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System definition and problem statement

................................... d) _ . _Plant
: B TR R P e 1.
5 P !

r(t) : P + - y(t
S SRRy LUV Rk
. — . + |
controller : actuator process

Controller
r: reference variable Y- measure of the output
e: error signal z: feedback signal
u: control variable d: disturbance
m: manipulated input n: measurement noise

y: controlled variable
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System definition and problem statement

In many cases the system presents a nonlinear phenomenon which is fully
characterised by its static characteristics, I.e., its dynamics can be neglected

Saturated actuators ML
Relay control

Gears backlash > U

Hysteresis in magnetic
materials

Dead zone In electro-
mechanical systems
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System definition and problem statement

In many cases the system presents a nonlinear phenomenon which is fully
characterised by its static characteristics, I.e., its dynamics can be neglected

Saturated actuators s

Relay control

Gears backlash 5 > €

Hysteresis in magnetic
materials

Dead zone In electro- U
mechanical systems
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System definition and problem statement

In many cases the system presents a nonlinear phenomenon which is fully
characterised by its static characteristics, I.e., its dynamics can be neglected

Saturated actuators
Relay control
Gears backlash

Hysteresis in magnetic
materials

Dead zone In electro-
mechanical systems

M (driven gear)

4

o/

A

U (driving gear)

ﬁ/

/+U
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System definition and problem statement

In many cases the system presents a nonlinear phenomenon which is fully
characterised by its static characteristics, I.e., its dynamics can be neglected

Saturated actuators

Relay control

Gears backlash

Hysteresis in magnetic
materials

Dead zone In electro-
mechanical systems
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System definition and problem statement

In many cases the system presents a nonlinear phenomenon which is fully
characterised by its static characteristics, I.e., its dynamics can be neglected

Saturated actuators
Relay control

Gears backlash

Hysteresis in magnetic
materials

Dead zone in electro-
mechanical systems
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System definition and problem statement

Nonlinearities are not always a drawback, they can also a have a
“stabilising” effect

Z(t)
1
Pls)= s(1+1.4s+52)
0.5 o1
H(S):(1+0-15) A(S)_". sat(+2)

C(s)=10
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System output

-10
A5f - SRR

-20 1 1 1 1 1 1 1 1 1

System definition and problem statement

Step response
20 \ \ \
—— NOT saturated actuator

\ \ \
i i i 6 S R

—— Saturated actuator

,,,,,,,,,,,,,,,,,,,,,,,,,

10

The saturated

’ system

) oscillates but
does not

5 diverge
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System definition and problem statement

Bode Diagram of the difference transfer function

50

-
P =
—_ = O 75 an)
o S D ©
c & m > O~
_I - AN <
fd
OB=S 8 < |
— m LA )
Z © o= O I
e D = == o s
O S = O O
c =2 L @ © D & &
C 2N 5 5 =
T " n un un @© () ()

I I I I
\\\\\\\\ [l e Al At e i By
\\\\\\\\ ey A e ——

| | |
\\\\\\\\ [l e N 2 i H e B
\\\\\\\\ [ I AR T

| |
\\\\\\\\ L K I AN | O I SN

” ,

\\\\\\\\ - === == - = = = === - """+ -"—"=—-"=—"—"=—"=———|=-= === = = -

” ”

\\\\\\\\ A B A
| |

| |

| |

| |
e

|
|
|
|
|
Y S S R SRR BN A
| |
g -/ e ]
Sgp-----f- e - Y -
PR [ Lo _____ b ___ 1 I il
8 o L L h L ” i
BO_ T ] | M._ T o |
i w\l e o | > o y |
w8 . ! s i
73 S L] Y /N
mmw | | Bm, | |
eun | | dl, I I
ﬁqg | | c ' ! | |
(] | | = e | |
wyrm‘ \\\\\\\\\\\\\\\\\\\\\ N~—~_____f
) LWL I T V/yg, | T
e \‘\S\Cn%, | |
| | = Cc & | |
| ” §32 28 |
| | 2e8 g% |
[ A Lo _| L W/ m\.mu./\.n#s\\\\\\[\
\\\\\\\\\\\\\\ ‘,HH\HH”\HH\H\ \WH\\‘\H\\‘\,\\\\\Q%e\\\\\\\”\
\\\\\\\ [ e I e i Attt ywm\\\\\\\w
\\\\\\\ [ T [ \\,\\\\\Sa%\\\\\\\r
| | | | = |
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ ~©c
3 v ! i > i
\\\\\\\ Y N | W — — — A c - - - - _—__Y4
| | | | [} |
““““ R (R A D - S —
I T 1
| | | _mr-w
| | |
\\\\\\\\ Fmm———— = —— == I
| | | |
| | | |
| | | |
| | | |
\\\\\\\\\ [ R [

, ” ” ” ”

| | | | |

| | | | |

| | | | |

| | | | |

| | | | | | |

o (@) o o O o o o

n S n o @ ~ ©
) — - — [N ™

(gp) spnuben

(bop) aseyd

10

10

Frequency (rad/sec)

Describing Function analysis of nonlinear systems — Prof Elio USAI — March 2008



System definition and problem statement

Many systems can be reduced to a simplified form in which the all linear
dynamics is concentrated in a unique block and the static non linear
characteristics Is represented by a separate block

rt +

3@ co)

Z(t)

o [

y(t)
_>

r(t)

—7 > C(jw)

0 g Y MO ) piwH (o)C (o)

!

w(tl
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System definition and problem statement

If constant (or very slowly varying) reference signals are considered,
under some conditions it Is possible to separate the low-frequency, almost
static, behaviour defined by a working nominal condition and a high-
frequency behaviour due to small variations around such a working point

= ’ t
W= e "V @ 10 MO ) ploH (@)C (@) —

l u(t)=u, +Auf(t)

m(t) & (i) w(t) m(t)=m, +Am(t)
w(t) = w, + Aw(t)
U, =k.R—k;m,
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System definition and problem statement

The non linear characteristics iIs translated so that the origin of the new
reference Cartesian system is the point (u,, m,) in the original one

14m
My
N {mo = f(u,)
ke o > AU U, =kcR—kgm,
g = > Am, = f'(Au)
NG f(Au)= f(u + Au)—m,
YOO L@ w40 e e
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System definition and problem statement

The aim of the system analysis is to define which is the steady-state
behaviour of the system defined by the variations around the nominal
working point

Ar’(t)=0 + Au(t) £(u) Am(t) G (io)

If ’(u) is a passive sector function absolute stability tools allow for sufficient

conditions for global asymptotic stability of the variation system, i.e, the steady
state is characterised by constant values of the system variables

Aw@

If the origin of the variation system is not stable does the varia-
bles diverge to infinity or some periodic motion can appear?
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Limit cycles
Limit cycle: a periodic oscillation around a constant working point

10

5.0 L@ O NREl 0 ogp LG OO EnE sy
T flu)=satll—5. %)

i AM i i 1 1
4 S SO S N SO U S S m=——u+=
| | 10 2
R L5
1 1 Au 0 414
SRR 11
I -
] : : _ 0 -
T W o \ 11
1 4 2 0 2 4 6 8
u
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Limit cycles

Limit cycle: a periodic oscillation around a constant working point

output w(t)

AP()=0 + Au(t) F) LAm® & (o) Aw(l)

L5
° 11
-
° 11

1 S N SO S S 50

WO = E = 4545

! ! !
5 10 15 20 25 30
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Limit cycles

Limit cycle can be a drawback in control systems:
v" Instability of the equilibrium point
v" Wear and failure in mechanical systems

v" Loss of accuracy in regulation

Parameters of the limit cicle can be used to discriminate between
acceptable and dangerous oscillations

» oscillation frequency

» oscillation magnitude

Electronic oscillators can be based on limit cycles
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Describing Function - Assumptions

The describing Function approach to the analysis of steady-state oscillations
In non linear systems is an approximate tool to estimate the limit cycle
parameters.

It is based on the following assumptions
v" There is only one single nonlinear component

v" The nonlinear component is not dynamical and time
Invariant

v The linear component has low-pass filter properties

v The nonlinear characteristic is symmetric with respect
to the origin
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Describing Function - Assumptions

There is only one single nonlinear component

The system can be represented by a lumped parameters
system with two main blocks:

*The linear part

*The nonlinear part

r=const. 4+ U(t) -_(_)_> G (o) w(t)

b
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Describing Function - Assumptions

The nonlinear component is not dynamical and time invariant

The system is autonomous.

All the system dynamics is concentrated in the linear part

so that classical analysis tools such as Nyquist and Bode
plots can be applied.

TNV | ——
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Describing Function - Assumptions

The linear component has low-pass filter properties

This is the main assumption that allows for neglecting the
higher frequency harmonics that can appear when a
nonlinear system is driven by a harmonic signal

G(j@)>>|G(jn@) n=2,3,...

The more the low-pass filter assumption is verified the
more the estimation error affecting the limit cycle
parameters is small
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Describing Function - Assumptions

The nonlinear characteristic is symmetric with respect to the origin

This guarantees that the static term in the Fourier expansion of the

output of the nonlinearity, subjected to an harmonic signal, can be
neglected

Ar(H)=0  + Au(t) Fu) LAm@ & (o) Aw@

Such an assumption is usually taken for the sake of simplicity, and
it can be relaxed
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Fourier expansion - Recall

Consider a periodic function

y(t)=f(t), y({t)=y({t-T), Tisarealconstant

l

% 3" (a, sin(k 22t)+ b, cos(k 2t))

—0
2 ia

y(t) =
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Describing Function — Harmonic balance

Ar’(t)=0 + . Au(t) F(u) Am(t)}
L
7/

Au(t) = U sin(ot)

G (jw)

Aw@

Am(t) = i(ak cos(kat)+ b, sin(kat))

Aw(t) = i G, (a, cos(kat + ¢, )+b, sin(kaot + ¢, )
k=1

G, =|G(jka)

o = £G(jko)
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Describing Function — Harmonic balance

Consider the polar representation of a complex number associated
with the exponential form of harmonic signals

Au(t) =Ue !

M, =+/a; +b;

a
g, =arctan—=~
k

m(t) =Y M,e*el
k=1

Taking into account the low-pass property of the linear part of the
system

AW(t) = Zerj(Dk M kejtgkejka_)t ~ GleMDlMlengleja_)t
k=1

Describing Function analysis of nonlinear systems — Prof Elio USAI — March 2008



Describing Function — Harmonic balance

Ar(t)=0 +
—>

1

Au(t)
—>

N.L.

Am(t)>

G (jw)

AWQ

A permanent oscillation in the loop appears if  Au(t)=-Aw(t)

Ue'” = -G,e'*M, e!%e

Harmonic balance equation

1+G(jo)N(U,w)=0

N(U,a))zui(b1+ jal)

=

1+G,e'” %e”’l =0

Is the Describing Function of the nonlinear term
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Describing Function — Harmonic balance

The armonic balance equation is a necessary condition for the existence of
limit cycles in the nonlinear system

The approximate analysis gives good estimates if the low-pass filter
hypothesis is strongly verified. It is a good tools for engineers

The harmonic balance equation is similar to the characteristic polynomial
function, i.e. it leads to the Nyquist condition for closed-loop stability

The Describing Function is a linear approximation of the static nonlinearity
limited to the first harmonic

In most cases the Describing Function is not a function of the frequency and
this simplifies the verification of the harmonic balance equation by means of
the Nyquist plot of the transfer function

1
N(U, o)

(jo)--
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Imaginary Axis

-10

Describing Function — Harmonic balance

Nyquist Di

agram
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o=t
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, e —— _
+ooe U Upro0) U=0 ]
\ -\1/N(U)
G(w) }
»=0"
| | | | | | | |
1.4 1.2 1 0.8 0.6 0.4 0.2 0
Real Axis

0.2



0.5

-05 -

-1.5

Imaginary AXxis

-2.5

-3.5

Describing Function — Harmonic balance

Nyquist and DF Diagrams

System: sys

Real: -2.01

Imag: -0.021

-100 Freq (rad/sec): 0.997

- -
»=17.7828

U
System: sys
Real: -1.14
Imag: -2.02
Freq (rad/sec): 0.651
// /’
»=3.1623 /
/
/
/
/ ®
/
®»=0.56234 /
\ \ \ \ \ \ \ \
7 -6 5 -4 3 2 1 0

Real Axis
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Describing Function — Computation

The DF computation can be performed by means of its definition

Usin(wt) £ Am(t)
2 2
& == _[ Am(t)cos(et )dt

1 : T
N(U’a)):U(b1+Jai) :

2 ¢ .
b, = ?!AAm(t)sm(a)t)dt

The evaluation of coefficients a, and b, can be performed by means of both
analytical calculation and numerical integration, depending on the type of
nonlinearity involved
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Ideal relay

Describing Function — Computation

3
I ——_———————————————————..e._B it )}wl
+M
T R S R B ISR N
<
" -M
Y O B R R R
3 1
3 0
A u(t)

2 7

= [ Am(t)cos(et)dt = 0

iz

2 % .
b, = = IAm(t)sm(a)t)dt

2

7

%

= ij‘ M sin($)d ¢

+M 15

Because of the odd symmetry of the Am(t) signal

M N(U,a))zﬂ
g Urx
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Describing Function — Computation

Ideal relay Nyquist and DF Diagrams

The negative reciprocal of v .

of the DF is the
negative real axis in

(o :4MIm) -UNU)

backward direction
.<>(£<
E‘ 1.5
&
i : g - ©
A limit cycle can exist E
If the relative degree of
G(Jo) is greater than Gljo)
two

|
-1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0

Real Axis

The oscillation frequency is the critical frequency o, of the linear system and the
oscillation magnitude is proportional to the relay gain M
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Describing Function — Computation

Pure hysteresis

2

— AU
15 M — AM
A A A ] I e il I A A -
E 0
NERE N v I
_-22.5 2 15 1 0.5 A0u 0.5 1 15 2 25 25 015 ‘1 Tilrﬁe ‘2 zis 3
2 ¢ .
b, = [Am(t)cos(wt)dt=0  Because of the even symmetry of the Am(t) signal
a, = 2 IAm(t)cos(a)t)dt __2 j M cos(9)d 9 = _am
T % 7T T 4M
NU,w)=—j—
T
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Describing Function — Computation

) Nyquist and DF Diagrams
Pure hysteresis ‘ ‘ ‘ ‘ ‘

The negative reciprocal
of the DF is the
negative imaginary
axis in backward
direction

Imaginary Axis

A limit cycle can exist
If the relative degree

S Ll -1/N(V) ®
of G(jw) is greater |
than one and G(jo) is |
a type-0 system .
) ) | Reall Axis | | |

The oscillation frequency is lower than the critical frequency o, of the linear
system and the oscillation’s magnitude is proportional to the relay gain M and to
the modulus of the transfer function at phase -n/4
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Describing Function — Computation

Hysteretic relay

,,,,,,,,,,,,,,,

777777777777777

”””””””””””

If U< the hysteretic relay behaves as pure hysteresis

8 t7 8 %
b, =M ?gsin(a)t)du M ?Jsin(wt)dt ~

4

4M

T

8 ty 8 %
a, =-M = .([ cos(et )dt + M ?Jcos(a)t)dt =

4

The imaginary part of N(U) is proportional to
the hysteresis area

(2
U

:

NU,o)=1

—jﬂ U<
Ur
2
M (B
U U U
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Describing Function — Computation

Hysteretic relay | | Nyquist and DF Diagrams |

0.5

The negative reciprocal S
of the DF is the parallel

to the negative real axis )
and with constant
negative imaginary part

U -1/N(V)

Imaginary Axis

2.5

If B is larger than U
the relay could not
behave as a pure
hysteresis 57 @

G(o )

-4 | | | | | | | |

-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0

Real Axis

The oscillation frequency is lower than the critical frequency o, of the linear
system and the oscillation’s magnitude is proportional to the relay gain M
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Describing Function — Computation

Saturation

If U<M the saturation behaves as pure gain

P
3, =$ JAm(t)cos(et)dt=0  Because of the odd symmetry of the Am(t) signal

t Va 2
b, zé_[ku sin? (ot )dt + M E.[sin(a)'[)dt _2U arcsin(ﬂ}r(ﬂJ 1—(ﬂj
T? T! P ku ) (ku kU
k U M
k
) S ) | 0
—larcsinf — [+| — |\/[1-| — U>—
Vs kU kU kU K
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Describing Function — Computation

Saturation

The negative reciprocal
of the DF is part of the
negative real axis in
backward direction

A limit cycle can exist
If the relative degree
of G(jw) is greater
than two and gain k is
sufficiently high

Imaginary Axis

0.5

15+

2.5

3.5

0.5 -

“1/N(U)

Nyquist and DF Diagrams

U

-

G(jw)

-1.6

|
-1.4

-1.2

| |
-1 -0.8 -0.6 -0.4 -0.2

Real Axis

0.2

The oscillation frequency is the critical frequency o, of the linear system and the
oscillation’s magnitude depends on the saturation parameters M and k
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Describing Function — Computation

Dead zone )

15--

=

0.5

0

Am
o

-0.5

-1

-1.5

-2

0
Au

25 I I I I I
0 0.5 1 15 2 2.5 3

If U< the dead zone has no output | Time

P
3, =$ JAm(t)cos(et)dt=0  Because of the odd symmetry of the Am(t) signal

b gfk(u sin(et)— f)sin(at)dt %—U{%arcsin(gj(gj 1@}

T

0 U<pg
NU)-= k—%{arcsin(éj+(§j 1—(5}1 Us>p
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Describing Function — Computation

Dead zone 1 Nyquist and DF Diagrams

The negative reciprocal
of the DF is part of the -1/N(U)
negative real axis in °r -
forward direction o

R

<
A limit cycle can exist £ &)
If the relative degree
of G(jw) is greater
than two and gain k is

sufficiently high

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0

Real Axis

The oscillation frequency is the critical frequency o, of the linear system and the
oscillation magnitude depends on the dead zone parameters 3 and k
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Describing Function — Computation

3

Dead zone

The nonlinear |
characteristics of | saturation ¢(au)
the Dead Zone 1
can be computed
by subtracting the
Saturation
characteristics
from a linear one

dead zonéq/(Au)

Am

¥(Au)=k —D(Au)

N\P(U):k_N(D(U)
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Describing Function — Computation

The Describing function of a nonlinear characteristics can be computed as the
combination of the Describing Functions of the elementary constituting
nonlinear characteristics

Nt(Uia))
r ()—>.—> Am(t) (i) Awg)
_T . > NZ(U,Q)) J :
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Describing Function — Computation

A number of Describing Function can be computed by particularisation of the
function

D(a) = 2 arcsin(a )+ ax/l—7]

T

in which the parameter o defines a peculiar point of the nonlinear characteristics

+M L

o k-®(ar) a<1
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Describing Function — Computation

M Ko
¢ a>1
o kl: » u/U N(a): 1
A k, +(k, —k,)- ®(a) a<1
m
____________________ M
m
‘ 0 a>1
o :U/U N o=
ta k(l-®(a)) a<1
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Describing Function — Computation

4M

Y
/U N(Ol)Zk-I——
/I ﬂ
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Describing Function — Computation

' m
+M
> u/U N(a)= M
T
-M
' m
+M | —
o ; 0

u/U

a>1

+o. N(a):<ﬂ\/l—0{2 a<l
. /T
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Describing Function — Computation

m

A

//Ak 0 a>1
o) wo N@=Ky om0 1% g) et

Vas 2 =

m

//Zrk 0 a>1
'0‘/ /U N(a)=1k ke

/+a E[l—CD(Za—l)]+ 17(1—05) a<l
7,
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Describing Function — Computation

+M|
0
- 1 W NU,w)=14M — .4Ma
a > ! - — 2_ -
Y +a J 1
M
+M| M
o 1 u{U 0
+a ] NU,w)= 4Mﬂ 4Ma
M
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Describing Function — Computation

I
|_I
v

=2
E.
L,

e
C
N~
Il
I
Imaginary axis
S
(

N

« N

e

I

ot

i

o

N

w\
—

1 _ AJo (a)+j) 3 //
NU,0) 4M(1+0?) -  fensem

-3.5
-8

Real axis
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Stability of limit cycles

Ar’(t):O—+> i(t), N.L. [ Am()]

T

If the block N.L. is a pure constant k, the stability of the feedback system
can be performed by means of the Nyquist criterion, which gives the
number of roots with positive real roots of the Harmonic Balance Equation

1+G(ja))%:0

Aw(l)

G (jw)

The Nyquist criterion looks at the relative position of the transfer function
G(jw) with respect to the point (-1/k, 0) in the complex plain.

By extension the criterion can be applied to any point —o. of the complex
plain with reference to the Harmonic Balance Equation

1+G(jo)ar =0, aeC
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Imaginary Axis

Stability of limit cycles

If the transfer function G(jw) represents a stable system, the reduced
Nyquist criterion can be applied, i.e. the closed loop stability can be stated
If the reference point —« in the complex plain remains on the left-side when
running along the Nyquist plot of G(jw) from @=0* to @ =+o.

Nyquist plot of G(j)

-1.5 -1
Real Axis

. 1
G(Jw): ja)((ja))2 +O.5ja)+1)

The closed loop is not stable
with respect to the point (-1/k,0).

The closed loop is stable with
respect to the point -«
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Stability of limit cycles

Can the generalization of the Nyquist criterion be used to analyse the
stability of a limit cycle?

YES, It can
What does it mean that a limit cycle is stable?
If a perturbation of the magnitude of the periodic oscillation occurs, it

tends to the original value as time passes.

How can a limit cycle be considered from the Nyquist criterion point of view?

It is a marginally stable condition.

How can the magnitude of a limit cycle be represented?
By a point in the Describing Function plot.

Describing Function analysis of nonlinear systems — Prof Elio USAI — March 2008



Stability of limit cycles

Nyquist and DF plots

Points B, B’,

B”, A and A’ o
represent
possible

magnitudes of
the oscillation.

Imaginary Axis

A and B re-
present  two
possible limit
cycles
2, 25 2 15 1 0.5 0

Real Axis
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Stability of limit cycles

Nyquist and DF plots

Applying the reduced
Nyquist criterion  with
respect to:

point B’: oscillations tend
to decrease (stable system)

Imaginary Axis

point B”’: oscillations tend
to increase  (unstable
system)

point A’: oscillations tend ) | | | |
to decrease (stable system) '3 C Realmds

B: Stable limit cycle A: Unstable limit cycle

The linear system G(jo) Is assumed to be stable in order to apply the reduced Nyquist criterion
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DF Analysis — Example of application

Consider a DC motor with permanent magnets

—
N b
Y o
L J
—‘ ‘

The position of the motor shaft is measured by means of a rotational variable
resistance.

The voltage on the rotational resistance drives the position of a relay that
switches the motor supply voltage between +/- 24 V d.c.
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DF Analysis — Example of application

The linear approximate model of a DC motor is the following

v (=R, (0)+L, %(the(t)

dot) R,: rotor resistance
—/=C, (t)+Bolt) L, rotor inductance
dt d3(t) k.: voltage feedback constant
w=—7 k: torque constant
dt J,.: motor inertia
€ t): K, (t) J,: load inertia
_ B,,: motor friction coefficient
Cen(t) =i, (t) B,: load friction coefficient
J=J,+J

v,: rotor supply voltage
B=B_+B, I, rotor wound current

Con: ele_ctromagnetlc torque
. rotational speed

¢ shatf angular position
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DF Analysis — Example of application

The motor transfer functions are the following

Qfs) _ k
W,,(s)= V(s) (sL, +R,)sJ+B)+kk,

Wl (o)~ ol + R Xjad + Bk, ) ) U

. k.(R,J +L,B)
 0*(RI+L,BY +(R,B+kk, —?L I
i k(R,B+kk, —’L,J) q
00’ (R,J + LB +(R,B+kk, —0’L,J) |
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DF Analysis — Example of application

Taking into account the parameters of the motor and of the load

Nyquist and DF plots

R=0.4: % rotor resistance

L=0.001; % rotor inductance U
ke=0.3; % voltage feedback constant
kt=0.3; % torque constant o
Jm=0.01; % motor inertia § 2l
JI=0.09 % load inertia %

Bm=0.05; % motor friction coefficient
BI1=0.05; %load friction coefficient _
J=Im+JI;

B=Bm+BI:

-16

-18 ®

-20 ‘ :

1
-2 -1.5 -1 -0.5 0 0.5

Real Axis
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DF Analysis — Example of application

Taking into account the parameters of the motor and of the load

-4
x 10

Nyquist and DF plots
R=0.4: % rotor resistance | | |

L=0.001; % rotor inductance
ke=0.3; % voltage feedback constant

kt=0.3; % torque constant

System: Wp
1r Real: -0.00568

Imag: -8.73e-007
Freq (rad/sec): 36.8

Jm=0.01; % motor inertia

Imaginary Axis
A

JI=0.09 % load inertia u |
Bm=0.05; % motor friction coefficient — |
B1=0.05; %load friction coefficient L i
J=Jm+J; |
B=Bm+BlI, st | | ]

E b ReejOAxis -5 0 x10”
O (oo = Per = \/ R, BL:Jkt Ke _36.056radls U= -% RW, (jo, )=0.1759 rad
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DF Analysis — Example of application

Taking into account the parameters of the motor and of the load

R=0.4; % rotor resistance

L.=0.001; % rotor inductance

ke=0.3; % voltage feedback constant
kt=0.3; % torque constant

Jm=0.01; % motor inertia

JI=0.09 % load inertia

Bm=0.05; % motor friction coefficient
BI=0.05; %load friction coefficient
J=Im+JI;

B=Bm+Bl;

a)

3

a

Imaginary Axis

-4
x 10

Nyquist and DF plots

STABLE limit cycle!!!!

System: Wp

Real: -0.00568
Imag: -8.73e-007
Freq (rad/sec): 36.8

-20 -15 -10 -5 0

Real Axis

4M

T

Describing Function analysis of nonlinear systems — Prof Elio USAI — March 2008

-3
x 10

L=, = R,B +kik, = 36.056 rad/s U=-—RW_(jo. ))=0.1759 rad
(Wp(Jw))=0 cr L J p cr




The system
presents a
periodic
steady-state
oscillation

DF Analysis — Example of application

80

60 -

— angle
—— speed ||
-~ current

T T

|
| |
40+

2r | | |

40 -

-60 -

-80 | | | | | | | |
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The system
presents a
periodic
steady-state
oscillation

DF Analysis — Example of application

2 -

Angle

0.5H

Time
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DF Analysis — Example of application

1.75 TC_ZTE/ 0, \
The system / \ / \ /
presents a - / \ / \
periodic Los |
steady-state / \ /
oscillation -

Angle [rad]
-

a o
——
)///

- \ / ZU:tSl\/'IiG(j(oc)i/T/

]

S \ |/

JA \ |/

8.4 8.45 8.5 8.55 8.6 8.65 8.7 8.75

Describing Function analysis of nonlinear systems — Prof Elio USAI — March 2008



DF Analysis — Example of application

What does it happen if the same control law is applied to the speed
control problem?

4 [ ang 4
[ O
Step Sign Gain w > > |:]
s|Cr i+ N Scope
DC Motor
— kt
Wa) (S) o

(sL, + R, )(sJ + B)+kk,

The linear plant is characterised by an all-pole transfer function with relative
degree two, therefore there is no contact point between the Nyquist plot and
the real negative axis, but the origin at =+ (corresponding to U=0 in the
DF plot)
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Imaginary Axis

DF Analysis — Example of application

Nyquist and DF plots

0.2 +

04

-0.6

-0.8 -

-1.2 -

The Nyquist plot of the
] linear system is tangent
to the negative

- reciprocal of the DF at
the origin, i.e., U=0 and
W=+

Maybe a sliding mode
behaviour is established
asymptotically!?

Real Axis
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DF Analysis — Example of application

—— angle
—— speed

Possibly a sort of
dead-bit control,
or finite time
stabilisation
seams to appear

Canitbea
sliding mode
behaviour?

\ \ I I \ I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Time
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DF Analysis — Example of application

()]
T
|

By reducing the
integration step
of the simulation
it Is apparent that
the stabilisation

is asymptotic CO ]
@©
=
(¢}
o 3+ |
o
0]
Canithea .| i
sliding mode
behaviour?

0 | | | | | | |
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Time [s]
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By reducing the
integration step
of the simulation
it Is apparent that
the stabilisation
IS asymptotic

The rotor current
tends to a
constant value,
I.e. an
asymptotic (2nd
order) sliding
sliding mode
appears

Describing Function analysis of nonlinear systems — Prof Elio USAI — March 2008

DF Analysis — Example of application

Rotor current [A]

60

50

40

30

20

10

-10

-20

-30

-40

0.01

0.02

0.03

0.04

0.05

Time [s]

0.06

0.07

0.08

0.09

0.1



DF Analysis — Example of application

The DC motor is a second order system whose state variables are the rotor speed and
current

doft) _ B ). Xii ) B & [

dt J 4 + 1 v, (t)
di, t):—ﬁa)(t)—&ir(t)*‘ivr(t) —k—e —& ir(t) L_ |
dt L, L, L, | L, Lr_ | =

The system transfer function has a zero in -2, and if the system output is steared to
zero in a finite time, than the system behaves as a first order system with time
constant t=0.5
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DF Analysis — Example of application

A MATLAB-Simulink scheme is the following

Sign
—> ' ang >
J _ v
r=2mn —f—1+ Manual switch Gain w >
Scope
Relay
>|Cr i >

DC Motor

@¢ du/dt -
Derivative
2 }4

Gainl

Take care that because of the feedback, the new closed loop gain (assuming the rotor
velocity as the output) will be 1/2
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DF Analysis — Example of application

It is apparent that the shaft speed tends
to the steady state value = as a first

order system witht=0.5s

[v] wano 1010y

(€b)
T 4=
wn e i
" , , " , , & o
S s 9?5
| | | | | | .—Lr yI
. | | | | | c 2 0O
I T e e ® b} C Y=
IR 5 = S
| | | | | | c v @
S S o £
| =S s
1% | | | | | £ oD
L R D S N o + c
it | | | | | = S Q8=
A | | | | | 2 =
| | | | | | = oD
\\\\,\,\\\\_\ \\\\\\\\ L e B | M e t O
N > 258
N | | | | | T O c &
e e RREE - E oo 2
L | | | | | O (D] — (7p]
¥ , | | | | E TP Y
| | | | | | | -
L N ] 0 — (7p) a
| - T T T S L e o
| | | | | | T L S »v
t —
N | | | | | S g2
B | | | | , 3 L<H >

[s/pei] paads

Speed [rad/s]
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DF Analysis — Example of application

Nyquist and DF plots

] The Nyquist plot of the
linear system cross the
negative reciprocal of

Imaginary Axis

the DF at the origin, i.e.,
U=0 and o=+

A sliding mode
- behaviour is established
in a finite time

Real Axis
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DF Analysis & Sliding Modes

Sliding modes are characterised by infinite frequency of proper ideal switching
devices

Most sliding mode controllers use a sign function in the controller, i.e., an ideal
relay, which can be approximately represented by its Describing Function

By the example it is apparent that a sliding mode behaviour is established in a
finite time if the Nyquist plot of cross the inverse negative of the describing
function at the point (U=0,=+x)

It can also be derived that a sliding mode behaviour is established asymptotically
If the Nyquist plot of is tangent to the inverse negative of the describing function
at the point (U=0,m=+x)

TAKE CARE: the Describing function is an approximate tool
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DF Analysis & Sliding Modes

Substitute the ideal relay with a hysteretic one with =1

Sign
L—" ang >
J —> v
r=0 _ﬂ_ Manual Switch Gain w - > I:]
Relay Scope
>|Cr i >

DC Motor

@¢ du/dt -

Derivative

*

Gainl

It is apparent that an ideal sliding mode cannot appear because of the switching delay
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DF Analysis & Sliding Modes

Nyquist and DF plots

The Nyquist )
plot of the linear
system has no

common point T
with the
negative inverse
of the
Describing
Function of the
hysteretic relay

Imaginary Axis

Describing 2r
function
analysis can be
useful in sliding
mode systems

when a common . | | | | | | | | |

point is present Real Axis
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DF Analysis & Sliding Modes

Most effective use of the Describing Function approach to sliding modes....

!

Analysis of the characteristics of a chattering behaviour due to unmodelled
dynamics of sensors and/or actuators

What is chattering? It appears as oscillations of the system variables, whose
magnitude is related to the influence of the neglected dynamics on the system
bandwidth

i

It is very close to a limit cycle

Describing Function analysis of nonlinear systems — Prof Elio USAI — March 2008



DF Analysis & Sliding Modes

Consider the motor drive as a hysteretic switching device plus a time constant t,=0.1 s

ang ———P

N ]
Scope2 Scope3
Sign
LP—" 1
—> 24 > v
0.1s+1
_[]_ Manual Switch Gain Transfer Fcn w
Relay sler |
DC Motor
@1 du/dt }1
Derivative
2 }¢

Gainl
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DF Analysis & Sliding Modes

Nyquist and DF plots

ﬁ .........
. -1/N(U)
) 1 0 1 2 RealgAxis 4 S 6 7 L + —
) . System: untitledl
. Real: -0.0507
Nyquist plot parameters Imag: -0.0328
(ch:662 rad/s _“‘ Freq (rad/sec): 662
U,,=1.1833 rad/s?
G(j o) .
U, represents the magnitude of
the oscillation of the sliding
variable
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DF Analysis & Sliding Modes

Steady-state regime

L O O O L

15

Nyquist plot parameters
®,.=662 rad/s

U,,,=1.1833 rad/s?

—
N

Simulation results 05
T,:=9.7 ms

®,.=646 rad/s
U,,=1.8544 rad/s?

-0.5

Sliding variable [rad/s

Differences are due to:
 Numerical solution of |

-15

the simulation v Y vy

« Approximation of the

DF approaCh 2.9 201 2.92 2.93 2.94 2.95 2.96 2.97

Time [s]
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The rotor velocity tends
to its steady-state value
as a first order system
with time constant
1=0.55

Rotor wound current
presents large variations

An approximate sliding
mode is established

3.5

2.5

15

0.5

DF Analysis & Sliding Modes

—— Velocity
—— Current

Time [s]
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DF Analysis & Sliding Modes

B ko
= +| 1 |v
] e Rl T
| L L 4L Full system dynamics
B k |[|[¥
o=|2+— —
J J i
']
ﬁ|r :o'—£2+Eja)
Internal reduced-order dynamics w=—-2m0+S
Input-output dynamics G = (2 - B —&ja - [(2 - E)[& - 2) - k—eﬁ)a) - il V,
J oL JL, L, J JL,
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DF Analysis & Sliding Modes

Internal reduced-order dynamics w=-20+0 —> Qs) = —22(3)
S+
At steady-state 1 _ 1
_ —  ot)= o, +Ul———sin| ot +arg ———
o(t)= o, +Usin(a,t) Jo,, +2 Jo,, +2
: L =~ 0.0015 | | | | | | | | |
jo, +2 3088 -~ - e Eht R R R SRR SRR RS
Nyquist plot parameters sosal SR S TS A SUUS S SN SO S
®,.=662 rad/s o A A AL AN
U,:=1.1833 rad/s? s N\ AN AN AT AN ATA!
A®;=0.0018 rad/s oL YRR A N A R A S A W A S A S R
Simulation results SRR AVEAVARLV ARV VLV
T=9.7 ms N A R
=646 rad’s S T R R e A R A
U|S:1.8544 rad/s? 3_072,,,,,,,,”””””””””””i 7777777777777777777777777777 .
ACO|S:O.0029 rad/s sorl o e
TIm.ZS[S] 2.96 2.97 2.98 2.99 3
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DF Analysis & Sliding Modes

The Describing Function approach to the analysis of the chattering phenomenon in
sliding mode control systems can be used to have an estimate of the chattering
parameters, i.e., frequency and magnitude

The estimates are affected by an error which depends on the low-pass properties of
the linear part of the plant

The sliding variable must be considered as the output of the nonlinear feedback
system

The actual system output behaviour can be estimated by considering the reduced
order dynamics

In the presence of a constant reference value, the nonlinear function can be not
symmetric, therefore an equivalent gain of the nonlinearity has to be considered to
estimate the constant mean steady-state value of the output
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