
Insertion Sort Algorithm

To sort an array of size N in ascending order iterate over the array and compare the

current element (key) to its predecessor, if the key element is smaller than its predecessor,

compare it to the elements before. Move the greater elements one position up to make space

for the swapped element.

Working of Insertion Sort algorithm

Consider an example: arr[]: {12, 11, 13, 5, 6}

 12 11 13 5 6

First Pass:

 Initially, the first two elements of the array are compared in insertion sort.

 12 11 13 5 6

 Here, 12 is greater than 11 hence they are not in the ascending order and 12 is not at its correct

position. Thus, swap 11 and 12.

 So, for now 11 is stored in a sorted sub-array.

 11 12 13 5 6

Second Pass:

 Now, move to the next two elements and compare them

 11 12 13 5 6

 Here, 13 is greater than 12, thus both elements seems to be in ascending order, hence, no

swapping will occur. 12 also stored in a sorted sub-array along with 11

Third Pass:

 Now, two elements are present in the sorted sub-array which are 11 and 12

 Moving forward to the next two elements which are 13 and 5

 11 12 13 5 6

 Both 5 and 13 are not present at their correct place so swap them

 11 12 5 13 6

 After swapping, elements 12 and 5 are not sorted, thus swap again

 11 5 12 13 6

 Here, again 11 and 5 are not sorted, hence swap again

 5 11 12 13 6

 Here, 5 is at its correct position

Fourth Pass:

 Now, the elements which are present in the sorted sub-array are 5, 11 and 12

 Moving to the next two elements 13 and 6

 5 11 12 13 6

 Clearly, they are not sorted, thus perform swap between both

 5 11 12 6 13

 Now, 6 is smaller than 12, hence, swap again

 5 11 6 12 13

 Here, also swapping makes 11 and 6 unsorted hence, swap again

 5 6 11 12 13

 Finally, the array is completely sorted

Illustrations:

Merge sort

Merge sort is defined as a sorting algorithm that works by dividing an array into smaller

subarrays, sorting each subarray, and then merging the sorted subarrays back together to form the

final sorted array.

Merge sort is a recursive algorithm that continuously splits the array in half until it cannot be

further divided i.e., the array has only one element left (an array with one element is always sorted).

Then the sorted subarrays are merged into one sorted array.

Complexity Analysis of Merge Sort:

Time Complexity: O(N log(N)), Merge Sort is a recursive algorithm and time complexity can be

expressed as following recurrence relation.

T(n) = 2T(n/2) + θ(n)

The above recurrence can be solved either using the Recurrence Tree method or the Master

method. It falls in case II of the Master Method and the solution of the recurrence is

θ(Nlog(N)). The time complexity of Merge Sort isθ(Nlog(N)) in all 3 cases (worst, average, and

best) as merge sort always divides the array into two halves and takes linear time to merge two

halves.

Auxiliary Space: O(N), In merge sort all elements are copied into an auxiliary array. So N

auxiliary space is required for merge sort.

The following figure illustrates the dividing (splitting) procedure.

https://www.geeksforgeeks.org/sorting-algorithms/

FUNCTIONS: MERGE (A, p, q, r)

1. n 1 = q-p+1

2. n 2= r-q

3. create arrays [1.....n 1 + 1] and R [1.....n 2 +1]

4. for i ← 1 to n 1

5. do [i] ← A [p+ i-1]

6. for j ← 1 to n2

7. do R[j] ← A[q + j]

8. L [n 1+ 1] ← ∞

9. R[n 2+ 1] ← ∞

10. I ← 1

11. J ← 1

12. For k ← p to r

13. Do if L [i] ≤ R[j]

14. then A[k] ← L[i]

15. i ← i +1

16. else A[k] ← R[j]

17. j ← j+1

The merge step of Merge Sort

Mainly the recursive algorithm depends on a base case as well as its ability to merge back

the results derived from the base cases. Merge sort is no different algorithm, just the fact here

t h e m e r g e s t e p p o s s e s s e s m o r e i m p o r t a n c e .

 o any given problem, the merge step is one such solution that combines the two individually

s o r t e d l i s t s (a r r a y s) t o b u i l d o n e l a r g e s o r t e d l i s t (a r r a y) .

The merge sort algorithm upholds three pointers, i.e., one for both of the two arrays and

t h e o t h e r o n e t o p r e s e r v e t h e f i n a l s o r t e d a r r a y ' s c u r r e n t i n d e x .

 Quick sort

Quick sort is a highly efficient sorting algorithm and is based on partitioning of array of data into

smaller arrays. A large array is partitioned into two arrays one of which holds values smaller than

the specified value, say pivot, based on which the partition is made and another array holds values

greater than the pivot value.

 QuickSort is a sorting algorithm based on the Divide and Conquer algorithm that picks an

element as a pivot and partitions the given array around the picked pivot by placing the pivot in its

correct position in the sorted array.

Choice of Pivot:

There are many different choices for picking pivots.

 Always pick the first element as a pivot.

 Always pick the last element as a pivot (implemented below)

 Pick a random element as a pivot.

 Pick the middle as the pivot.

Time and Space Complexity Analysis of Binary Search Algorithm

https://www.geeksforgeeks.org/divide-and-conquer-algorithm-introduction/
https://www.geeksforgeeks.org/implement-quicksort-with-first-element-as-pivot/
https://www.geeksforgeeks.org/quicksort-using-random-pivoting/

