
Introduction to relational databases

Introduction to relational databases

 A relational database is based on the relational model and uses a collection of
tables to represent both data and the relationship among those data.

 It also includes DDL and DML
 Relational database was originally defined by Edger Codd at IBM Research

center in 1970.
 In relational database, user only needs to understand logical structure of data,

not how it is physically stored.
 Data is represented using tables consists of rows and columns.
 A relational database simply a collection of tables.

Relational database basic concepts

i) Relations or table

 A relation is defined as set of tuples that have the same attribute
 A relation is usually described as table, which is organized into rows and

columns.
ii) Base and derived relation

 In relational database, all data are stored and accessed using relation.
 Relation / table which store data are called base relations.
 Relations which do not store data, but are computed by applying relational

operator are called Derived relation.
iii) Tuple / Row / Record

 It holds all information about one item
 Example: all information like roll, name, age, address, age, mark etc., of a

particular student.
iv) Field / Column

 A field holds one piece of information about an item.
 Field is column in database table.
 Example: age of all the student.

v) Constraints
 Condition specified for a particular data.
 Constraints restrict data that can be stored in relations.
 Example: User can set constraints that a given integer attribute should be

between 1 & 10.
vi) Data type

 Every field in a database table is assigned a data types, which describe the kind
of data that can be stored in the field.

vii) Stored procedure

 A stored procedure is a high-end database tool that adds programming power
into database.

 Stored procedure is executable code generally stored in database.
 DBA will often create stored procedures to handle insert, edit and update of

records.
 Front end programmer calls the stored procedure to utilize its functions.
 It makes programming code easier.

viii) Indices
 An index is one way of providing quicker access to data.
 It can be created on any combination of attributes on a relation.
 Relational database typically support multiple indexing technique.
 Indexing technique used are B Tree, B+ Tree.

ix) Normalization
 Normalization is used to eliminate the duplication of data.
 It is an integral part of the relational model.
 It prevents data manipulation anomalies and loss of data integrity.

Keys

1. Primary key

 A primary key is a field that uniquely identifies each record in the table.
 Primary key are essential in the relational database
 Example: “rollno” can be considered as primary key.
 The PRIMARY KEY constraint uniquely identifies each record in a table.
 Primary keys must contain UNIQUE values, and cannot contain NULL values.
 A table can have only one primary key, which may consist of single or multiple

fields.
 A table can contain only one primary key constraint.
 All columns defined within a primary key constraint must be defined as not

null. If nullability is not specified, all columns participating in a primary key
constraint have their nullability set to not null.

2. Foreign Key

 A foreign key is a field (or collection of fields) in one table that uniquely
identifies a row of another table or the same table.

 A foreign key is a reference to a key in another relation.
 Primary key of one table is used as foreign key in another table.
 Example: Consider two tables(subject & timetable)

o Primary key of “subject” table (subject_id) is used as foreign key in
“timetable” table.

 A FOREIGN KEY is a key used to link two tables together.

 A FOREIGN KEY is a field (or collection of fields) in one table that refers to the
PRIMARY KEY in another table.

 The table containing the foreign key is called the child table, and the table
containing the candidate key is called the referenced or parent table.

Look at the following two tables:
"Persons" table:

PersonID LastName FirstName Age
1 Hansen Ola 30
2 Svendson Tove 23
3 Pettersen Kari 20

"Orders" table:
OrderID OrderNumber PersonID
1 77895 3
2 44678 3
3 22456 2
4 24562 1

 Notice that the "PersonID" column in the "Orders" table points to the "PersonID"
column in the "Persons" table.

 The "PersonID" column in the "Persons" table is the PRIMARY KEY in the
"Persons" table.

 The "PersonID" column in the "Orders" table is a FOREIGN KEY in the "Orders"
table.

 The FOREIGN KEY constraint is used to prevent actions that would destroy links
between tables.

 The FOREIGN KEY constraint also prevents invalid data from being inserted
into the foreign key column, because it has to be one of the values contained in
the table it points to.

3. Super key

 A super key is a set of one or more attributes (columns), which can uniquely
identify a row in a table.

 Example:
o customer_id is super key because this attribute is sufficient to

distinguish one customer tuple to another.
o Customer_id & customer_name is also a super key of the relation.
o Customer_name is not super key because there may the one or more

customers with same name.

4. Candidate Key

 A super key with no redundant attribute is known as candidate key.

 Candidate keys are selected from the set of super keys, the only thing we take
care while selecting candidate key is that the candidate key should not have any
redundant attributes.

Example of super & candidate key

Lets take an example of table “Employee”. This table has three attributes: Emp_Id,
Emp_Number & Emp_Name. Here Emp_Id & Emp_Number will be having unique
values and Emp_Name can have duplicate values as more than one employees can have
same name.

Emp_Id Emp_Number Emp_Name
------------ -------------------- ------------------
E01 2264 Tamil
E22 2278 Selva
E23 2288 Kavi
E45 2290 Tamil

Super key

1. {Emp_Id}
2. {Emp_Number}
3. {Emp_Id, Emp_Number}
4. {Emp_Id, Emp_Name}
5. {Emp_Id, Emp_Number, Emp_Name}
6. {Emp_Number, Emp_Name}

Identify Candidate key

1. {Emp_Id} – No redundant attributes
2. {Emp_Number} – No redundant attributes
3. {Emp_Id, Emp_Number} – Redundant attribute. Either of those attributes can be a
minimal super key as both of these columns have unique values.
4. {Emp_Id, Emp_Name} – Redundant attribute Emp_Name.
5. {Emp_Id, Emp_Number, Emp_Name} – Redundant attributes. Emp_Id or
Emp_Number alone are sufficient enough to uniquely identify a row of Employee table.
6. {Emp_Number, Emp_Name} – Redundant attribute Emp_Name.

The candidate keys we have selected are:
{Emp_Id}
{Emp_Number}

Relational Algebra

 A query language is a language in which a user requests information from the
database,

 These languages are usually on the level higher than that of standard language.
 Query language can be categorized into two types

o Procedural Language
 User instructs the system by giving a specific procedure to perform

a sequence of operations on the database to compute the desired
result.

o Non-procedural language
 User describes the desired information without giving a specific

procedure for obtaining that information.
 Relational Algebra is a procedural query language.
 It consists of a set of operations that take one or two operations as input and

produce new relation as their result.
 Relational algebra is a widely used procedural query language. It collects

instances of relations as input and gives occurrences of relations as output. It
uses various operation to perform this action.

 Relational algebra operations are performed recursively on a relation. The output
of these operations is a new relation, which might be formed from one or more
input relations

 Definition of relational algebra
o A basic expression in a relational algebra consists of either a relation in the

database or a constant relation is written by listing its tuples within { }.
o Let E1 & E2 be relational algebra expression
o Relational algebra expression are,

E1 U E2
E1 ∩ E2
E1 - E2
E1 x E2

 Relational Algebra is a procedural query language used to query the database
tables to access data in different ways.

 In relational algebra, input is a relation(table from which data has to be accessed)
and output is also a relation(a temporary table holding the data asked for by the
user).

 Relational Algebra works on the whole table at once, so we do not have to use
loops etc to iterate over all the rows(tuples) of data one by one. All we have to do
is specify the table name from which we need the data, and in a single line of
command, relational algebra will traverse the entire given table to fetch data for
you.

 Relational algebraic operations are divided into 2 groups
 Set operations

1) Union
2) Intersection
3) Set difference
4) Cartesian Product

 Relational algebraic operation
1) Select
2) Project
3) Rename

 Additional algebraic operation
1) Join
2) Division

I) Fundamental operations of relational algebra

 Conditions to be satisfied to perform set operation (union, intersection,
difference) are,

o Two relation must contain same number of columns
o Columns of each table must be same data types.

 Consider two table (Depositor & Borrower)

Depositor Borrower

cust_name city cust_name city
Tamil Erode Bala Gopi

Kavitha Gopi Abi Erode
Selva Chml Tamil Erode
Durai Chennai Sathya Chml
Kutty Erode Selva Chml
Samy Gopi Siva Salem

o The above tables are compatible and contain same number of field with common

datatype.

1) Union

 Union is a relation that includes all tuples that are either in depositor or
borrower or in both.

 Duplicates will be eliminated

Depositor U Borrower

cust_name city
Tamil Erode

Kavitha Gopi
Selva Chml
Durai Chennai
Kutty Erode
Samy Gopi
Bala Gopi
Abi Erode

Sathya Chml
Siva Salem

2) Intersection

 Intersection is a relation which includes all tuples that are in both depositor and
borrower

Depositor ∩ Borrower

cust_name city
Tamil Erode
Selva Chml

3) Difference

 Difference operator form relation that contain all tuples in depositor but not in
borrower.

Depositor - Borrower

cust_name city
Kavitha Gopi
Durai Chennai
Kutty Erode
Samy Gopi

4) Cartesian Product

 Cartesian product is also known as cross product or cross join.
 It is denoted by “x”

Relation X x Relation Y

 If Relation X, has 2 columns (3 rows)
 Relation Y, has 2 columns (2 rows)
 Resultant Relation, has X+Y columns 4 columns

 X * Y rows 6 rows

Publisher Book

Pub_code Pub_name Book_id Title

P1 McGraw B1 DBMS

P2 Pearson B2 Python

P3 PHI

Pub_code Pub_name Book_id Title

P1 McGraw B1 DBMS
P2 Pearson B1 DBMS
P3 PHI B1 DBMS
P1 McGraw B2 Python

P2 Pearson B2 Python
P3 PHI B2 Python

Relational algebraic operation

1) Select

 Select operation is used selects tuples that satisfy the given predicate from a
relation

 This is used to fetch rows (tuples) from table(relation) which satisfies a given
condition.

 It is represented as,

σ <select_condition> (R)

 σ Symbol of select operation
 <select_condition> Expression of condition
 R Relation / Table

Example (book)

ID TITLE PRICE YEAR
1 DBMS 250 2000
2 CP 350 2015
3 PYTHON 450 2009
4 DS 500 2010

1. Display book having price 500

σ price=500 (book)

ID TITLE PRICE YEAR
4 DS 500 2010

2. Display all books having price greater than 300

σ price>300 (book)

ID TITLE PRICE YEAR
2 CP 350 2015

3 PYTHON 450 2009
4 DS 500 2010

3. Display all books having price greater than 300 and year before 2010

σ price>300 and year>2010(book)

ID TITLE PRICE YEAR
3 PYTHON 450 2009

2) Project

 Project operation selects certain columns from the table while discarding others.
 It projects column(s) that satisfy a given predicate.
 Project operation is used to project only a certain set of attributes of a relation. In simple

words, If you want to see only the names all of the students in the Student table, then
you can use Project Operation.

 It will only project or show the columns or attributes asked for, and will also remove
duplicate data from the columns.

 It is represented as,

∏ <attribute_list> (R)

 ∏ Symbol of project operation
 <attribute_list> List of attributes of relation R to be projected
 R Relation / Table

1. Display all titles of book available in relation “book”

∏ title (book)

TITLE
DBMS

CP
PYTHON

DS

2. Display all titles of book with its price

∏ title,price (book)

TITLE PRICE
DBMS 250

CP 350
PYTHON 450

DS 500

Composite of select and project operation

 Relational operator “select” and “project” can be combined to form a
complicated query.

∏ title,price(σ price>350 (book))

TITLE PRICE
PYTHON 450

DS 500

3) Rename

 In relational algebra user can rename a relation/attributes or both.

ρ s(new_attribute_name) (R)

ρ s (R)
ρ (new_attribute_name) (R)

 ρ Symbol of rename operation

 s name of the new relation to be renamed
 < new_attribute_name > new attributes name
 R Relation / Table

Example

Consider a relation “book” with attribute (ID, title, author, price)

id title author price

1. Rename both relation and attribute name

ρ temp(id1,title1,author1,price1) (book)
Temp

id1 title1 author1 price1

2. Rename table name

ρ table (book)

table
id title author price

3. Rename only attributes

ρ (token,title,name,amount) (book)

Book
token Title name amount

II) Additional Relation operators

 Fundamental operation of relational algebra are,
o Select, Project, rename
o Union, difference, Cartesian product etc.,

 These operations are sufficient to express any query in relational algebra.
 But, certain queries are lengthy to express,

o Hence to simplify common queries, we use additional operations.
 Additional operations are,

o Natural Join
o Assignment operation

a) Natural Join

 Natural join is a binary operation that allows us to combine certain
o Selection &
o Cartesian product into one operation

It is denoted by Join Symbol (⋈)
 Natural join operation

o Forms Cartesian product of two arguments

o Perform selection forcing equality on those attributes that appear in both
selection

o Finally remove duplicates

Example

Employee Salary
Code Name Code Salary

E1 Tamil E1 25000
E2 Selva E2 23000
E3 Kavi E3 20000
E4 Kutty E4 30000

To display names of all employee with salary

∏ name,salary(σ employee.code = salary.code (employee x salary))

Above query can be rewritten using Natural Join

∏ name,salary (employee ⋈ salary))

 Query using natural join is simpler than Cartesian product
 Natural join considers only those pairs of tuples that have same value on code

attribute in both relations.
 Output

Name Salary
Tamil 25000
Selva 23000
Kavi 20000
Kutty 30000

b) Assignment

 Assignment operator is denoted by ()
 It works like assignment in a programming language
 Example

temp σ roll=1 (student)

 Result of right side will be assigned to the variable at left side

III) Extended Relational Algebra operations
 Arithmetic Operation
 Aggregate operation
 Outer Join

a) Arithmetic operation
 Generalized projection operation extends projection operation by allowing

arithmetic functions to be used in the projection list.
 Syntax

∏ F1,F2,….,Fn (E))
Here,
 F1,F2,…Fn arithmetic expressions
 E any relational algebraic expression

 Example
Student

Roll Name Total
1 Tamil 350
2 Selva 400
3 Kavi 375
4 Kutty 425

∏name,total/5 as percentage (student)

Name Percentage
Tamil 70
Selva 80
Kavi 75
Kutty 85

b) Aggregate functions

 Aggregate function takes a collection of values and returns a single value as a
result.

 Common aggregate functions are
o Sum
o Avg
o count_distinct
o max
o min etc.,

 Example (emp)

Emp_code Name Salary Dept
E1 Tamil 25000 CSE
E2 Selva 23000 IT
E3 Kavi 20000 IT
E4 Kutty 30000 CSE

1) Calculate total salary paid to employees

Gsum(salary)(emp)
G Group By symbol

Salary
98000

2) Calculate average salary paid to employees

Gavg(salary)(emp)

Salary
24500

3) Count number of distinct dept in the emp table

Gcount_distinct(dept)(emp)

2

4) Display total salary of employee department wise

dept Gsum(salary)(emp)

Dept Salary
CSE 55000
IT 43000

c) Outer Join

 Outer join operation is an extension of join operation
 It is used to deal with mission information

 Types of outer join
o Left outer join
o Right outer join
o Full outer join

Example

Emp
Name City
Tamil Kvp
Selva Chml
Kavi Gopi
Kutty Chennai

Natural Join

Emp ⋈ Emp_Salary

Name
Tamil
Selva
Kutty

Here, details of “kavi & durai” are lost. To avoid the loss of information, we can use
outer join

1) Left outer Join

 It takes all the tuples in the left relation
 Pad tuples with NULL values the do not available in the right relation

Name
Tamil
Selva
Kavi
Kutty

2) Right outer Join

 It takes all the tuples in the right relation
 Pad tuples with NULL values the do not available in the left relation

 Emp_salary
City Name Dept Salary
Kvp Tamil CSE 25000

Chml Selva IT 23000
Gopi Durai IT 20000

Chennai Kutty CSE 30000

City Dept Salary
Kvp CSE 25000

Chml IT 23000
Chennai CSE 30000

Here, details of “kavi & durai” are lost. To avoid the loss of information, we can use

takes all the tuples in the left relation
Pad tuples with NULL values the do not available in the right relation

Emp Emp_Salary

City Dept Salary
Kvp CSE 25000

Chml IT 23000
Gopi NULL NULL

Chennai CSE 30000

It takes all the tuples in the right relation
Pad tuples with NULL values the do not available in the left relation

Salary
25000
23000
20000
30000

Here, details of “kavi & durai” are lost. To avoid the loss of information, we can use

Pad tuples with NULL values the do not available in the right relation

Pad tuples with NULL values the do not available in the left relation

Name
Tamil
Selva
Durai
Kutty

3) Full outer Join

 It takes all the tuples fro
 Pad tuples with NULL values the d

Name
Tamil
Selva
Kavi
Kutty
Durai

SQL fundamentals

 SQL is the standard command set used to communicate with the relational
database system

 SQL Structured Query Language
 Characteristics

o SQL usage is extremel
o SQL optimize the result
o SQL query can be written in a variety of ways.

 Advantage
o SQL is a high level language that provides a greater degree of abstraction.
o SQL enables the end users to deal with number of database where it is

available.
o SQL is simple and easy to learn
o SQL can handle complex situation.

 SQL Literals
o String literals are always surrounded by single quotes (').

Emp Emp_Salary

City Dept Salary
Kvp CSE 25000

Chml IT 23000
NULL IT 20000

Chennai CSE 30000

from both left and right relation
Pad tuples with NULL values the do not available.

Emp Emp_Salary

City Dept Salary
Kvp CSE 25000

Chml IT 23000
Gopi NULL NULL

Chennai CSE 30000
NULL IT 20000

SQL is the standard command set used to communicate with the relational

Structured Query Language

SQL usage is extremely flexible
SQL optimize the result
SQL query can be written in a variety of ways.

SQL is a high level language that provides a greater degree of abstraction.
SQL enables the end users to deal with number of database where it is

simple and easy to learn
SQL can handle complex situation.

are always surrounded by single quotes (').

SQL is the standard command set used to communicate with the relational

SQL is a high level language that provides a greater degree of abstraction.
SQL enables the end users to deal with number of database where it is

For example:
 'Tamil Selvan'
 'This is a literal'
 '123'

o These string literal examples contain of strings enclosed in single quotes.
o Integer literals can be either positive numbers or negative numbers, but

do not contain decimals. If you do not specify a sign, then a positive
number is assumed.

o Here are some examples of valid integer literals:
 536
 +536
 -536

o Decimal literals can be either positive numbers or negative numbers and
contain decimals. If you do not specify a sign, then a positive number is
assumed.

o Here are some examples of valid decimal literals:
 24.7
 +24.7
 -24.7

o Datetime literals are character representations of datetime values that are
enclosed in single quotes.

o Here are some examples of valid datetime literals:
 'April 30, 2015'
 '2015/04/30'
 '2015/04/30 08:34:25'

 SQL Commands
o DDL
o DML
o DCL
o TCL

 SQL Data type

o Data types are a classification of a particular type of information.
o It is easy for humans to distinguish between different types of data.
o SQL support following data types

1) varchar

o represents a varying length string whose maximum length is ‘n’
characters

o Example:
name varchar(n) name varchar(10) tamil / kavitha etc.,

2) character
o represents a fixed length string whose exact length should be specified ‘n’
o Example

name character(6) ‘Selvan”
3) Number

o Represent numbers i.e., integer values.
o Number can also includes decimal point values
o Example

age number(3)
4) Integer

o Represents integer values
o Example

roll int(3)
5) Float

o Represent floating point numbers
o Example

height float(5,2) floating point with two decimal values.
6) Date

o Calendar date containing
o 4 digit year
o Month
o Day of the month

o Example
dob date

7) Time
o Time of the day in hours, minutes and seconds
o Example

arrival_time time
8) Timestamp

o Combination of date and time
o Example

departure timestamp

Advanced SQL features
Embedded SQL

 The SQL standard defines embeddings of SQL in a variety of programming
languages such as C, Java, and Cobol

 A language to which SQL queries are embedded is referred to as a host
language, and the SQL structures permitted in the host language
comprise embedded SQL.

 EXEC SQL statement is used to identify embedded SQL request to the
preprocessor

EXEC SQL <embedded SQL statement > END_EXEC

 Exact syntax for embedded SQL request depends on the language in which SQL

is embedded
 Example in JAVA embedding of SQL uses the Syntax

#SQL { <embedded SQL Statements > };

 Before executing SQL, program must connect to database

EXEC SQL connect to server user username using password;

 Here

o Server identifies the server to which connection to be established.
o Database implementation requires (username and password)

 Syntax for declaring variable. It can be used within Embedded SQL but it must

be proceeded with colon (:), which distinguish from SQL variable.

EXEC SQL BEGIN DECLARE SECTION
 int credit_amount;
EXEC SQL END DECLARE SECTION

 To write relational query, we user declare cursor statement.
 Query to find ID & Name of all the students who have taken more than the

specified “credit_amount”

EXEC SQL
 declare c cursor for
 select ID, name
 from student

 where tot_credit > :credit_amount;
END-EXEC

 Here
o Variable c is called cursor for the query. This variable is used to identify

the query in the open statement.

 Open statement causes the query to be evaluated and save the result within
temporary relation.

 Fetch statement causes the values of one tuple to be placed in host-language
variables.

EXEC SQL
 open c
END-EXEC
EXEC SQL
 fetch c into :si,:sn;
END-EXEC

o Here

 si hold student ID value
 sn holds student name

o Fetch statement produces a tuple of the result relation.
o It fetch single tuple from the database.
o To obtain all the tuples of the result, loop can be used.

 User must use close statement to tell the database to delete the temporary

relation that held the result of the query.

EXEC SQL
 close c
END-EXEC

Dynamic SQL

 Dynamic SQL component of SQL allows programs to construct and submit SQL
queries at runtime.

 Using Dynamic SQL, program can create SQL queries as strings at runtime and it
can be executed immediately or kept prepared for subsequent use.

 Preparing a dynamic SQL statement compiles it, and it will be used in future as
compiled version.

 Dynamic SQL is SQL statements that are constructed at runtime; for example,
the application may allow users to enter their own queries.

 Dynamic SQL is a programming technique that enables you to build SQL
statements dynamically at runtime

 SQL defines standard embedding dynamic SQL calls in a host language, such as
C, C++, Java, VB etc.,

char *sqlprg = “update account set balance=balance*1.05
 where account_number=?;
EXEC SQL prepare dynprog from :sqlprg;
char account[10]=”A101”;
EXEC SQL execute dynprog using :account;

 Here,
o Dynamic SQL program contain “?”, which is a placeholder for a value that

is provided when the SQL program is executed.
 ODBC and JDBC are used to connect application program to database.

Difference between static and dynamic SQL

Static (Embedded) SQL Dynamic (Interactive) SQL
In Static SQL, how database will be
accessed is predetermined in the
embedded SQL statement.

In Dynamic SQL, how database will
be accessed is determined at run time.

SQL statements are compiled at
compile time.

SQL statements are compiled at run
time.

Parsing, Validation, Optimization and
Generation of application plan are
done at compile time.

Parsing, Validation, Optimization and
Generation of application plan are
done at run time.

It is generally used for situations
where data is distributed uniformly.

It is generally used for situations
where data is distributed non
uniformly.

EXECUTE IMMEDIATE, EXECUTE
and PREPARE statements are not
used.

EXECUTE IMMEDIATE, EXECUTE
and PREPARE statements are used.

It is less flexible. It is more flexible.

ODBC

 Open Database Connectivity (ODBC) standard defines a way for an application
program to communicate with database server.

 ODBC defines an Application Program Interface (API) that application can use
to,

o Open a connection with a database
o Send queries and updates
o Get back results.

 Applications such as
o Graphical interfaces
o Spreadsheet
o MS Access etc, make use of the same ODBC API to connect to any

database server that supports ODBC.

JDBC

 Java Database Connectivity (JDBC) standard defines an API that Java programs
can use to connect to database servers.

 JDBC code contains
o Class.forName loads the appropriate drivers for the database.
o getConnection specifies the machine name where the server runs.

 getConnection includes protocol to be used to communicate with
the database, username and password.

o Then program creates a statement handle on the connection and uses it to
execute an SQL statement
 Stmt.executeQuery

o It can retrieve the set of rows in the result into “ResultSet” and fetch them
one tuple at a time using the next() function on the result set.

Sample JDBC Code

public static void JDBCExample(String dbid,String userid, String passwd)
{
 try
 {
 Class.forName(“oracle.jdbc.driver.OracleDriver”);
 Connection con=DriverManager.getConnection(“jdbc:oracle”,userid,passwd);
 Statement stmt = con.createStatement();
 try
 {
 stmt.executeUpdate(“insert into account values(1,’Tamil’,10000)”);
 }
 catch(SQLException e)
 {
 System.out.println(“Could not insert”+e);
 }
 ResultSet rs=stmt.executeQuery(“select id,name from account

where balance>5000”);
 while(rs.next())
 {

 System.out.println(rs.getInt(“id”)+” “ + rs.getString(“name”));
 }
 stmt.close();
 con.close();
 }
 catch(SQLException e)
 {
 System.out.println(“SQLExeception: “+e);
 }
}

