
Applied Nonlinear Control                                                                             Nguyen Tan Tien - 2002.3 
_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 

 

___________________________________________________________________________________________________________ 
 

Chapter 2 Phase Plane Analysis  
  

1 

2. Phase Plane Analysis 
 
 
 
Phase plane analysis is a graphical method for studying 
second-order systems. This chapter’s objective is to gain 
familiarity of the nonlinear systems through the simple 
graphical method. 
 
2.1 Concepts of Phase Plane Analysis 
 
2.1.1 Phase portraits 
The phase plane method is concerned with the graphical study 
of second-order autonomous systems described by 
 

),( 2111 xxfx =&                      (2.1a) 
),( 2122 xxfx =&                (2.1b) 

 
where  

21, xx  : states of the system 

21, ff  : nonlinear functions of the states 
 
Geometrically, the state space of this system is a plane having 

21, xx as coordinates. This plane is called phase plane. The 
solution of (2.1) with time varies from zero to infinity can be 
represented as a curve in the phase plane. Such a curve is 
called a phase plane trajectory. A family of phase plane 
trajectories is called a phase portrait of a system. 
 
Example 2.1 Phase portrait of a mass-spring system_______ 
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Fig. 2.1 A mass-spring system and its phase portrait 

 
The governing equation of the mass-spring system in Fig. 2.1 
is the familiar linear second-order differential equation 
 

0=+ xx&&                  (2.2) 
 
Assume that the mass is initially at rest, at length 0x . Then the 
solution of this equation is 
 

)cos()( 0 txtx =  
)sin()( 0 txtx −=&  

 
Eliminating time t from the above equations, we obtain the 
equation of the trajectories 
 

2
0

22 xxx =+ &  
 
This represents a circle in the phase plane. Its plot is given in 
Fig. 2.1.b.  
__________________________________________________________________________________________ 

The nature of the system response corresponding to various 
initial conditions is directly displayed on the phase plane. In 
the above example, we can easily see that the system 
trajectories neither converge to the origin nor diverge to 
infinity. They simply circle around the origin, indicating the 
marginal nature of the system’s stability. 
 
A major class of second-order systems can be described by the 
differential equations of the form 
 

),( xxfx &&& =                  (2.3) 
 
In state space form, this dynamics can be represented 
with xx =1 and xx &=2 as follows 
 

21 xx =&  
),( 212 xxfx =&  

 
2.1.2 Singular points 
A singular point is an equilibrium point in the phase plane. 
Since an equilibrium point is defined as a point where the 
system states can stay forever, this implies that 0x =& , and 
using (2.1) 
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                  (2.4) 

 
For a linear system, there is usually only one singular point 
although in some cases there can be a set of singular points. 
 
Example 2.2 A nonlinear second-order system____________ 
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Fig. 2.2 A mass-spring system and its phase portrait 

 

Consider the system 036.0 2 =+++ xxxx &&& whose phase 
portrait is plot in Fig. 2.2. 
 
The system has two singular points, one at )0,0( and the other 
at )0,3(− . The motion patterns of the system trajectories in the 
vicinity of the two singular points have different natures. The 
trajectories move towards the point 0=x while moving away 
from the point 3−=x .  
__________________________________________________________________________________________ 
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Why an equilibrium point of a second order system is called a 
singular point ? Let us examine the slope of the phase portrait. 
The slope of the phase trajectory passing through a point 

),( 21 xx is determined by 
 

),(
),(

211

212

1

2
xxf
xxf

dx
dx

=                  (2.5) 

 
where 21, ff are assumed to be single valued functions. This 
implies that the phase trajectories will not intersect. At 
singular point, however, the value of the slope is 0/0, i.e., the 
slope is indeterminate. Many trajectories may intersect at such 
point, as seen from Fig. 2.2. This indeterminacy of the slope 
accounts for the adjective “singular”. 
 
Singular points are very important features in the phase plane. 
Examining the singular points can reveal a great deal of 
information about the properties of a system. In fact, the 
stability of linear systems is uniquely characterized by the 
nature of their singular points. 
Although the phase plane method is developed primarily for 
second-order systems, it can also be applied to the analysis of 
first-order systems of the form 
 

0)( =+ xfx&  
 
The difference now is that the phase portrait is composed of a 
single trajectory. 
  
Example 2.3 A first-order system_______________________ 
 

Consider the system 34 xxx +−=& there are three singular 

points, defined by 04 3 =+− xx , namely, 2,2,0 −=x . The 
phase portrait of the system consists of a single trajectory, and 
is shown in Fig. 2.3. 
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Fig. 2.3 Phase trajectory of a first-order system 

 
The arrows in the figure denote the direction of motion, and 
whether they point toward the left or the right at a particular 
point is determined by the sign of x& at that point. It is seen 
from the phase portrait of this system that the equilibrium 
point 0=x is stable, while the other two are unstable.  
__________________________________________________________________________________________ 

 
2.1.3 Symmetry in phase plane portrait 
 
Let us consider the second-order dynamics (2.3): ),( xxfx &&& = . 
The slope of trajectories in the phase plane is of the form 
 

x
xxf

dx
dx

&

),( 21

1

2 −=  

 
Since symmetry of the phase portraits also implies symmetry 
of the slopes (equal in absolute value but opposite in sign), we 
can identify the following situations: 

  ),(),( 2121 xxfxxf −=  ⇒  symmetry about the 1x axis. 
  ),(),( 2121 xxfxxf −−=  ⇒  symmetry about the 2x axis. 
  ),(),( 2121 xxfxxf −−−=  ⇒  symmetry about the origin. 
 
2.2 Constructing Phase Portraits 
 
There are a number of methods for constructing phase plane 
trajectories for linear or nonlinear system, such that so-called 
analytical method, the method of isoclines, the delta method, 
Lienard’s method, and Pell’s method. 
 
Analytical method 
There are two techniques for generating phase plane portraits 
analytically. Both technique lead to a functional relation 
between the two phase variables 1x and 2x in the form 
 

0),( 21 =xxg                  (2.6) 
 
where the constant c represents the effects of initial conditions 
(and, possibly, of external input signals). Plotting this relation 
in the phase plane for different initial conditions yields a phase 
portrait. 
 
The first technique involves solving (2.1) for 1x and 2x as a 
function of time t , i.e., )()( 11 tgtx = and )()( 22 tgtx = , and 
then, eliminating time t from these equations. This technique 
was already illustrated in example 2.1. 
 
The second technique, on the other hand, involves directly 

eliminating the time variable, by noting that
),(
),(

211

212

1

2
xxf
xxf

dx
dx

=  

and then solving this equation for a functional relation 
between 1x and 2x . Let us use this technique to solve the mass-
spring equation again. 
 
Example 2.4 Mass-spring system_______________________ 
 

By noting that )//()/( dtdxdxxdx &&& = , we can rewrite (2.2) as 

0=+ x
dx
xdx
&

& . Integration of this equation yields 2
0

22 xxx =+& .  
__________________________________________________________________________________________ 

 
Most nonlinear systems cannot be easily solved by either of 
the above two techniques. However, for piece-wise linear 
systems, an important class of nonlinear systems, this can be 
conveniently used, as the following example shows. 
 
Example 2.5 A satellite control system___________________ 
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Fig. 2.4 Satellite control system 

 
Fig. 2.4 shows the control system for a simple satellite model. 
The satellite, depicted in Fig. 2.5.a, is simply a rotational unit 
inertia controlled by a pair of thrusters, which can provide 
either a positive constant torqueU (positive firing) or negative 
torque (negative firing). The purpose of the control system is 
to maintain the satellite antenna at a zero angle by 
appropriately firing the thrusters. 
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The mathematical model of the satellite is u=θ&& , where u is 
the torque provided by the thrusters andθ is the satellite angle. 
 
Let us examine on the phase plane the behavior of the control 
system when the thrusters are fired according to the control 
law 
 





<
>−

=
0
0

)(
θ
θ

ifU
ifU

tu                 (2.7) 

 
which means that the thrusters push in the counterclockwise 
direction if θ is positive, and vice versa. 
 
As the first step of the phase portrait generation, let us 
consider the phase portrait when the thrusters provide a 
positive torque U . The dynamics of the system is U=θ&& , 
which implies that θθθ dUd =&& . Therefore, the phase portrait 
trajectories are a family of parabolas defined by 

1
2 2 cU += θθ& , where 1c is constant. The corresponding 

phase portrait of the system is shown in Fig. 2.5.b. 
 
When the thrusters provide a negative torque U− , the phase 

trajectories are similarly found to be 1
2 2 cxU +−=θ& , with the 

corresponding phase portrait as shown in Fig. 2.5.c. 
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Fig. 2.5 Satellite control using on-off thrusters 
 
The complete phase portrait of the closed-loop control system 
can be obtained simply by connecting the trajectories on the 
left half of the phase plane in 2.5.b with those on the right half 
of the phase plane in 2.5.c, as shown in Fig. 2.6. 
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Fig.2.6 Complete phase portrait of the control system 
 
The vertical axis represents a switching line, because the 
control input and thus the phase trajectories are switched on 
that line. It is interesting to see that, starting from a nonzero 
initial angle, the satellite will oscillate in periodic motions 
under the action of the jets. One can concludes from this phase 
portrait that the system is marginally stable, similarly to the 
mass-spring system in Example 2.1. Convergence of the 
system to the zero angle can be obtained by adding rate 
feedback. 
__________________________________________________________________________________________ 

The method of isoclines (ñöôø ng ñaú ng khuynh) 
The basic idea in this method is that of isoclines. Consider the 
dynamics in (2.1): ),( 2111 xxfx =& and ),( 2122 xxfx =& . At a 
point ),( 21 xx in the phase plane, the slope of the tangent to the 
trajectory can be determined by (2.5). An isocline is defined to 
be the locus of the points with a given tangent slope. An 
isocline with slopeα is thus defined to be 
 

α==
),(
),(

211

212

1

2
xxf
xxf

dx
dx  

 
This is to say that points on the curve 
 

),(),( 211212 xxfxxf α=  
 
all have the same tangent slopeα . 
 
In the method of isoclines, the phase portrait of a system is 
generated in two steps. In the first step, a field of directions of 
tangents to the trajectories is obtained. In the second step, 
phase plane trajectories are formed from the field of directions. 
 
Let us explain the isocline method on the mass-spring system 
in (2.2): 0=+ xx&& . The slope of the trajectories is easily seen 
to be 
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1

2
x
x

dx
dx

−=  

 
Therefore, the isocline equation for a slopeα is  
 

021 =+ xx α  
 
i.e., a straight line. Along the line, we can draw a lot of short 
line segments with slopeα . By takingα to be different values, 
a set of isoclines can be drawn, and a field of directions of 
tangents to trajectories are generated, as shown in Fig. 2.7. To 
obtain trajectories from the field of directions, we assume that 
the tangent slopes are locally constant. Therefore, a trajectory 
starting from any point in the plane can be found by 
connecting a sequence of line segments. 
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Fig. 2.7 Isoclines for the mass-spring system 

 
Example 2.6 The Van der Pol equation__________________ 
 

For the Van der Pol equation 
 

0)1(2.0 2 =+−+ xxxx &&&  
 
an isocline of slopeα is defined by 
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Therfore, the points on the curve 
 

0)1(2.0 2 =++− xxxx && α  
 
all have the same slopeα . 
 
By takingα of different isoclines can be obtained, as plot in 
Fig. 2.8. 
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Fig. 2.8 Phase portrait of the Van der Pol equation 

 
Short line segments are drawn on the isoclines to generate a 
field of tangent directions. The phase portraits can be obtained, 
as shown in the plot. It is interesting to note that there exists a 
closed curved in the portrait, and the trajectories starting from 
both outside and inside converge to this curve. This closed 
curve corresponds to a limit cycle, as will be discussed further 
in section 2.5. 
__________________________________________________________________________________________ 

 
2.3 Determining Time from Phase Portraits 
 
Time t does not explicitly appear in the phase plane having 

1x and 2x as coordinates. We now to describe two techniques 
for computing time history from phase portrait. Both of 
techniques involve a step-by step procedure for recovering 
time. 
 
Obtaining time from xxt &/∆≈∆  
In a short time t∆ , the change of x is approximately 
 

txx ∆≈∆ &                  (2.8) 
 
where x& is the velocity corresponding to the increment x∆ .  
 
From (2.8), the length of time corresponding to the 
increment x∆ is xxt &/∆≈∆ . This implies that, in order to 
obtain the time corresponding to the motion from one point to 
another point along the trajectory, we should divide the 
corresponding part of the trajectory into a number of small 
segments (not necessarily equally spaced), find the time 
associated with each segment, and then add up the results.  To 
obtain the history of states corresponding to a certain initial 
condition, we simply compute the time t for each point on the 
phase trajectory, and then plots x with respects to t and x&  
with respects to t . 
 

Obtaining time from dxxt ∫≈ )/1( &  

Since dtdxx /=& , we can write xdxdt &/=  . Therefore, 
 

∫≈−
x

x
dxxtt

0

)/1(0 &  

where x corresponding to time t and 0x corresponding to 
time 0t . This implies that, if we plot a phase plane portrait 
with new coordinates x and )/1( x& , then the area under the 
resulting curve is the corresponding time interval. 
 
2.4 Phase Plane Analysis of Linear Systems 
 
The general form of a linear second-order system is 
 

211 xbxax +=&                (2.9a) 

212 xdxcx +=&                (2.9b) 
 
Transform these equations into a scalar second-order 
differential equation in the form )( 1112 xaxdxcbxb −+= && . 
Consequently, differentiation of (2.9a) and then substitution of 
(2.9b) leads to 111 )()( xdabcxdax −++= &&& . Therefore, we 
will simply consider the second-order linear system described 
by 
 

0=++ xbxax &&&                (2.10) 
 
To obtain the phase portrait of this linear system, we solve for 
the time history 
 

tt ekektx 21
21)( λλ +=     for 21 λλ ≠            (2.11a) 

tt etkektx 21
21)( λλ +=   for 21 λλ =            (2.11b) 

 
whre the constant 21,λλ are the solutions of the characteristic 
equation 
 

0))(( 21
2 =−−=++ λλ ssbass  

 
The roots 21,λλ can be explicitly represented as 
 

2
42

1
baa −+−

=λ  and 
2

42

2
baa −−−

=λ  

 
For linear systems described by (2.10), there is only one 
singular point )0( ≠b , namely the origin. However, the 
trajectories in the vicinity of this singularity point can display 
quite different characteristics, depending on the values of 
a and b . The following cases can occur 
•  21,λλ are both real and have the same sign (+ or -) 
•  21,λλ are both real and have opposite sign 
•  21,λλ are complex conjugates with non-zero real parts 
•  21,λλ are complex conjugates with real parts equal to 0 

We now briefly discuss each of the above four cases 
 
Stable or unstable node (Fig. 2.9.a -b) 
The first case corresponds to a node. A node can be stable or 
unstable: 

0, 21 <λλ : singularity point is called stable node. 
0, 21 >λλ : singularity point is called unstable node. 

There is no oscillation in the trajectories. 
 
Saddle point (Fig. 2.9.c) 
The second case ( 21 0 λλ << ) corresponds to a saddle point. 
Because of the unstable pole 2λ , almost all of the system 
trajectories diverge to infinity. 
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Fig. 2.9 Phase-portraits of linear systems 

 
Stable or unstable locus (Fig. 2.9.d-e) 
The third case corresponds to a focus. 

0),Re( 21 <λλ : stable focus 
0),Re( 21 >λλ : unstable focus 

 
Center point (Fig. 2.9.f) 
The last case corresponds to a certain point. All trajectories 
are ellipses and the singularity point is the centre of these 
ellipses. 
 

⊗ Note that the stability characteristics of linear systems are 
uniquely determined by the nature of their singularity points. 
This, however, is not true for nonlinear systems. 
 
2.5 Phase Plane Analysis of Nonlinear Systems 
 
In discussing the phase plane analysis of nonlinear system, 
two points should be kept in mind: 

•  Phase plane analysis of nonlinear systems is related to 
that of liner systems, because the local behavior of 
nonlinear systems can be approximated by the behavior 
of a linear system. 

•  Nonlinear systems can display much more complicated 
patterns in the phase plane, such as multiple equilibrium 
points and limit cycles. 

Local behavior of nonlinear systems 
If the singular point of interest is not at the origin, by defining 
the difference between the original state and the singular point 
as a new set of state variables, we can shift the singular point 
to the origin. Therefore, without loss of generality, we may 
simply consider Eq.(2.1) with a singular point at 0. Using 
Taylor expansion, Eqs. (2.1) can be rewritten in the form 
 

),( 211211 xxgxbxax ++=&  
),( 212212 xxgxdxcx ++=&  

 
where 21, gg contain higher order terms. 
 
In the vicinity of the origin, the higher order terms can be 
neglected, and therefore, the nonlinear system trajectories 
essentially satisfy the linearized equation 
 

211 xbxax +=&  

212 xdxcx +=&  
 
As a result, the local behavior of the nonlinear system can be 
approximated by the patterns shown in Fig. 2.9. 
 
Limit cycle 
In the phase plane, a limit cycle is defied as an isolated closed 
curve. The trajectory has to be both closed, indicating the 
periodic nature of the motion, and isolated, indicating the 
limiting nature of the cycle (with near by trajectories 
converging or diverging from it). 
 
Depending on the motion patterns of the trajectories in the 
vicinity of the limit cycle, we can distinguish three kinds of 
limit cycles. 

•  Stable Limit Cycles:  all trajectories in the vicinity of the 
limit cycle converge to it as ∞→t (Fig. 2.10.a). 

•  Unstable Limit Cycles:  all trajectories in the vicinity of 
the limit cycle diverge to it as ∞→t (Fig. 2.10.b) 

•  Semi-Stable Limit Cycles:  some of the trajectories in 
the vicinity of the limit cycle converge to it as 

∞→t (Fig. 2.10.c) 
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Fig. 2.10 Stable, unstable, and semi-stable limit cycles 

 
Example 2.7 Stable, unstable, and semi-stable limit cycle___ 
 

Consider the following nonlinear systems 

(a) 




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2
2

2
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&

&
              (2.12) 

(b) 
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

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)1(

)1(
2
2

2
1212

2
2

2
1121

xxxxx

xxxxx

&

&
              (2.13) 

(c) 
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By introducing a polar coordinates 
 

2
2

2
1 xxr +=  








= −

1

21tan)(
x
xtθ  

 
the dynamics of (2.12) are transformed as 
 

)1( 2 −−= rr
dt
dr  1−=

dt
dθ  

 
When the state starts on the unicycle, the above equation 
shows that 0)( =tr& . Therefore, the state will circle around the 
origin with a period π2/1 . When 1<r , then 0>r& . This 
implies that the state tends to the circle from inside. 
When 1>r , then 0<r& . This implies that the states tend to the 
unit circle from outside. Therefore, the unit circle is a stable 
limit cycle. This can also be concluded by examining the 
analytical solution of (2.12) 
 

tec
tr

2
01

1)(
−+

=  and tt −= 0)( θθ , where 11
2
0

0 −=
r

c  

 
Similarly, we can find that the system (b) has an unstable limit 
cycle and system (c) has a semi-stable limit cycle. 
__________________________________________________________________________________________ 

 
2.6 Existence of Limit Cycles 
 
Theorem 2.1 (Pointcare) If a limit cycle exists in the second-
order autonomous system (2.1), the N=S+1. 
 
Where, N  represents the number of nodes, centers, and foci 
enclosed by a limit cycle, S represents the number of enclosed 
saddle points. 
 
This theorem is sometime called index theorem. 
 
Theorem 2.2 (Pointcare-Bendixson) If a trajectory of the 
second-order autonomous system remains in a finite region 
Ω , then one of the following is true: 

(a) the trajectory goes to an equilibrium point 
(b) the trajectory tends to an asymptotically stable limit 

cycle 
(c) the trajectory is itself a limit cycle 

 
Theorem 2.3 (Bendixson) For a nonlinear system (2.1), no 
limit cycle can exist in the region Ω of the phase plane in 
which 2211 // xfxf ∂∂+∂∂ does not vanish and does not change 
sign. 
 
Example 2.8________________________________________ 
 

Consider the nonlinear system 
 

2
2121 4)( xxxgx +=&  

2
2
112 4)( xxxhx +=&  

 

Since )(4 2
2

2
1

2

2

1

1 xx
x
f

x
f

+=
∂
∂+

∂
∂ , which is always strictly 

positive (except at the origin), the system does not have any 
limit cycles any where in the phase plane.  
__________________________________________________________________________________________ 


