ERODE SENGUNTHAR ENGINEERING COLLEGE, ERODE DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING PG:M.E.-Applied Electronics

List of experimental setup in each laboratory /workshop

	Name of the	List of experimental setup
S.No.	Laboratory /	
	Workshop	
		RS232C Bus Interfacing with PIC Microcontroller
		LED and Switch Interfacing with Embedded PIC
		Microcontroller
		LED interfacing with Embedded PIC Microcontroller
		LED and Key matrix Interfacing with Embedded PIC
		Microcontroller
	1045107	EEPROM Interfacing with Embedded PIC Microcontroller (I2C-
		Communication)
-	Emboddod	LCD Interfacing with Embedded PIC Microcontroller
1.	System Laboratory	Rolling Display in LCD /LED using Embedded PIC
		Microcontroller
		ADC Interfacing with Embedded PIC Microcontroller(I2C-
		Communication)
		RTC interfacing with Embedded PIC Microcontroller(I2C-
		Communication)
		Study of Convolution Algorithm Implementation using DSP
		Processor
		Study of Matrix Multiplication using DSP Processor
		Design and Simulation of Combinational and sequential circuits
		using VHDL
		Design and Simulation of Combinational and sequential circuits
		using Verilog
2	19AE204 VLSI laboratory	FPGA Implementation of FFT Computation
2.		FPGA Implementation of FIR Filter (Low, High and Band pass)
		FPGA Implementation of 4 Bit ALU & Power analysis.
		FPGA Implementation of Real Time Clock & RTL view
		FPGA Implementation of Adaptive Signal Processing Algorithm
		Implementation of Image Processing Algorithm using MATLAB.

	Implementation of Neural networks Algorithms using MATLAB.
	Implementation of Genetic Algorithm and PSO using MATLAB.

S.No.	Name of the Laboratory /	List of experimental setup				
	Workshop					
		1. Validate Lambert-Beer's law in UV-VIS				
		Spectrophotometer using given sample.				
		2. Determine the strength and amount of given				
		solution using conductivity meter				
		3. Determine the amount of ion present in the				
		given solution using Potentiometer.				
		4. Determine the amount of acid present in the				
		whole of the given sample by using pH meter.				
		5. Determine the amount of dissolved oxygen in the given sample.				
	19MCH16 - INSTRUMENTAL	6. Using Flame Photometer, prepare a standard				
	METHODS OF ANALYSIS	graph of Concentration and Photo-detector				
	LABORATORY	value for a given compound.				
		7. Identify the reactor which works on				
		cavitation principles and carry out the				
		experimental studies.				
		8. Determine the flash point & fire point of the				
		given sample.				
		9. Determine the smoke point of the given				
		sample.				
		10. Determine the viscosity of the lubricating				
		oils by viscometer method.				

M. Tech Chemical Engineering

	M.E INDUSTRIA	L SAFETY ENGINEERING
	(R2019) SEMESTER - II
S.No	Name of the laboratory with	List of experiments
4	code	
T	1915206 INDUSTRIAL SAFETY	NOISE LEVEL MEASUREMENT AND ANALYSIS:
		Measurement of sound pressure level in dB for
	LABORATORY	Impact, continuous and intermittent sources at
		Various fielworks, peak and average values.
		relation rest: explosive materials like barlum
		composition atc
		IMPACT TEST: EXPLOSIVE materials like gun
		nowder white nowder americas composition
		etc. Burst strength test of nackaging materials
		like paper bags corrugated cartoons wood etc
		Auto ignition temperature test.
		ENVIRONMENTAL PARAMETER measurement:
		Dry Bulb Temperature, Wet Bulb Temperature,
		Determination of relative humidity, wind Flow,
		Particle size Measurement & Air sampling
		analysis.
		TRAINING IN USAGE AND SKILL DEVELOPMENT
		PERSONAL PROTECTIVE EQUIPMENT:
		Respiratory and non-respiratory-demonstration-
		self-contained breathing apparatus. Safety
		helmet, belt, hand gloves, goggles, safety shoe,
		gum boots, ankle shoes, face shield, nose
		mask, ear plug, ear muff, antistatic and
		conducting plastics/rubber materials, apron and
		leg guard.
		FIRE EXTINGUISHERS AND ITS OPERATIONS:
		Water CO_2 , Foam, Carbon dioxide (CO_2), Dry
		chemical powder.
		Static charge testing on plastic, rubber, ferrous
		and non-ferrous materials. Illumination testing -
		by iux meter and photo meter.
		ELECTRICAL SAFETY - Insulation resistance for
		motors and caples, Estimation of earth
		for ELCB
		SOFTWARE USAGE - Accident Analysis Safety
		Audit Packages Consequence Analysis
		(CISCON) Fire Explosion and Toxicity Index
		(FETI), Reliability Analysis for Mechanical

Sy	ystem	and	Electrical	System,	Failure	Mode
Al	analysis.	•				
FI	IRST AI	[D, R	oad safety	signals an	id symbo	ls.

	M.E., MANUFAC	TURING ENGINEERING
	(R2019	9) SEMESTER - I
S.No	Name of the laboratory with	List of experiments
	code	
1	19MF105 CAD/CAM	Exercise on CNC Lathe: Plain Turning, Step
	LABORATORY	turning, Taper turning, Threading, Grooving
		canned cycle
		Exercise on CNC Milling Machine: Profile Milling,
		Mirroring, Scaling & canned cycle. Study of
		Sensors, Transducers & PLC: Hall-effect sensor,
		Pressure sensors, Strain gauge, PLC, LVDT,
		Load cell, Angular potentiometer, Torque,
		Temperature & Optical Transducers.
		2D modeling and 3D modeling of components
		such as
		1. Bearing
		2. Couplings
		3. Gears
		4. Sheet metal components
		5. Jigs, Fixtures and Die assemblies.
	SEI	MESTER - II
2	19ME205 AUTOMATION AND	Determination of strain hardening exponent
	METAL FORMING	Determination of strain rate sensitivity index
	LABORATORY	Construction of formability limit diagram
		Determination of efficiency in water hammer
		forming
		Determination of interface friction factor
		Determination of extrusion load
		Study on two high rolling process
		Simulation of single and double acting cylinder

circuits
Simulation of Hydraulic circuit
Simulation of electro pneumatic circuits
Simulation of electro hydraulic circuits
Simulation of PLC circuits
Software simulation of fluid power circuits using
Automation studio.

S.No	Name of the	List of experimental setup
•	Laboratory /	
	Workshop	
Sem 1	PX5111 - Power Electronics Circuits Lab	 Study of switching characteristics of Power electronic switches with and without Snubber (i) IGBT (ii) MOSFET Modeling and system simulation of basic electric circuits using MATLABSIMULINK/ SCILAB DC source fed resistive load and Resistive-inductive load DC source fed RLC load for different damping conditions DC source fed DC motor load Modeling and System simulation of basic power electronic circuits using MATLAB-SIMULINK/SCILAB AC Source with Single Diode fed Resistive and Resistive-Inductive Load AC source with Single SCR fed Resistive and Resistive-Inductive Load Modeling and System Simulation of SCR based full converter with different types of load using MATLAB-Simulink/SCILAB Full converter fed Resistive-Back Emf (RE) load at different firing angles Full Converter fed Resistive-Inductive Load at different firing angles Full converter fed DC motor load at different firing angles Full converter fed DC motor load at different firing angles Full converter fed DC motor load at different firing angles Full converter fed DC motor load at different firing angles Full converter fed DC motor load at different firing angles Full Converter fed DC motor load at different firing angles Full Converter fed DC motor load at different firing angles Full Converter fed DC motor load at different firing angles Full Converter fed DC motor load at different firing angles

		•	Single phase square wave inverter
		•	Three phase sine PWM inverter
		•	Generation of PWM gate pulses with duty cycle control using
			PWM peripheral of microcontroller (TI-C2000 family/ PIC18)
		•	Duty cycle control from IDE
		•	Duty Cycle control using a POT connected to ADC peripheral in
			a standalone mode
	•	Generation of Sine-PWM pulses for a three phase Voltage	
		Source Inverter with control of modulation index using PWM	
		peripheral of microcontroller (TI C2000 family/PIC 18)	
	•	Design of Driver Circuit using IR2110	
		•	Design and testing of signal conditioning circuit to interface
			voltage/current sensor with microcontroller (TI-C2000 family/
			PIC18)
		•	Interface Hall effect current sensor with microcontroller and
			display the current waveform in the IDE and validate with
			actual waveform in DSO
		•	Interface Hall effect Voltage sensor with microcontroller and
			display the current waveform in the IDE and validate with
			actual waveform in DSO
		•	Design of PI controller using OP-AMP
		•	Construction and testing of 500 W, 220 V IGBT based Buck
			converter with control circuit and its performance Evaluation
		•	Measurement of Efficiency at different duty cycle with a
			resistive load
		•	Measurement of Efficiency at different duty cycle with a
			resistive-inductive load
		•	PCB design and fabrication of DC power supply using any PCB
			design software (open source- KiCAD/students version)
		•	Speed control of Converter fed DC motor.
	PX5211 -	•	Speed control of Chopper fed DC motor.
Sem	Electrical Drives	•	V/f control of three-phase induction motor.
2	Laboratory	Laboratory	Micro controller based speed control of Stepper motor.
			Speed control of BLDC motor.
		•	DSP based speed control of SRM motor.

٠	Voltage Regulation of three-phase Synchronous Generator.
•	Cycloconverter fed Induction motor drives
٠	Single phase Multi Level Inverter based induction motor drive
•	Study of power quality analyzer