
Functional Dependencies
Functional Dependencies

 A functional dependence is a constraint between two sets of attributes from the
database.

 It plays major role in differentiating good database design from bad database
design.

 Functional dependency is a type of constraint that is generalization of notion of
key.

 Bad database design
o Repetition of information
o Inability to represent certain information

 Good database
o Avoid redundant data
o Ability to represent all information and relationship among attributes.

Definition

 A function dependency denoted by X Y, between two sets of attributes X and
Y that are subset of R specifies a constraints on the possible tuples that can form
a relation state r of R.

 The value of component Y depends on values of component X
 Abbreviation for functional dependencies is FD or f.d.
 The set of attributes X is called the left-hand side of the FD, and Y is called the

right-hand side.

Example

 Suppose we have a student table with attributes: Stu_Id, Stu_Name, Stu_Age.
 Here Stu_Id attribute uniquely identifies the Stu_Name attribute of student

table because if we know the student id we can tell the student name associated
with it.

 This is known as functional dependency.
 Can be written as Stu_Id->Stu_Name or in words we can say Stu_Name is

functionally dependent on Stu_Id.

Types of Functional Dependency

 Functional Dependency has three forms:
o Trivial Functional Dependency
o Non-Trivial Functional Dependency

Trivial Functional Dependency
It occurs when B is a subset of A in:

A ->B

Example
We are considering the same <Department> table with two attributes to understand the
concept of trivial dependency.

The following is a trivial functional dependency since DeptId is a subset of DeptId and
DeptName

{ DeptId, DeptName } -> Dept Id

Non –Trivial Functional Dependency
It occurs when B is not a subset of A in:

A ->B

Example

DeptId -> DeptName

The above is a non-trivial functional dependency since DeptName is a not a subset of
DeptId.

An employee table with three attributes: emp_id, emp_name, emp_address.
The following functional dependencies are non-trivial:

emp_id -> emp_name (emp_name is not a subset of emp_id)
emp_id -> emp_address (emp_address is not a subset of emp_id)

Non-loss Decomposition
What is decomposition?

 Decomposition is the process of breaking down in parts or elements.
 It replaces a relation with a collection of smaller relations.
 It breaks the table into multiple tables in a database.
 It should always be lossless, because it confirms that the information in the

original relation can be accurately reconstructed based on the decomposed
relations.

 If there is no proper decomposition of the relation, then it may lead to problems
like loss of information.

Properties of Decomposition

Following are the properties of Decomposition,
1. Lossless Decomposition
2. Dependency Preservation
3. Lack of Data Redundancy

1. Lossless Decomposition

 Decomposition must be lossless. It means that the information should not get
lost from the relation that is decomposed.

 It gives a guarantee that the join will result in the same relation as it was
decomposed.

o Let R be a relation schema and let F be a set of functional dependencies on
R.

o Let ‘R1’ & ‘R2’ form a decomposition of R.
o Let r(R) be a relation with schema R.
o Decomposition is a losses decomposition, if for legal database instance

 ∏R1 (r) ⋈ ∏R2 (r) = r
o If user project r onto R1 & R2, and compute the natural join of the

projection results exactly ‘r’. Hence no loss, non-loss decomposition.

Example:

Let's take 'E' is the Relational Schema, With instance 'e'; is decomposed into: E1, E2, E3, .
. . . En; With instance: e1, e2, e3, en, If e1 ⋈ e2 ⋈ e3 ⋈ en, then it is called as
'Lossless Join Decomposition'.

 In the above example, it means that, if natural joins of all the decomposition
give the original relation, then it is said to be lossless join decomposition.
Example: <Employee_Department> Table

Eid Ename Age City Salary Deptid DeptName
E001 ABC 29 Pune 20000 D001 Finance
E002 PQR 30 Pune 30000 D002 Production
E003 LMN 25 Mumbai 5000 D003 Sales
E004 XYZ 24 Mumbai 4000 D004 Marketing
E005 STU 32 Bangalore 25000 D005 Human Resource

 Decompose the above relation into two relations to check whether a

decomposition is lossless or lossy.
 Now, decompose the relation that is Employee and Department.

Relation 1 : <Employee> Table
Eid Ename Age City Salary
E001 ABC 29 Pune 20000
E002 PQR 30 Pune 30000
E003 LMN 25 Mumbai 5000
E004 XYZ 24 Mumbai 4000
E005 STU 32 Bangalore 25000

Employee Schema contains (Eid, Ename, Age, City, Salary).
Relation 2 : <Department> Table

Deptid Eid DeptName

D001 E001 Finance
D002 E002 Production
D003 E003 Sales
D004 E004 Marketing
D005 E005 Human Resource

Department Schema contains (Deptid, Eid, DeptName).

 So, the above decomposition is a Lossless Join Decomposition, because the two
relations contains one common field that is 'Eid' and therefore join is possible.

 Now apply natural join on the decomposed relations.
Employee ⋈ Department

Eid Ename Age City Salary Deptid DeptName
E001 ABC 29 Pune 20000 D001 Finance
E002 PQR 30 Pune 30000 D002 Production
E003 LMN 25 Mumbai 5000 D003 Sales
E004 XYZ 24 Mumbai 4000 D004 Marketing
E005 STU 32 Bangalore 25000 D005 Human Resource

Hence, the decomposition is Lossless Join Decomposition.

 If the <Employee> table contains (Eid, Ename, Age, City, Salary) and
<Department> table contains (Deptid and DeptName), then it is not possible to
join the two tables or relations, because there is no common column between
them. And it becomes Lossy Join Decomposition.

2. Dependency Preservation

 Dependency is an important constraint on the database.
 Every dependency must be satisfied by at least one decomposed table.
 If {A → B} holds, then two sets are functional dependent. And, it becomes more

useful for checking the dependency easily if both sets in a same relation.
 This decomposition property can only be done by maintaining the functional

dependency.
 In this property, it allows to check the updates without computing the natural

join of the database structure.
 Set of restriction F1, F2, F3… Fn is the set of dependencies that can be checked

efficiently.
o Let, F’ = F1 U F2 U F3 U ….U Fn.
o F’ is a set of functional dependencies on schema R but in general F’ ≠ F.
o The property F’+ = F+ is a dependency preserving decomposition.
o F = {A B, B C}. F+ is dependency A C even though it is not in F.

1. Lack of Data Redundancy

 Lack of Data Redundancy is also known as a Repetition of Information.
 The proper decomposition should not suffer from any data redundancy.
 The careless decomposition may cause a problem with the data.
 The lack of data redundancy property may be achieved by Normalization

process.

Normalization

 Normalization is a process of organizing the data in database to avoid
o Data Redundancy
o Insertion anomaly
o Deletion anomaly.
o Update anomaly &

 Normalization divides the larger table into the smaller table and links them
using relationship.

 The normal form is used to reduce redundancy from the database table.
 Normalization is the process of minimizing redundancy from a relation or set of

relations. Redundancy in relation may cause insertion, deletion and updation
anomalies.

 Normalization is a systematic approach of decomposing tables to eliminate data
redundancy (repetition) and undesirable characteristics like Insertion, Update
and Deletion Anamolies.

Anomalies
 Insert anomalies – When user tried to insert data in a record that does not exist

at all.
 Deletion anomalies – When user tried to delete a record, but parts of it was left

undeleted because of unawareness, the data is also saved somewhere else. When
user tried to delete a record, which cause deletion of some other data from the
table/realation.

 Update anomalies − If data items are scattered and are not linked to each other
properly, then it could lead to strange situations. For example, when we try to
update one data item having its copies scattered over several places, a few
instances get updated properly while a few others are left with old values. Such
instances leave the database in an inconsistent state.

 Example: Suppose a manufacturing company stores the employee details in a
table named employee that has four attributes:

o emp_id for storing employee’s id,
o emp_name for storing employee’s name,
o emp_address for storing employee’s address and
o emp_dept for storing the department details in which the employee

works.

emp_id emp_name emp_address emp_dept
101 Rick Delhi D001
101 Rick Delhi D002
123 Maggie Agra D890
166 Glenn Chennai D900
166 Glenn Chennai D004

 The above table is not normalized. We will see the problems that we face when a
table is not normalized.

 Insert anomaly: Suppose a new employee joins the company, who is under
training and currently not assigned to any department then we would not be
able to insert the data into the table if emp_dept field doesn’t allow nulls.

 Delete anomaly: Suppose, if at a point of time the company closes the
department D890 then deleting the rows that are having emp_dept as D890
would also delete the information of employee Maggie since she is assigned only
to this department.

 Update anomaly: In the above table we have two rows for employee Rick as he
belongs to two departments of the company. If we want to update the address of
Rick then we have to update the same in two rows or the data will become
inconsistent. If somehow, the correct address gets updated in one department
but not in other then as per the database, Rick would be having two different
addresses, which is not correct and would lead to inconsistent data.

 To overcome these anomalies we need to normalize the data

