974) \an optimal estimator is a computational algorithm
that processes measurements to deduce a minimum error (in accordance with some
stated criterion of optimality) estimate of the state of a system by utilizing: knowl-
edge of system and measurement dynamics, assumed statistics of system noises and
measurement errors, and initial condition information." The key feature of this
formulation is that all measurements and the knowledge about the system are used
to evaluate the estimate and that the estimation error is minimized in a well de-
�ned statistical sense. There are three main estimation problem classes: �ltering,
prediction, and smoothing.

The �ltering problem corresponds to the cases where an estimate is needed at
the moment of the last measurement. In the case of prediction the estimate is
required for an instant after the last measurement. When the time of required esti-
mate is between the �rst and last measurement the problem falls into the smoothing
category. As the name indicates, the Kalman �lter provides an optimal estimate
for the last measurement instant. It is one of the basic �ltering techniques which is
applicable for estimation of the state of a linear system. It is also a good example
of optimal estimators' capabilities and limitations.

The general structure of the �ltering process is given in Figure A.1. Here
it is assumed that a linear system model and models characterizing system and
measurement errors are available. In this case the Kalman �lter processes the mea-
surements to provide an optimal estimate of the system state which minimizes the
mean square estimation error. It should be underlined that while the Kalman �lter
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provides the information how to process the measured data, it does not indicate the
optimal mesurement schedule. Before describing the Kalman �lter in more detail,
we will introduce some basic concepts and models used in the �ltering procedure.
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Figure A.1. General structure of the filtering process.

A.1 Linear System Model

In general the dynamics of a linear system can be described in either the frequency
domain or the time domain. In the following we use the time domain, which is more
convenient from mathematical and notational viewpoints. Also, such a description
is more natural, which results in a better understanding of the system's behavior.

LetW (t) = [W 1(t);W 2(t); :::;Wn(t)]T denote the system state vector described
by n parameters which are a function of time t. The dynamics of this system can
be described by the following �rst-order di�erential equation:

_W (t) = F (t)W (t) +G(t)e(t) + L(t)c(t) (A.1)

where e(t) is a random forcing function, c(t) is a control (deterministic) function,
and F (t), G(t), L(t) are matrices de�ning the dynamics of the system. The dif-
ferential equation determines the system's subsequent behavior assuming that the
state vector at a certain point in time and a description of the forcing and control
functions are given. A block representation of the linear system dynamics is shown
in Figure A.2.

Transition matrix
Let us consider a system without the forcing and control functions:

_W (t) = F (t)W (t) (A.2)

For this system one can de�ne the transition matrix �(t; t0) which de�nes the
system state at a time t based on the knowledge of the state at t0:

W (t) = �(t; t0)W (t0) (A.3)
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Figure A.2. Linear system dynamics.

Obviously the transition matrix is a function of matrix F (t). In particular the
following general relations can be derived:

d

dt
�(t; t0) = F (t)�(t; t0) (A.4)

j�(t; t0)j = exp

�Z t

t0

trace[F (�)]d�

�
(A.5)

In the case of stationary systems the transition matrix only depends on the di�er-
ence t�t0 and the F matrix is time invariant. This leads to the following de�nition
of the transition matrix:

�(t� t0) = e(t�t0)F (A.6)

Discrete representation
Up to now we considered a continuous time model. Nevertheless, in many cases
only discrete points in time, tk, k = 1; 2; :::; are of interest. In this case the system
dynamics can be described by the following di�erence equation:

Wk+1 = �kWk + �kek +�kck (A.7)

where

�k = �(tk+1; tk) (A.8)

�kek =

Z tk+1

tk

�(tk+1; �)G(�)e(�)d� (A.9)
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�kck =

Z tk+1

tk

�(tk+1; �)L(�)c(�)d� (A.10)

A block representation of the discrete system dynamics is given in Figure A.3. In
the remainder of this appendix we will consider only discrete systems. Obviously,
most of the models and features to follow have their corresponding representation
in the continuous time domain (Gelb, 1974).
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Figure A.3. Discrete system dynamics.

A.1.1 Observability and controllability

To discuss observability we introduce the concept of measurements, ~Zk, k = 1; 2; :::.
The measurements are assumed to be linearly related to the system state:

~Zk = HkWk + uk (A.11)

where Hk is the observation matrix and uk is the measurement noise. A system
is observable if it is possible to determine W1; :::;Wk based on corresponding mea-
surements in a noise free environment. A precise observability condition expressed
in terms of matrices � and H can be found in (Gelb, 1974).

The issue of controllability is related to the ability of achieving an arbitrary
state, in a given number of steps, in a deterministic (noise free) linear dynamic
system. In particular a system is controllable in time tk if for any arbitrary pair of
states, W1, Wk , there is a control, c1; :::; ck which can drive the system from state
W1 to state Wk. A precise controllability condition expressed in terms of matrixes
� and � can be found in (Gelb, 1974). In the remainder of this appendix we do
not consider systems with control and we assume ck = 0.

Introduction of the measurement model completes the basic linear system model
description for estimation purpose which is given by

Wk+1 = �kWk + �kek (A.12)
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Zk = HkWk + uk (A.13)

It should be mentioned that this model is not unique in the sense that for given
system input and output values, there are many di�erent sets of �k, �k, and Hk

which will give the same input-output behavior which corresponds to the choice of
a coordinate system (time).

A.1.2 Covariance matrix

The concept of covariance matrix is important in estimation error analysis. Let
us begin with the de�nition of cross-covariance matrix C of two vectors, A and B,
whose elements are random variables:

C(A;B) = E[(A�E[A])(B �E[B])T ] = E[ABT ]�E[A] E[BT ] (A.14)

If A = B, the covariance matrix C de�nes the second central moments of the vector
elements. In particular the matrix diagonal consists of vector elements' variances
while other matrix elements are covariances of two vector's elements identi�ed by
the matrix element indices.

In this appendix we consider systems whose forcing functions ek are vectors of
random variables. It is assumed that any two values of forcing function, ek, ek�i,
i = 1; 2; :::, are uncorrelated, which means that the forcing function generates a
white sequence. Observe that once the forcing function is a random variable, the
system state is also a random variable. To simplify presentation it is also assumed
that the forcing function is unbiased (zero ensemble average values). This does not
restrict the generality of the presented models since the bias can be easily removed
by subtraction.

Let us de�ne the error in the estimate of the system state as a di�erence between
the estimated value Ŵk and the actual value Wk:

�k = Ŵk �Wk (A.15)

Then the estimation error covariance matrix is de�ned as

Pk = E[�k�
T
k ] (A.16)

The covariance matrix Pk expresses the statistical measure of estimation uncer-
tainty.

A covariance matrix is also used for description of the uncorrelated random
sequence �kek. Here we have

E[(�kek)(�kek)
T ] = �kQk�

T
k (A.17)

where Qk is the covariance matrix of the white sequence.



274 Kalman Filter

Estimation error propagation
Based on the transition matrix �k one can de�ne the estimate of the predictable
portion of the next state as

Ŵ e
k+1 = �kŴk (A.18)

Henceforth Ŵ e
k is called state estimate extrapolation. By subtracting Equation

(A.12) from Equation (A.18) we get

�k+1 = �k�k � �kek (A.19)

This equation can be used to derive a relation for extrapolation of the error covari-
ance matrix from time tk to tk+1

Pek+1 = �kPk�
T
k + �kQk�

T
k (A.20)

This result indicates that in some cases the error covariance can become unbounded
if there are no state measurements.

A.2 Discrete Kalman Filter

In this section we consider a linear discrete system whose dynamics are given by

Wk+1 = �kWk + ek (A.21)

where system state Wk is a n-dimensional vector and ek is a white sequence vector
with zero mean and covariance matrix Qk. The system measurements are de�ned
by

~Zk = HkWk + uk (A.22)

where measurement ~Zk is an l-dimensional vector and uk is a white sequence vector
with zero mean and covariance matrix ~Yk.

Let us de�ne an optimal, unbiased, and consistent estimator. Here optimality
is de�ned as minimization of the mean square estimation error which corresponds
to minimization of

Jk = E[�T
k I�k] = trace[Pk] (A.23)

where I is identity matrix. An unbiased estimate is de�ned as the one whose
expectation is equal to the expectation of the actual state. A consistent estimate
converges to the actual value with the increase in the number of measurements.

The Kalman �lter provides an optimal, unbiased, consistent estimate which can
be expressed in the linear and recursive form

Ŵk = K
0
kŴ

e
k +Kk

~Zk (A.24)

where K0k and Kk are weighting matrices. It can be shown (Gelb, 1974) that in
order to have the estimate unbiased the following condition must hold:

K0k = I �KkHk (A.25)
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Figure A.4. System model and Kalman filter.

Using this relation in Equation (A.24) gives the state estimate update

Ŵk = Ŵ e
k +Kk[

~Zk �HkŴ
e
k ] (A.26)

Based on this relation one can derive the error covariance matrix update

Pk = (I �KkHk)P
e
k(I �KkHk)

T +Kk ~YkK
T
k (A.27)

The optimum value of Kk can be found from minimization of expression A.23 which
corresponds to minimization of the length of the estimation error vector. This can
be done by evaluating the partial derivative of Jk with respect to Kk and solving it
for zero value. Based on the general relation for the partial derivative of the trace
of the product of two matrices the solution gives

Kk = P
e
kH

T
k [HkP

e
kH

T
k + ~Yk]

�1 (A.28)

which de�nes the Kalman gain matrix. Using this matrix in Equation (A.27)
de�nes, after some transformations, the optimized value of the updated error co-
variance matrix

Pk = (I �KkHk)P
e
k (A.29)
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Equations (A.26), (A.28), and (A.29), together with initial conditions, W0;P0,
de�ne the discrete Kalman �lter which is illustrated in Figure A.4. From a practical
point of view it is important that the Kalman �lter provides its own error analysis
by means of the estimation error covariance matrix, Pk. It has been also shown
(Weiss, 1970) that, despite its simple recursive nature and linearity, the Kalman
�lter is the optimal �lter if ek, uk are Gaussian (in other words a non-linear �lter
cannot be better). Otherwise the Kalman �lter is the optimal linear �lter.

A.3 Discussion and Bibliographic Notes

The �rst signi�cant contribution to the estimation theory can be traced back to
Gauss (circa 1800) who used the technique of deterministic least-squares in simple
measurement problems (Mehra, 1970). Fisher (circa 1910) invented the maximum
likelihood estimation which is based on probability density function (Weiss, 1970).
The design of statistically optimal �lters in the frequency domain is due to Wiener
(circa 1940) who addressed the continuous time problem using correlation functions
and the continuous �lter impulse response (Mehra, 1971; Abramson, 1968). The
Kalman �lter, an optimal linear �lter designed in time domain, was developed by
Kalman and others; see e.g. (Kalman and Bucy, 1961; Uttam, 1971; Aoki and
Huddla, 1967; Tse and Athans, 1970). It is interesting to note that the Kalman
�lter basically constitutes a recursive solution to the original least-squares problem
formulated by Gauss.

In this appendix the Kalman �lter presentation follows in principle a description
of this technique given in (Gelb, 1974) which provides a simple and interesting
picture of the central issues underlying estimation theory and practice. Moreover,
it �ts very well into the estimation problem treated in Chapter 4. There are many
other works dealing with both estimation theory in general and the Kalman �lter
in particular, e.g. (Papoulis, 1991; Nahi, 1969; Proakis, 1989).
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