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System definition and problem statement

r: reference variable
e: error signal
u: control variable
m: manipulated input
y: controlled variable

ym: measure of the output
z: feedback signal
d: disturbance
n: measurement noise
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System definition and problem statement

In many cases the system presents a nonlinear phenomenon which is fully 
characterised by its static characteristics, i.e., its dynamics can be neglected

Saturated actuators

Relay control

Gears backlash

Hysteresis in magnetic 
materials
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System definition and problem statement
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System definition and problem statement

In many cases the system presents a nonlinear phenomenon which is fully 
characterised by its static characteristics, i.e., its dynamics can be neglected

Saturated actuators

Relay control

Gears backlash

Hysteresis in magnetic 
materials

Dead zone in electro-
mechanical systems
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System definition and problem statement

In many cases the system presents a nonlinear phenomenon which is fully 
characterised by its static characteristics, i.e., its dynamics can be neglected
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System definition and problem statement

In many cases the system presents a nonlinear phenomenon which is fully 
characterised by its static characteristics, i.e., its dynamics can be neglected
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System definition and problem statement

Nonlinearities are not always a drawback, they can also a have a
“stabilising” effect
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System definition and problem statement
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System definition and problem statement

The NOT 
saturated 
system is not 
stable since its 
stability margin 
are negatives

• mg = -12 dB

• mϕ = - 47 deg

Bode Diagram of the difference transfer function
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System definition and problem statement

Many systems can be reduced to a simplified form in which the all linear 
dynamics is concentrated in a unique block and the static non linear 
characteristics is represented by a separate block

f(u) P(jω)C(jω)

H(jω)

+r(t) e(t) u(t) m(t) y(t)
_

z(t)

f(u) P(jω)H (jω)C (jω)C(jω)
+r’(t) u(t) m(t) w(t)

_

r(t)
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System definition and problem statement

If constant (or very slowly varying) reference signals are considered, 
under some conditions it is possible to separate the low-frequency, almost 
static, behaviour defined by a working nominal condition and a high-
frequency behaviour due to small variations around such a working point

f(u) P(jω)H (jω)C (jω)C(jω)
+r’(t) u(t) m(t) w(t)

_
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System definition and problem statement

The non linear characteristics is translated so that the origin of the new 
reference Cartesian system is the point (u0, m0) in the original one

f’(u) G (jω)
+Δr’(t)=0 Δu(t) Δm(t) Δw(t)
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System definition and problem statement

The aim of the system analysis is to define which is the steady-state 
behaviour of the system defined by the variations around the nominal 
working point

f’(u) G (jω)
+Δr’(t)=0 Δu(t) Δm(t) Δw(t)

_

If f’(u) is a passive sector function absolute stability tools allow for sufficient
conditions for global asymptotic stability of the variation system, i.e, the steady 
state is characterised by constant values of the system variables

If the origin of the variation system is not stable does the varia-
bles diverge to infinity or some periodic motion can appear?
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Limit cycles

Limit cycle: a periodic oscillation around a constant working point

f(u) G (jω)
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Limit cycles

Limit cycle: a periodic oscillation around a constant working point
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Limit cycles

Limit cycle can be a drawback in control systems:

Instability of the equilibrium point

Wear and failure in mechanical systems

Loss of accuracy in regulation

Parameters of the limit cicle can be used to discriminate between 
acceptable and dangerous oscillations

oscillation frequency

oscillation magnitude

Electronic oscillators can be based on limit cycles
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Describing Function - Assumptions

The describing Function approach to the analysis of steady-state oscillations 
in non linear systems is an approximate tool to estimate the limit cycle 
parameters.

It is based on the following assumptions 

There is only one single nonlinear component

The nonlinear component is not dynamical and time 
invariant

The linear component has low-pass filter properties

The nonlinear characteristic is symmetric with respect 
to the origin
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Describing Function - Assumptions

There is only one single nonlinear component

The system can be represented by a lumped parameters 
system with two main blocks:

•The linear part 

•The nonlinear part

N.L. G (jω)
+r’=const. u(t) m(t) w(t)

_
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Describing Function - Assumptions

The nonlinear component is not dynamical and time invariant

The system is autonomous. 
All the system dynamics is concentrated in the linear part 
so that classical analysis tools such as Nyquist and Bode 
plots can be applied. 
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Describing Function - Assumptions

The linear component has low-pass filter properties

This is the main assumption that allows for neglecting the 
higher frequency harmonics that can appear when a 
nonlinear system is driven by a harmonic signal

( ) ( ) K ,3 ,2=>> njnGjG ωω

The more the low-pass filter assumption is verified the 
more the estimation error affecting the limit cycle 
parameters is small
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Describing Function - Assumptions

The nonlinear characteristic is symmetric with respect to the origin

This guarantees that the static term in the Fourier expansion of the 
output of the nonlinearity, subjected to an harmonic signal, can be 
neglected

f’(u) G (jω)
+Δr’(t)=0 Δu(t) Δm(t) Δw(t)

_

Such an assumption is usually taken for the sake of simplicity, and 
it can be relaxed
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Fourier expansion - Recall

Consider a periodic function
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Describing Function – Harmonic balance

f’(u) G (jω)
+Δr’(t)=0 Δu(t) Δm(t) Δw(t)
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Describing Function – Harmonic balance
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Describing Function – Harmonic balance

A permanent oscillation in the loop appears if Δu(t)=-Δw(t)

tjjjtj eeMeGUe ωϑϕω 11
11−=

N.L. G (jω)
+Δr’(t)=0 Δu(t) Δm(t) Δw(t)

_

01 11 1
1 =+ ϑϕ jj e

U
MeG

( ) ( ) 0,1 =+ ωω UNjG

( ) ( )11
1, jab
U

UN +=ω is the Describing Function of the nonlinear term

Harmonic balance equation



Describing Function analysis of nonlinear systems – Prof Elio USAI – March 2008

Describing Function – Harmonic balance

The armonic balance equation is a necessary condition for the existence of 
limit cycles in the nonlinear system

The approximate analysis gives good estimates if the low-pass filter 
hypothesis is strongly verified. It is a good tools for engineers

The harmonic balance equation is similar to the characteristic polynomial 
function, i.e. it leads to the Nyquist condition for closed-loop stability

The Describing Function is a linear approximation of the static nonlinearity 
limited to the first harmonic

( ) ( )ω
ω

,
1

UN
jG −=

In most cases the Describing Function is not a function of the frequency and 
this simplifies the verification of the harmonic balance equation by means of 
the Nyquist plot of the transfer function 
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Describing Function – Harmonic balance

Nyquist Diagram
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Describing Function – Harmonic balance

Nyquist and DF Diagrams
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Describing Function – Computation

The evaluation of coefficients a1 and b1 can be performed by means of both 
analytical calculation and numerical integration, depending on the type of 
nonlinearity involved
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Usin(ωt) Δm(t)
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Describing Function – Computation
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Describing Function – Computation

Ideal relay

A limit cycle can exist 
if the relative degree of 
G(jω) is greater than 
two

Nyquist and DF Diagrams
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Describing Function – Computation
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Describing Function – Computation

A limit cycle can exist 
if the relative degree 
of G(jω) is greater 
than one and G(jω) is 
a type-0 system

The negative reciprocal 
of the DF is the 
negative imaginary 
axis in backward 
direction

The oscillation frequency is lower than the critical frequency ωc of the linear 
system and the oscillation’s magnitude is proportional to the relay gain M and to 
the modulus of the transfer function at phase -π/4
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Describing Function – Computation
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Describing Function – Computation

Hysteretic relay

If β is larger than U 
the relay could not 
behave as a pure
hysteresis

Nyquist and DF Diagrams
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Describing Function – Computation
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Describing Function – Computation

A limit cycle can exist 
if the relative degree 
of G(jω) is greater 
than two and gain k is 
sufficiently high

The negative reciprocal 
of the DF is part of the 
negative real axis in 
backward direction

The oscillation frequency is the critical frequency ωc of the linear system and the 
oscillation’s magnitude depends on the saturation parameters M and k

Saturation Nyquist and DF Diagrams
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Describing Function – Computation
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Describing Function – Computation

A limit cycle can exist 
if the relative degree 
of G(jω) is greater 
than two and gain k is 
sufficiently high

The negative reciprocal 
of the DF is part of the 
negative real axis in 
forward direction

The oscillation frequency is the critical frequency ωc of the linear system and the 
oscillation magnitude depends on the dead zone parameters β and k

Dead zone Nyquist and DF Diagrams
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Describing Function – Computation

The nonlinear 
characteristics of 
the Dead Zone 
can be computed 
by subtracting the 
Saturation 
characteristics 
from a linear one

Dead zone

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

Δ u

Δ 
m

k 

dead zone ψ(Δu)

saturation φ (Δu) 

( ) ( )uku ΔΦ−=ΔΨ

( ) ( )UNkUN ΦΨ −=



Describing Function analysis of nonlinear systems – Prof Elio USAI – March 2008

Describing Function – Computation

The Describing function of a nonlinear characteristics can be computed as the 
combination of the Describing Functions of the elementary constituting 
nonlinear characteristics

( ) ( ) ( )UNUNUNt 21 +=

N2(U,ω)
G (jω)

+Δr’(t)=0 Δu(t)
Δm(t) Δw(t)

_

N1(U,ω)

Nt(U,ω)
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Describing Function – Computation

A number of Describing Function can be computed by particularisation of the 
function

in which the parameter α defines a peculiar point of the nonlinear characteristics
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Describing Function – Computation
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Describing Function – Computation
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Describing Function – Computation
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Describing Function – Computation
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Describing Function – Computation
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Describing Function – Computation
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Stability of limit cycles

If the block N.L. is a pure constant k, the stability of the feedback system 
can be performed by means of the Nyquist criterion, which gives the 
number of roots with positive real roots of the Harmonic Balance Equation

N.L. G (jω)
+Δr’(t)=0 Δu(t) Δm(t) Δw(t)

_

( ) 011 =+
k

jG ω

The Nyquist criterion looks at the relative position of  the transfer function 
G(jω) with respect to the point (-1/k, 0) in the complex plain.
By extension the criterion can be applied to any point –α of the complex 
plain with reference to the Harmonic Balance Equation

( ) C∈=+ ααω ,01 jG
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Stability of limit cycles

If  the transfer function G(jω) represents a stable system, the reduced
Nyquist criterion can be applied, i.e. the closed loop stability can be stated 
if the reference point –α in the complex plain remains on the left-side when 
running along the Nyquist plot of G(jω) from ω=0+ to ω =+∞.

Nyquist plot of G(jω)
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The closed loop is not stable 
with respect to the point (-1/k,0).

The closed loop is stable with 
respect to the point -α
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Stability of limit cycles

Can the generalization of the Nyquist criterion be used to analyse the 
stability of a limit cycle?

If a perturbation of the magnitude of the periodic oscillation occurs, it 
tends to the original value as time passes.

What does it mean that a limit cycle is stable?

YES, it can

It is a marginally stable condition.
How can a limit cycle be considered from the Nyquist criterion point of view?

By a point in the Describing Function plot.
How can the magnitude of a limit cycle be represented?



Nyquist and DF plots
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Stability of limit cycles

Points B, B’, 
B”, A and A’
represent 
possible 
magnitudes of 
the oscillation.

A and B re-
present two 
possible limit 
cycles
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Stability of limit cycles

Applying the reduced
Nyquist criterion with 
respect to:

point B’: oscillations tend 
to decrease (stable system)

point B”: oscillations tend 
to increase (unstable 
system)

point A’: oscillations tend 
to decrease (stable system)

B: Stable limit cycle A: Unstable limit cycle

Nyquist and DF plots
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The linear system G(jω) is assumed to be stable in order to apply the reduced Nyquist criterion
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DF Analysis – Example of application

Consider a DC motor with permanent magnets

0 V

+24 V

-24 V

M 
d.c.

The position of the motor shaft is measured by means of a rotational variable 
resistance. 

The voltage on the rotational resistance drives the position of a relay that 
switches the motor supply voltage between +/- 24 V d.c.
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DF Analysis – Example of application

The linear approximate model of a DC motor is the following
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Rr: rotor resistance
Lr: rotor inductance
ke: voltage feedback constant
kt: torque constant
Jm: motor inertia
Jl: load inertia
Bm: motor friction coefficient
Bl: load friction coefficient

vr: rotor supply voltage
ir: rotor wound current
Cem: electromagnetic torque
ω: rotational speed
θ: shatf angular position
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DF Analysis – Example of application

The motor transfer functions are the following
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DF Analysis – Example of application

Taking into account the parameters of the motor and of the load

R=0.4; % rotor resistance

L=0.001; % rotor inductance

ke=0.3; % voltage feedback constant

kt=0.3; % torque constant

Jm=0.01; % motor inertia

Jl=0.09 % load inertia

Bm=0.05; % motor friction coefficient

Bl=0.05; %load friction coefficient

J=Jm+Jl;

B=Bm+Bl;

Nyquist and DF plots
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DF Analysis – Example of application

Taking into account the parameters of the motor and of the load

( )( ) ( )( ) rad 0.17594M-Urad/s 056.36
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R=0.4; % rotor resistance

L=0.001; % rotor inductance

ke=0.3; % voltage feedback constant

kt=0.3; % torque constant

Jm=0.01; % motor inertia

Jl=0.09 % load inertia

Bm=0.05; % motor friction coefficient

Bl=0.05; %load friction coefficient

J=Jm+Jl;

B=Bm+Bl;

Nyquist and DF plots
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DF Analysis – Example of application

Taking into account the parameters of the motor and of the load

( )( ) ( )( ) rad 0.17594M-Urad/s 056.36
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R=0.4; % rotor resistance

L=0.001; % rotor inductance

ke=0.3; % voltage feedback constant

kt=0.3; % torque constant

Jm=0.01; % motor inertia

Jl=0.09 % load inertia

Bm=0.05; % motor friction coefficient

Bl=0.05; %load friction coefficient

J=Jm+Jl;

B=Bm+Bl;

Nyquist and DF plots
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DF Analysis – Example of application

The system 
presents a 
periodic 
steady-state 
oscillation
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DF Analysis – Example of application

The system 
presents a 
periodic 
steady-state 
oscillation
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DF Analysis – Example of application

The system 
presents a 
periodic 
steady-state 
oscillation
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DF Analysis – Example of application

What does it happen if the same control law is applied to the speed 
control problem?

Step Sign

Scope

24

Gain

V

Cr

ang

w

i

DC Motor

( ) ( )( ) etaa

t

kkBsJRsL
ksW

+++
=ω

The linear plant is characterised by an all-pole transfer function with relative 
degree two, therefore there is no contact point between  the Nyquist plot and 
the real negative axis, but the origin at ω=+∞ (corresponding to U=0 in the 
DF plot)
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DF Analysis – Example of application

Nyquist and DF plots
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The Nyquist plot of the 
linear system is tangent
to the negative 
reciprocal of the DF at 
the origin, i.e., U=0 and 
ω=+∞

Maybe a sliding mode 
behaviour is established 
asymptotically!?
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DF Analysis – Example of application
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Possibly a sort of 
dead-bit control, 
or finite time 
stabilisation 
seams to appear

Can it be a 
sliding mode 
behaviour?
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DF Analysis – Example of application

By reducing the 
integration step 
of the simulation 
it is apparent that 
the stabilisation 
is asymptotic

Can it be a 
sliding mode 
behaviour?
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DF Analysis – Example of application

The rotor current 
tends to a 
constant value, 
i.e. an 
asymptotic (2nd

order) sliding 
sliding mode 
appears
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By reducing the 
integration step 
of the simulation 
it is apparent that 
the stabilisation 
is asymptotic
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DF Analysis – Example of application

The DC motor is a second order system whose state variables are the rotor speed and 
current
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1
0

1

The system transfer function has a zero in –2, and if the system output is steared to 
zero in a finite time, than the system behaves as a first order system with time 
constant τ=0.5
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DF Analysis – Example of application

A MATLAB-Simulink scheme is the following

r=2π

Sign

ScopeRelay

Manual Switch
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DC Motor

Take care that because of the feedback, the new closed loop gain (assuming the rotor 
velocity as the  output) will be 1/2
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DF Analysis – Example of application

It is apparent that the shaft speed tends 
to the steady state value π as a first 
order system with τ = 0.5 s
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]Apart from a very short transient, the 
state trajectory tends to the steady-state 
values sliding on a linear manifold of 
the state space
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DF Analysis – Example of application

The Nyquist plot of the 
linear system cross the 
negative reciprocal of 
the DF at the origin, i.e., 
U=0 and ω=+∞

A sliding mode 
behaviour is established 
in a finite time

Nyquist and DF plots
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DF Analysis & Sliding Modes

Sliding modes are characterised by infinite frequency of proper ideal switching 
devices

Most sliding mode controllers use a sign function in the controller, i.e., an ideal 
relay, which can be approximately represented by its Describing Function

By the example it is apparent that a sliding mode behaviour is established in a 
finite time if the Nyquist plot of cross the inverse negative of the describing 
function at the point (U=0,ω=+∞)

It can also be derived that a sliding mode behaviour is established asymptotically 
if the Nyquist plot of is tangent to the inverse negative of the describing function 
at the point (U=0,ω=+∞)

TAKE CARE: the Describing function is an approximate tool
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DF Analysis & Sliding Modes

r=0
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DC Motor

Substitute the ideal relay with a hysteretic one with β=1

It is apparent that an ideal sliding mode cannot appear because of the switching delay
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DF Analysis & Sliding Modes

The limit 
cycle is 
apparent, 
with a period
Tlc≅0.6 ms

The 
magnitude is 
very small 
because of 
the low-pass 
filter property 
of the motor 
transfer 
function
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DF Analysis & Sliding Modes

The Nyquist
plot of the linear 
system has no 
common point 
with the 
negative inverse 
of the 
Describing 
Function of the 
hysteretic relay

Describing 
function 
analysis can be 
useful in sliding 
mode systems 
when a common 
point is present
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Most effective use of the Describing Function approach to sliding modes….

Analysis of the characteristics of a chattering behaviour due to unmodelled
dynamics of sensors and/or actuators

What is chattering? It appears as oscillations of the system variables, whose 
magnitude is related to the influence of the neglected dynamics on the system 

bandwidth

It is very close to a limit cycle 
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Consider the motor drive as a hysteretic switching device plus a time constant τa=0.1 s

r=2*pi

1
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Nyquist and DF plots
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Nyquist plot parameters
ωlc=662 rad/s

Ulm=1.1833 rad/s2

Uls represents the magnitude of 
the oscillation of the sliding 
variable

-1/N(U) 

G(j ω) 

System: untitled1 
Real: -0.0507 
Imag: -0.0328 
Freq (rad/sec): 662 
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Nyquist plot parameters
ωlc=662 rad/s

Ulm=1.1833 rad/s2

Simulation results
Tls=9.7 ms

ωlc=646 rad/s
Ulm=1.8544 rad/s2
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the simulation
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The rotor velocity tends 
to its steady-state value 
as a first order system 

with time constant 
τ=0.5s

Rotor wound current 
presents large variations

An approximate sliding 
mode is established
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The Describing Function approach to the analysis of the chattering phenomenon in 
sliding mode control systems can be used to have an estimate of the chattering 
parameters, i.e., frequency and magnitude

The estimates are affected by an error which depends on the low-pass properties of 
the linear part of the plant

The sliding variable must be considered as the output of the nonlinear feedback 
system

The actual system output behaviour can be estimated by considering the reduced 
order dynamics

In the presence of a constant reference value, the nonlinear function can be not 
symmetric, therefore an equivalent gain of the nonlinearity has to be considered to 
estimate the constant mean steady-state value of the output


