
Engs 22 — Systems  
 

 
System Analogies Page 1 

SYSTEM ANALOGIES 
There are simple and straightforward analogies between electrical, thermal, and fluid systems that we have been using 
as we study thermal and fluid systems.  They are detailed in the center column of the table at the end of this handout.  
The analogies between current, heat flow, and fluid flow are intuitive and can be directly applied; KCL or the like 
works for all of them.  Likewise, the analogies between voltage, temperature and pressure are intuitive and useful.  
Usually the quantity of interest is the pressure, voltage, or temperature difference across some element (although 
absolute pressure and temperature are well defined quantities, unlike absolute voltage, which is not defined except if 
some arbitrary reference point, such as the earth, is used).  And KVL or something similar works for all three of these 
across variables (v, T, and p). 

However, mechanical, chemical, and resource systems don’t fit so neatly into this scheme.  Chemical and resource 
systems don’t really fit at all.  Although the faculty involved in this course have discussed a few possible analogies for 
chemical and resource systems, none help much or make much sense, and none are in common use.  Analogies 
between mechanical systems and electrical and fluid systems, however, do work well and are in common use.  The 
complication is that there are two ways to make the analogy, both of which work, and both of which have particular 
advantages and disadvantages. 

Mechanical Analogy I:  Intuitive 

Probably the first analogy that comes to mind between electrical and mechanical systems is that current is kind of like 
velocity—both are motion of some kind.  And voltage is kind of like force—what pushes the current through a 
resistor.  This intuitive analogy is worked out in detail on the right side of the table.  Current in an inductor is just like 
velocity of a mass—both keep going in the absence of any voltage or force, respectively.  Dampers are analogous to 
resistors—the damper resists motion just as a resistor resists current, and both dissipate, rather than store energy.  So 
far the analogies are both intuitive and mathematically neat and tidy. 

Springs also have a straightforward analogy in this scheme—they are like capacitors.  Running current into a 
capacitor, building up voltage, is just like having a velocity compressing a spring, building up force.  To make the 
equations analogous, we do have to write them a little differently, however.  We wish to express f = Kx in terms of v 
rather than f since that’s the way we have defined the analogy.  We can write dtvKf ∫= , which is now directly 

analogous to dti
C

v ∫=
1 .  Thus, we see that K is analogous to 

C
1 , which makes sense, because with a given current for 

a given time, a smaller capacitor will build up more voltage, whereas with a given velocity for a given time, a smaller 

spring will build up less force.  A more common way to write the capacitor law is 
dt
dvi C= ; the direct mechanical 

analogy is then 
dt
dfv

K
1

= . 

Impedances for electrical systems are defined as, for some element or subcircuit x, Zx(s) = Vx (s)/Ix (s).  According to 
this analogy, mechanical impedance should be defined as   Zx(s) = Fx (s)/Vx (s).  That makes a lot of sense.  If you 
have to push harder for the same velocity, you’d call that a higher impedance.  If you take the Laplace transform of 
the element equations for masses and inductors, you get Ms and Ls; both have impedance that increase with frequency 
(because it is hard to quickly change the velocity of a mass or the quickly change the current in an inductor).  Springs 
and capacitors have impedances of K/s and 1/(sC), respectively.  Both of these increase at low frequency.  Again this 
makes sense.  If you try to keep putting a steady current into a capacitor for a long time (low frequency), you will end 
up with a pretty big voltage.  Likewise, if you keep compressing a spring at a steady velocity for a long time, you are 
going to end up with a pretty big force.  

With all of these analogies working out so nicely, you might wonder what could possibly be wrong with this 
approach.  The problem shows up as soon as you start to try to use it to model a system, so let’s try an example.  
Consider the example of a train car with a damper as a coupler to an engine, as shown in Fig. 1.   
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vin(t) 
 

frictionless 
 

Fig. 1.  Mechanical system. 

The input vin(t) is a step function—zero until the engine couples, and then at a constant velocity V0 thereafter.  The 
velocity of the car doesn’t change instantaneously, so it starts at zero, and follows a saturating exponential up to V0, 
with a time constant M/B.  The force of the damper on the car is equal to the force of the engine on the damper.  Both 
forces are initially equal to B V0, and they decay exponentially to zero, at which point the car is moving at constant 
velocity on frictionless rollers and needs no more force.  (Exercise for the reader: if it is not clear why the above 
results are true, draw a free body diagram, write a system equation, and use first-order linear system solution methods 
to derive them) 

If we wanted to use the intuitive analogy we’d first think to try the following electrical equivalent, replacing the mass 
with an inductor, the damper with a resistor, and the input velocity step function with a current source step function, 
and putting the elements in the same configuration as above.  The result is shown in Fig. 2.  The element values are 
just the same as the element values in the mechanical system (the vin(t) there refers to velocity not voltage—we’ve set 
the current equal to velocity for the analogy). 

R = B 
 

L = M 
 

i(t) = vin(t) 
 

 

Fig. 2.  An incorrect attempt to model the system in Fig. 1 with an electrical system. 

This model looks fine at first glance, but consider what happens when i(t) is a step function.  The current through the 
whole series path must be equal, so the current through the inductor must immediately steps up to the source current 
value.  But the current in an inductor can’t jump instantaneously without an infinite voltage.  So this system requires 
an infinite voltage, corresponding to infinite force in the mechanical system, and the car accelerates instantaneously.  
This is not all the behavior of the mechanical system!  Suddenly our analogy has broken down and isn’t giving 
sensible results at all anymore.   

The problem is that although we have considered the element laws and their analogies carefully, we forgot to consider 
the connection laws (e.g. KCL and KVL).  In the mechanical system, the forces (analogous to voltage) must be the 
same at both ends of the damper, but the velocities of the mass and the engine (analogous to currents) can be different.  
By drawing a series circuit, we’ve set it up so that the current (analogous to velocity) must be the same in both the 
source and the mass, unlike in the mechanical system.  And we’ve allowed the voltages (analogous to force) to be 
different where the mass connects to the damper and where the mass connects to the input.  So we have all the 
constraints imposed by the connections wrong!  

We can fix it by redrawing as shown in Fig. 3.  Now the voltage across the inductor is the same as the voltage across 
the input, corresponding to the force on the mass being the same as the force on applied by the engine (through the 
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damper, or in the electrical model, across the resistor).  The velocity at which the damper is compressed is the 
difference between the engine velocity and the mass velocity.  Analogously, the current in the resistor is the difference 
between the source current and the current in the inductor. 

L = M 
 

R = B 
 

i(t) = vin(t) 
 

Fig. 3.  One correct way to model the system in Fig. 1 with an electrical system.  This is using the intuitive analogy. 

The behavior of the system in Fig. 3 is in fact exactly the same as the behavior of the system in Fig. 1.  When the 
input (current source) steps up, the input current doesn’t match the inductor current, which is still zero, so initially the 
difference goes through the resistor, and a voltage (v = iR) is applied across the inductor.  The current in the inductor 
then grows until it matches the input current, as the voltage decays to zero.  The time constant is L/R = M/B.  The 
description can be repeated for the mechanical system, by substituting the word velocity for current and force for 
voltage, and making only a few other cosmetic changes: 
When the input (velocity source) steps up, the input velocity doesn’t match the mass velocity, which is still zero, so 
initially the difference is taken up by the damper, and a force (f = bv) is applied to the mass.  The velocity of the mass 
then grows until it matches the input velocity, as the force decays to zero. 

What we have done in going from the arrangement in Fig.1 and 2 to the new arrangement in Fig. 3 is to swap things 
around so that everything that was in series (in the original mechanical topology) is now in parallel.  If there had been 
anything in parallel in the original system, we would have drawn the analogy with those elements in series.  For 
example, if the original system had had two identical dampers in parallel, that would have been like a damper with 
twice the force for a given velocity; a damper with twice the value of B.  We could the draw the analogy with two 
resistors in series to also give twice the value. 

This process of swapping series and parallel configurations is called taking the dual of a network.  The disadvantage 
of the intuitive analogy set for mechanical systems is that the analogous electrical and other systems don’t have the 
same topology.  But this is only an inconvenience.  One can draw the electrical analogy as a dual, and get a model that 
matches the behavior correctly. 

Mechanical Analogy II:  Through/Across 

In order to avoid the topological confusion that arose in the intuitive analogy, we can start by considering the 
interconnection laws.  The forces at a (massless) node must sum to zero, just as the currents at a (capacitance-less) 
node must sum to zero.  The force through a set of series elements (except masses) must be the same, just as the 
current through a set of series elements must be the same.  Thus, if we consider current analogous to force, we may do 
better.  That would leave voltage analogous to velocity.   

Considering voltage analogous to velocity has the immediate advantage that the same letter is used for both, but it also 
has the advantage that both are across variables.  It is the velocity difference between the ends of the damper that 
matters, just as it is the voltage difference across a resistor that matters.  As a result of the fact that both are across 
variables, both obey KVL.  Kirchoff’s Velocity Law is not usually discussed (and when it is, it is not given that 
name), but it is equivalent to the kinematic equations we would write down for the mechanical system in Fig. 1.  We 
start at “ground”(the stationary reference frame) and go around the loop counter clockwise to add up the velocity of 
the mass (relative to the stationary reference frame), the velocity difference across the damper, and the velocity 
difference between ground and the input, and the sum must equal zero:  
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If we follow through with these analogies for variables, for a resistor, we want an analogous element with v = f Rmech.  
That element is again a damper, but the values are reciprocals; R = 1/B.  For a capacitor we want an analogy to 

dt
dvi C= , which should be of the form, 

dt
dvCf mech= .  Such a relationship is quite familiar if we use the analogy M = 

Cmech.  For an inductor, the analogy again involves the reciprocal, 
dt
dfv

K
1

= , such that the analogy is Lmech = 1/K.  

Gaining an intuitive understanding of these analogies is more difficult for most people, but mathematically, they work 
out just fine.  And they are easier to apply, because the topology does not change.  The details are on the left side of 
the table.  Note that everything works out just as nicely here as it does on the right half of the chart.  The energy 
storage and energy dissipation formulas all work out to be exactly analogous. 

This sounds good, but our last analogy system crashed only when we tried to run an example, so let’s consider the 
same system in Fig. 1.  Since we have carefully considered which are through and across variables, and made the new 
analogy follow them rigorously, the topology will be preserved.  We can make an analogy by just transcribing the 
same topology with the new element analogies.  The topology is like Fig. 2, but now we have different elements and 
values, as shown in Fig. 4. 

R = 1/B 
 

C = M 
 

+ 
vin(t) 

- 
 

 

Fig. 4.  A second correct way to model the system in Fig. 1 with an electrical system.  This is using the through/across analogy. 

 

A rigorous analysis of the behavior of this system, to check that it matches the behavior of the mechanical system in 
Fig. 1, is left as an exercise.  However, consider the description of behavior under Fig. 3, which matched nearly word-
for-word a description of the mechanical system.  If we try that for this system, it works just fine: 

When the input (voltage source) steps up, the input voltage doesn’t match the capacitor voltage, which is still zero, so 
initially the voltage difference appears across the resistor, and a current (i  = v/R) goes through the resistor to the 
capacitor.  The voltage across the capacitor then grows until it matches the input voltage, as the current decays to 
zero.  The time constant is RC = M/B. 

The main advantage of this analogy set is that it preserves the topology.  Another advantage is that it is the analogy 
that is implemented by many electric motors.  A permanent-magnet dc motor produces a torque that is approximately 
proportional to current and produces a voltage that is approximately proportional to angular velocity.  This can make 
modeling mixed mechanical-electrical systems easier. 

The main disadvantage of this analogy is that it is less intuitive than our original analogy.  A further disadvantage is 
that it would result in a counterintuitive definition of impedance.  The analogy to impedance that is universally used is 
the one discussed in the intuitive analogy and listed in the corresponding section of the table (on the right). 
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Mechanical Analogies:  Conclusions 

There are two fully valid ways of modeling mechanical systems with electrical systems, or drawing analogies between 
the two types of systems.  One method uses an intuitive analogy between current and velocity (both are motion) and 
voltage force (both are “push”).  This works, but it requires constructing a model in a different configuration, with 
series connections replaced by parallel and vice versa.  The second method uses voltage as the analogy for velocity 
and current as the analogy for force.  Although that is counterintuitive, voltage and velocity are both across variables 
and current and force are both through variables, and thus this analogy leads to analogous systems that have the same 
topology. 

Some books present one of these as the correct analogy; some present the other.  Knowing that both are valid puts you 
one step ahead of many textbook authors. 

Notes On a Few Anomalies 

• In the energy-storage and energy dissipation equations, everything works analogously except for thermal 
systems.  That’s because one of the variables, heat, is already energy.  So a thermal resistor doesn’t dissipate 
energy, but rather transfers it. 

• Masses, thermal capacitors, and most fluid capacitors all have the characteristic that one end must be 
“grounded”, meaning that the across variable must have one end at zero.  That means that you can construct 
an electrical analogy for any of those systems (just by grounding one end of the appropriate element), but you 
can’t construct thermal or mechanical analogies for every electrical network.  Thus, electrical networks work 
best as a general-purpose toolkit for modeling any system.   Fluid systems could in theory also be used, but 
the concept of lumped-element fluid systems is relatively rarely used, and inertance is not familiar to enough 
people for this analogy to be readily and widely understood. 
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Note:  None of the across variables are written as, for example, (θ1 -θ2) = φR.  That is because the variable for a particular element is implicitly the difference across it for 
any across variable.   

Topology-Preserving Set (book’s analogy)  
 Intuitive Analogy Set 

⇔ 
intuitive stretch 

⇔ 
topology change 

Description Trans Mech Rot Mech Electrical Thermal Fluid Trans Mech Rot Mech Description 
“through” 
variable 

f   
(force) 

τ   
(torque) 

i   
(current) 

φ  
(heat flux) 

q  
(flow) 

v 
(velocity) 

ω 
(angular 
velocity) 

Motion 

“across” 
variable 

v 
(velocity) 

ω 
(angular 
velocity) 

v   
(voltage) 

T, θ   
(temper-

ature) 

p 
(pressure) 

f   
(force) 

τ   
(torque) 

Push (force) 

Dissipative 
element 

fv
B
1

=  τω
rB

1
=  v = iR θ = φR p = qR f = vB τ = ωBr Dissipative 

element 

Dissipation 
BB 1/

1 2
2 v

f =  
BB 1/

1 2
2τ ω

=  i2R = v2/R N/A q2R = p2/R v2B = f2/B ω2Br = τ2/Br Dissipation 

 
Through-
variable  
storage 
element 

dt
dfv

K
1

=  

or 

fdtv
K
1

=∫  

dt
dτω

rK
1

=  

or  

τω
rK

1
=∫ dt  

 

dt
div L=  

 
 

N/A 

 

dt
dqp I=  

 

dt
dvf M=  

(one end must 
be “grounded”) 

 

dt
dωτ J=  

(one end must 
be “grounded”) 

 
Motion 
storage 
element 

Energy 2
2
1 fE

K
1

=  2
2
1 τ

r
E

K
1

=  E = ½Li2  E = ½Iq2 E = ½Mv2 E = ½Jω2 Energy 

Impedance Standard definition is at right V(s)=I(s)Ls  P(s) = Q(s)Is F(s) = V(s)Ms Τ(s) = Ω(s)Js Impedance 
 

Across-
variable 
storage 
element 

dt
dvf M=  

(one end must 
be 

“grounded”) 

dt
dωτ J=  

dt
dvi C=  

dt
dθφ C=  

(one end 
must be 

“grounded”) 

dt
dpq C=  

(one end 
usually 

“grounded”) 

dt
dfv

K
1

=  

or 

fdtv
K
1

=∫  

dt
dτω

rK
1

=  

or 

τω
rK

1
=∫ dt  

 
Push (force) 

storage 
element 

Energy E = ½Mv2 E = ½Jω2 E = ½Cv2 E = CT (not 
analogous) E = ½C p2 2

2
1 fE

K
1

=  2
2
1 τ

r
E

K
1

=  Energy 

Impedance 
The standard definition of mechanical 

impedance is the one on the right, 
based on the intuitive analogy. sC

1)()( sIsV =

 
sC
1)()( ss Φ=Θ

 
sC
1)()( sQsP =

 
s
K)()( sVsF =  

s
K rss )()( Ω=Τ  Impedance 


