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Tentative schedule

# Date Topic

1 Sept. 22 Introduction, Signals and Systems
2 Sept. 29 Modeling, Linearization

3 Oct. 6 Analysis 1: Time response, Stability
4 Oct. 13 Analysis 2: Diagonalization, Modal coordi-

nates.
5 Oct. 20 Transfer functions 1: Definition and properties
6 Oct. 27 Transfer functions 2: Poles and Zeros
7 Nov. 3 Analysis of feedback systems: internal stability,

root locus
8 Nov. 10 Frequency response
9 Nov. 17 Analysis of feedback systems 2: the Nyquist

condition

10 Nov. 24 Specifications for feedback systems
11 Dec. 1 Loop Shaping
12 Dec. 8 PID control
13 Dec. 15 Implementation issues
14 Dec. 22 Robustness
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The Nyquist condition and robustness margins

If the open-loop is stable, then we know that in order for the closed-loop to
be stable the Nyquist plot of L(s) should NOT encircle the −1 point.

The gain margin and phase margin measure how close the system is to
closed-loop instability.
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The Nyquist condition on Bode plots

If the open-loop is stable, then we know that in order for the closed-loop to
be stable the Nyquist plot of L(s) should NOT encircle the −1 point.

In other words, |L(jω)| < 1 whenever ∠L(jω) = 180◦.

On the Bode plot, this means that the magnitude plot should be below the 0
dB line if/when the phase plot crosses the −180◦ line.

Remember that this condition is valid only if the open loop is stable. In all
other cases (including non-minimum phase zeros) it is strongly recommended
to double check any conclusion on closed-loop stability using other methods
(Nyquist, root locus).
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Gain and Phase Margin

The “distance” from the Nyquist plot to the −1 point is a measure of robustness.
On the bode plot, it is easy to measure this distance in terms of gain and phase
margin.
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Summary of the previous lecture

In the previous lecture, we learned:

How to sketch a polar plot (and hence a Nyquist plot), based on Bode plots

The Nyquist condition to determine closed-loop stability using a Nyquist plot.

How to check the Nyquist condition on a Bode plot.

How to quickly assess the “robustness” of a feedback control system.

Now we have three graphical methods to study closed-loop stability given the
(open-)loop transfer function.

1 Root locus: always correct if applicable (assumes finite-dimensional system)
2 Nyquist: always correct, always appplicable;
3 Bode: very useful for control system design, however may be misleading in

determining closed-loop stability (e.g., for open-loop unstable systems).

So far we have only looked at analysis issues, i.e., how to determine
closed-loop stability; from now on we will concentrate on control synthesis,
i.e., how to design a feedback control system that makes a system behave as
desired.
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Plan for this lecture

We have seen how to establish whether the closed-loop system will be stable
or not, based on the (open-)loop transfer function.

The next step is to evaluate how well the closed-loop will behave, e.g.,

how quickly and how closely the closed-loop system can track commands,

how well it can reject disturbances, modeling errors, and noise.

Specifications on the closed-loop behavior are typically given using two main
paradigms, plus one that can be seen both ways:

Steady-state error

Time-domain specifications

Frequency-domain specifications

In this lecture we will learn about both kinds of specifications, and what they
mean in terms of the closed-loop system and/or the (open-)loop transfer
function.
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Proportional feedback
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Steady-state error to step inputs
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Recall the following transfer function (and that L(s) = P(s)C (s)):

r → e, d → e : S(s) =
1

1 + L(s)

If the input is a unit step, i.e., r(t) = 1 = e0t for t ≥ 0, the steady-state
output will be

ess(t) = S(0)e0t =
1

1 + L(0)
, for t ≥ 0.

So if lims→0 L(s) = kBode = kDC is finite then the steady-state error to a unit
step is 1/(1 + kDC ).

If the limit is infinite (i.e., there is a pole at s = 0, i.e., L(s) contains an
integrator), the steady-state error is zero.
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Steady-state error to higher-order ramps

More in general, one may ask the closed-loop system to have a finite
steady-state error to a unit ramp of order m = {0, 1, 2, . . .}, i.e.,

r(t) =
1

m!
tm, t ≥ 0.

The steady-state error can be computed as

ess(t) = lim
s→0

(
1

1 + L(s)
· e

st

sm

)
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System type

The result depends on the type of the system, i.e., the number of integrators
in L(s), i.e., the number of poles of L(s) at s = 0, and is summarized as
follows

ess m = 0 m = 1 m = 2

Type 0
1

1 + kBode
∞ ∞

Type 1 0
1

kBode
∞

Type 2 0 0
1

kBode

In plain English:

The steady-state error is smaller as the (Bode) gain increases;

A requirement to have zero steady-state errors to ramps of order m, is the
same as requiring to have at least m + 1 integrators on the path from the error
e to the (reference/disturbanc) input.
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Time domain: step response of a 2nd order system5.3. INPUT/OUTPUT RESPONSE 151
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Figure 5.9: Sample step response. The rise time, overshoot, settling time and steady-state
value give the key performance properties of the signal.

equilibrium point in the absence of any input), then we can rewrite the solution as

y(t) =CA−1eAtB︸ ︷︷ ︸
transient

+D−CA−1B︸ ︷︷ ︸
steady-state

, t > 0. (5.22)

The first term is the transient response and decays to zero as t → ∞. The second
term is the steady-state response and represents the value of the output for large
time.
A sample step response is shown in Figure 5.9. Several terms are used when

referring to a step response. The steady-state value yss of a step response is the
final level of the output, assuming it converges. The rise time Tr is the amount of
time required for the signal to go from 10% of its final value to 90% of its final
value. It is possible to define other limits as well, but in this book we shall use these
percentages unless otherwise indicated. The overshoot Mp is the percentage of the
final value by which the signal initially rises above the final value. This usually
assumes that future values of the signal do not overshoot the final value by more
than this initial transient, otherwise the term can be ambiguous. Finally, the settling
time Ts is the amount of time required for the signal to stay within 2% of its final
value for all future times. The settling time is also sometimes defined as reaching
1% or 5% of the final value (see Exercise 5.7). In general these performance mea-
sures can depend on the amplitude of the input step, but for linear systems the last
three quantities defined above are independent of the size of the step.

Example 5.7 Compartment model
Consider the compartment model illustrated in Figure 5.10 and described in more
detail in Section 3.6. Assume that a drug is administered by constant infusion in
compartment V1 and that the drug has its effect in compartment V2. To assess how
quickly the concentration in the compartment reaches steady state we compute
the step response, which is shown in Figure 5.10b. The step response is quite slow,
with a settling time of 39 min. It is possible to obtain the steady-state concentration
much faster by having a faster injection rate initially, as shown in Figure 5.10c.
The response of the system in this case can be computed by combining two step

Time domain specifications are usually given in terms of the step response of
a 2nd order system:

G (s) =
ω2
n

s2 + 2ζωns + ω2
n

⇒ y(t) = ·(1− e−σt cos(ωt)).

Recall that the poles are at s = −σ ± jω, and that ω2
n = σ2 + ω2, ζ = σ/ωn.
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Second-order response: shape vs. time scale
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Analytical approximations

Rise time depends primarily on ωn: note that T100 = π
2ω (assuming ζ < 1).

Other formulas available, e.g., T90 ≈ (0.14 + 0.4ζ) 2π
ωn

.

Peak time: depends on the frequency ω, Tp ≈ π
ω ;

% Overshoot: depends on the damping ζ:

lnMp ≈ −
σπ

ω
= − ζπ√

1− ζ2
, ζ2 =

(lnMp)2

π2 + (lnMp)2
.

Settling time (e.g., to 2%): depends on the real part of the poles σ,

Ts =
− ln 2%

σ
, σ =

− ln 2%

Ts
.

Note: the settling time is the only relevant specification (in addition to the
steady-state error to a unit step) for a first-order system.
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Dominant poles approximation

What if the closed-loop system if of higher order? Often one can approximate
it with a second-order (or even first-order) system, and apply the
specifications to the approximation.

The approximation is based on the concept of dominant poles.

Dominant poles are typically those with the largest real part (i.e., the slowest
decay rate);

Exceptions are made when the poles with the largest real part also have very
small residues (typically because of nearby zeros).

G(s) =
r1

s − p1
+

r2
s − p2

+ . . . ⇔ g(t) = r1e
p1t + r2e

p2t + . . .
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Dominant poles approximation examples

Consider a third-order system with G (s) =
130

(s + 5)(s + 1 + 5j)(s + 1− 5j)
.

The contribution to the response of the pole at s = −5 will decay as e−5t ,
while that of the poles at s = −1± 5j will decay as e−t .

Dominant pole approximation: Gdom(s) =
26

(s + 1 + 5j)(s + 1− 5j)
.
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Dominant poles approximation examples

Consider a third-order system with G (s) =
13

(s + 0.5)(s + 1 + 5j)(s + 1− 5j)
.

The contribution to the response of the pole at s = −0.5 will decay as e−0.5t ,
while that of the poles at s = −1± 5j will decay as e−t .

Dominant pole approximation: Gdom(s) =
0.5

s + 0.5
.
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Dominant poles approximation examples

Consider a third-order system with G (s) =
21.667(s + 0.6)

(s + 0.5)(s + 1 + 5j)(s + 1− 5j)
.

The zero at s = −1 makes the magnitude of the residue of the pole at
s = −0.5 small wrt to the magnitudes of the residues of the other poles ⇒
effectively we have a near-pole/zero cancellation.

Dominant pole approximation: Gdom(s) =
26

(s + 1 + 5j)(s + 1− 5j)
.
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Using time-domain specifications

Time-domain specifications impose constraints on the locations of the
dominant closed-loop poles.

In particular:

Settling time constraints require the real part of the dominant poles to be to
the less than some maximum value.

Peak overshoot constraints require the damping ratio to be more than some
minimum value—resulting in a sector of the left half plane.

Rise time constraints require that the distance of the dominant poles from the
origin, and/or (the absolute value of) the imaginary part of the dominant
poles to be more than some minimum value.

When checking time-domain specifications, it is particularly convenient to use
the root locus.
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Time-domain specifications in the complex plane
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Command tracking/disturbance rejection vs. noise
rejection
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Recall: the sensitivity function S(s) =
1

1 + L(s)
is the transfer function from

the reference input r or the output disturbance d to the error e. Hence, if we
want small errors to reference inputs, and want to reject disturbances, we
need S(s) to be “small.”
The transfer function from the noise input n to the output y is the

complementary sensitivity T (s) =
L(s)

1 + L(s)
. If we do not want the effect of

the noise to be observed at the output, then we need T (s) to be “small.”
So if we want to reject both disturbances and noise, and want to follow
commands well, we need both T (s) and S(s) to be “small”. But
T (s) + S(s) = 1, so they cannot be “small” at the same time!
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Frequency-domain specifications

The main point in using frequency domain specifications is exactly to handle
such requirements.

Typically commands and disturbances act at “low” frequency, e.g., no more
than 10 Hz.

Noise is typically a high-frequency phenomenon, e.g., more than 100 Hz.

So we can reconcile both command tracking/disturbance rejection AND noise
rejection by separating them frequency-wise!

Make |S(jω)| << 1 (hence |T (jω)| ≈ 1 at low frequencies.
e.g., “ensure that commands are tracked with max 10% error up to a
frequency of 10Hz.

Make |T (jω)| << 1 at high frequencies.
e.g., “ensure that noise is reduced by a factor of 10 at the output at
frequencies higher than 100 Hz.
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Frequency-domain specifications on the Bode plot

Frequency-domain specifications are usually expressed in terms of closed-loop
frequency response.

Can we write them in terms of the open loop frequency response? Indeed we
can.

Remember that for good command tracking / disturbance rejection, we want
|S(jω)| = |1 + L(jω)|−1 to be small at low frequencies, i.e., we want |L(jω)|
to be large at low frequencies.

Typically this is written as |S(jω)| · |W1(jω)| < 1 for some function |W1(jω)|
that is large at low frequency. This translates to |1 + L(jω)| > |W1(jω)|,
which is approximated as

|L(jω)| > |W1(jω)|.

This can be seen as a “low frequency obstacle” on the magnitude Bode plot.
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Frequency-domain specifications on the Bode plot

For good noise rejection, we want |T (jω)| = |L(jω)|/|1 + L(jω)| to be small
at high frequencies.

If |T (jω)| is small, then |L(jω)| has to be small, and |T (jω)| ≈ |L(jω)| (at
high frequencies).

Typically this is written as |T (jω)| · |W2(jω)| < 1 for some function |W2(jω)|
that is large at high frequency. This translates to |L(jω)| < |W2(jω)|−1.

This can be seen as a “high-frequency obstacle” on the Bode plot.
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Closed-loop bandwidth and (open-loop) crossover

The bandwidth of the closed-loop system is defined as the maximum
frequency ω for which |T (jω)| > 1/

√
2, i.e., the output can track the

commands to within a factor of ≈ 0.7.

Let ωc be the crossover frequency, such that |L(jωc)| = 1. If we assume that
the phase margin is about 90◦, then L(jωc) = −j , and T (jωc) = 1/

√
2.

In other words, the (open-loop) crossover frequency is approximately equal to
the bandwidth of the closed-loop system.
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Bode-plot “obstacle course”
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Summary of the lecture

We discussed how we can write specifications for the closed-loop behavior in
terms of:

Steady-state error: this has consequences on the necessary DC gain, and/or
the number of integrators in the loop transfer function (type of the system);

Time-domain specifications: these describe how the closed-loop system,
approximated as a second-order “dominant” system, should behave in time.
These specifications are relatively easy to formulate and understand, but do
not lend themselves directly to easy design—best interpreted on the complex
plane/root locus. Matlab can help a lot in meeting these specifications.

Frequency-domain specifications: these give a technically sophisticated,
powerful set of specifications in terms of ability of the system to follow
commands, and to reject disturbances and noise. These specifications apply
directly to powerful methods for control design—the Bode plot ”obstacle
course”.

In the next lecture we will finally start seeing how we can design a control system
that satisfy all the requirements (closed-loop stability + all the specs we covered
in this lecture).
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