
Vol.:(0123456789)1 3

Journal of Ambient Intelligence and Humanized Computing
https://doi.org/10.1007/s12652-020-01706-8

ORIGINAL RESEARCH

An improved memory adaptive up‑growth to mine high utility
itemsets from large transaction databases

D. Sathyavani1 · D. Sharmila2

Received: 27 August 2019 / Accepted: 7 January 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
High utility itemset (HUI) mining identifies an interesting pattern from transactional databases by taking into consider the
utility of each in the transaction for instance, margins or profits. Many candidates are generated for HUIs which reduces the
mining performance. Frequent pattern-growth (FP-Growth) algorithm was widely used to discover the frequent itemsets
using FP-Tree. But, UP-Tree was constructed to store high utility item set. The mining of UP-Tree by FP-Growth extracts high
utility itemset and generates too many candidates. So, UP-Growth and UP-Growth+ was proposed to shorten the candidate
itemsets. In UP-Growth, two tactics such as discarding local unpromising items (DLU) and decreasing local node (DLN)
were used in FP-Growth. In UP-Growth+, two strategies such as DLU and its estimated node utilities (DNU) and DLN tools
for the nodes of internal UP-Tree by evaluated the descendant nodes (DNN) were incorporated in FP-Growth. However,
the UP-Growth and UP-Growth+ has the problem of poor spatial and temporal localities. Initially, the UP-Tree is created in
available main memory then extended to secondary memory when the transaction is large. The storage of data structure in
secondary memory and accessibility is not clearly derived in existing algorithms. In this paper, the spatial locality issues of
UP-Growth and UP-Growth+ is solved by rearranging nodes of UP-Tree in a depth first manner and temporal locality issues
of UP-Growth and UP-Growth+ is solved by page blocking technique which reorganizes the execution part of UP-Growth
and UP-Growth+. The computational part is rearranged. In addition to, the memory management strategy is introduced to
minimize the space requirement of high utility itemsets. Thus the proposed Improved Adaptive UP-Growth (IAUP-Growth)
and Improved Adaptive UP-Growth+ (IAUP-Growth+) overcomes the spatial and temporal locality problem and effectively
reduces the memory usage.

Keywords  Frequent pattern growth · Utility pattern tree · High utility itemset mining · Memory management · Utility
pattern growth

1  Introduction

Data mining techniques such as pattern mining and rule
mining (Gan et al. 2018) are used for making crucial deci-
sion through extracting interesting patterns from database.
Two important processes named as Association Rule Min-
ing (ARM) (Wang et al. 2018) and frequent itemset mining
(FIM) (Memar et al. 2012) are used to find out interesting
relationship between items in transactional databases. ARM

is intended to obtain the inviolable rules in database by using
some interestingness measures. In FIM, items are called fre-
quent when the expected support is larger than user specified
threshold minimum support (minsupp) value. ARM reveals
the relationship between objects by finding the strongest
rules for binary transaction information. But some impor-
tant features are not considered as profit on the goods and
quantity purchased. Such problems are somewhat solved by
quantitative association rule mining (QARM), which reveals
the relationship between information items by taking into
account the quantity value that each item in a transaction
may contain. Frequent type-development (equivalent party-
development) the ARM algorithm is widely used to find
objects with actionable information, often with the help of
the Party-Tree. It often finds items without candidate genera-
tion, so it requires less memory.

 *	 D. Sathyavani
	 sathyavanid@yahoo.com

1	 Faculty of Computer Science and Engineering, United
Institute of Technology, Coimbatore, Tamil Nadu, India

2	 Bannari Amman Institute of Technology, Sathyamangalam,
Tamil Nadu, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s12652-020-01706-8&domain=pdf

	 D. Sathyavani, D. Sharmila

1 3

But, the existing algorithms were not considered other
features such as cost, importance, price, weight or utility
of items. In order to analyze and predict customer purchase
behavior, the above mentioned factors are more important.
These algorithms focus on discovering frequent patterns
without taking into account of profitability. High Utility
Itemsets mining (HUIM) used to handle the limitations in
existing rule mining such as ARM and QARM.

The HUIM technique (Joshi and Patel 2014) determined
all itemsets in transaction database which are having util-
ity beyond a user defined threshold minimum utility value.
Here, the utility represents the profit or quantity value of
items in the transaction. The utility value depends on two
important factors are internal utility and external utility. It
represents the significance of distinct items as well as the
utility of items in transactions. In order to discover the HUIs
in transactional database, candidate itemsets are generated
by determining the utilities and calculates accurate utilities
of generated candidate itemsets through database scans.
Different approaches were used for HUIM. However, these
approaches generated large number of candidate itemsets.
It has two problems that are extra memory requirement to
keep candidate itemsets also requires more execution time
to generate candidates and estimating its exact utilities. If
the candidate itemsets are large in numbers, then the main
memory is not enough to store the items. Performance of
these algorithms is degraded due to thrashing.

Tseng et al. (2013) proposed the efficient algorithms UP-
Growth and UP-Growth+ to extract HUIs. It also reduces
the number of candidate generations. By scanning the trans-
action two times, a UP-global tree was constructed. Then,
from the constructed UP-global tree, a Potential High Util-
ity Itemsets (PHUIs) was recursively generated by apply-
ing proposed UP-Growth algorithm. The UP-Growth was
generated by including two strategies such as DLU and DLN
into FP-Growth algorithm. The UP-Growth+ reduced over
estimated utilities effectively by incorporating two strategies
DLU items, and their estimated Node Utilities and DLN
tools for the nodes of local UP-Tree by evaluated tools of
descendant Node(DNN) in FP-Growth. After the determina-
tion of all PHUIs, the re-arranged transactions were scanned
to find out the high utility itemsets (Joshi and Patel 2014).
A branch of the UP-Tree is placed in the secondary memory
when the tree is unable to fit into the main memory (Manike
and Hari 2014). So the multiple disc and primary memory
swaps may emerges during the mining process which leads
to poor spatial locality of the tree nodes (Adnan and Reda
2011). When the mining algorithm tries to construct the con-
ditional pattern bases, the UP-Tree in secondary memory
needs to be loaded into primary memory. This needs to be
done for every frequent item in the header table. It loads the
same data block multiple times which leads to poor temporal

locality of the data. Hence, the UP-Growth and UP-Growth+
has the problem of poor spatial and localities.

In this paper, the problem of spatial and temporal locali-
ties of UP-Growth and UP-Growth+ is addressed and these
problems are solved by proposing Improved Adaptive UP-
Growth (IAUP-Growth) and IAUP-Growth+ algorithms.
But the temporal locality and spatial locality issues of UP-
Growth and UP-Growth+ are resolved by the same strategy.
The strategy is applied in the UP-Growth algorithm, then it
is called as IAUP-Growth and the strategy is applied in UP-
Growth+ algorithm, then it is called as IAUP-Growth+. In
IAUP-Growth and IAUP-Growth+, the spatial locality prob-
lem is solved by reorganizing the nodes of UP-Tree based
on depth first manner. Another problem, temporal locality
is solved by page blocking technique which reorganizes the
execution part by UP-Growth and UP-Growth+. Moreover,
memory management strategy is described in this paper
which reduces the space requirement of high utility item-
sets. In the memory management strategy, UP-Tree is con-
structed in the available allocated primary memory. When
the structure exceeds out of the allocated memory, the data
is mandatory to save on secondary memory as separate. This
structure is accessed by block-by-block basis so that both the
spatial and temporal localities of I/O access are optimized
Adnan and Reda (2011). Hence the UP-Growth and UP-
Growth+ are improved by the proposed IAUP-Growth and
IAUP-Growth+ by resolving the spatial and temporal locality
problem and by using memory management strategy.

The article is structured as follows: Sect. 2 describes
the literature survey about HUIM. Section 3 describes the
proposed methodology. Section 4 illustrates experimental
results of the proposed approach. Finally, Sect. 5 gives con-
clusion of the research work.

2 � Related works

The efficient algorithms (Tseng et al. 2016), mining Top-K
Utility itemsets (TKU) and mining Top-K utility itemsets
in One phase (TKO) were proposed to mine top k HUI in
transaction database. The main advantage of these algo-
rithms were mined HUI without user defined minimum
utility threshold value. By adopting UP-Tree, the proposed
TKU was maintained details about the transaction and utili-
ties of each item. TKO used data structure to gather the
details of itemset utilities from the transaction database. In
a single phase, it found out the top k utility HUIs by using
vertical data representation techniques. These algorithms
were effective for mining HUIs. However, these algorithms
were unable to integrate with supplementary utility mining
steps for finding out the various kinds of Top-K high utility
algorithms.

An improved memory adaptive up-growth to mine high utility itemsets from large transaction…

1 3

An efficient method (Krishnamoorthy 2018b) was pro-
posed with various minimum utility threshold values. In a
single phase, this method generated HUI without expen-
sive candidate generation. It utilized vertical database rep-
resentation which stores information about the itemset and
mines HUIs effectively. Moreover, a theory of multiple
minimum utility was introduced and presented the general-
ized pruning methods to mine HUIs efficiently. However
this method is quite challenging.

A Generalized High Utility Mining (GHUM) method
(Krishnamoorthy 2018a) was proposed for mining HUIs.
The advantage of this method was considering both the
negative and positive unit profits to mine HUIs. While
mining process, the proposed method had a compact data
structure which is used to store the utility information of
itemsets. In addition to that, the performance of HUI was
enhanced by introducing a new anti-monotonic property
based on utility. An evaluation was performed during the
mining process. Furthermore it minimizes the evaluation
steps by using N-prune strategy. As well as enhanced the
performance of HUIM. However, the total item utility val-
ues of each transaction were negative by using GHUM.

An efficient mining algorithm with multi objective
(Zhang et al. 2018) was proposed to mine HUIs and fre-
quent itemsets. This algorithm considered two measures
are utility and support in a unified structure from a multi
perspective aspect. The system of frequent with high util-
ity structure mining was designed as a multi perspective
issue, and the proposed algorithm helps as decision maker
by providing multiple itemsets recommendation. The main
benefit of this algorithm is no need to define minimum
support threshold value and minimum utility value in
advance.

A HUI-DTP algorithm (Lin et al. 2016) was proposed for
mining HUI. This algorithm was considered discount strate-
gies of items. This algorithm comprised of two phase algo-
rithm which were based on a vertical Transaction Identifier
(TID) list structure and novel downward closure property. In
addition to, the HUI was discovered effectively without gen-
eration of candidates by using a HUI DMiner algorithm. It
depends on properties of compact data structure and pruning
techniques. In order to minimize the computation process,
the relationship between two itemsets was stored by using
Estimated Utility Co-occurrence strategy (Lin et al. 2016)
which applied on the improved HUI DMiner algorithm.

An incremental mining algorithm (Lin et al. 2012a, b)
was proposed to mine HUIs. Two phase algorithm was used
for mining HUIs. The problems of processing all transac-
tions in batch wise were solved by incremental mining algo-
rithm. It was derived from the conception of fast update
(FUP) approach. It doesn’t focus the problem of utility based
mining, when the modification is performed in original
database.

A new approach called as short-period high utility itemset
mining (SPHUIM) (Lin et al. 2017) was projected to mine
the HUIs from transactional databases by taking into consid-
eration of both the period constraint and utility measures. In
this framework, three algorithms were designed. First algo-
rithm called SPHUITP mined short period HUIs by level
wise process. Candidates were obtained by the first algo-
rithm and selected the SPHUIs through multiple database
scans. In third algorithm, the process of SPHUIs mining
was speed up by using two pruning strategies which reduced
the search space as well as pruned unpromising candidates
from the transaction database. This framework has excellent
scalability. In order to mine more specific patterns, along
with the utility measures and period constraints could be
considered.

A new approach called high Utility Mining using the
Maximal Itemset property (UMMI) was proposed (Lin et al.
2012a, b) to mine HUIs. Initially, this algorithm reduced the
number of potential itemsets. Then, an effective tree struc-
ture called as lexicographic tree structure was constructed
and determines HUIs effectively. There are two phases in
UMMI, Maximal phase and utility phase. They reduced
search space and identified the HUIs respectively. This algo-
rithm still needs an improvement in terms of memory.

A new approach, high utility pattern tree (HUP-Tree) and
HUP-Growth algorithm (Lin et al. 2011) was proposed to
mine HUIs in two phases. The proposed method was incor-
porated the conventional two phase system for HUIM. The
compact tree structured called HUP-tree behaves like FP-tree
except the HUP-tree maintains quantity of items in an array
that attached with each node for utility mining. The candi-
date itemsets and also specific items were generated at a time
using HUP-Growth algorithm. However, in this approach the
database is considered as static. But the database is gener-
ally dynamic in real world applications. So this method was
not able to process the utility mining in dynamic database.

A novel algorithm called as temporal high utility item-
sets (THUI) (Chu et al. 2008) was proposed for mining
sequential HUIs from large databases. This method utilized
maximal possible error and bucket boundaries to delete or
update itemsets with frequency in transaction database. The
itemsets were deleted whose occurrence counts in memory
were greater than utility threshold. The occurrence count
was calculated by using cumulative filter (CF). However,
the performance of THUI method was depends on the value
of minimum utility threshold.

For mining HUIs, a novel algorithm called as efficient
HUIs mining (EFIM) (Zida et al. 2015) was proposed. The
search space is reduced by using upper bounds in it. Sub
tree utility and local tree utility are the two upper bounds.
The utility values were calculated in linear space and time
by using fast utility counting. In addition to, two algorithms
were proposed in EFIM were named as transaction merging

	 D. Sathyavani, D. Sharmila

1 3

technique and efficient database projection technique. These
techniques were reduced the database scans costs (Anitha
and Kaarthick 2019). Identifying intruders using data min-
ing approach in recent trend provides better detection rate
when compared with other classical systems. In this paper
we introduced Oppositional based Laplacian grey wolf opti-
mization algorithm for clustering the class of attacks based
on the similarity and active learning of SVM classification
using this optimization algorithm.

3 � Proposed methodology

In this section, the spatial and temporal locality problem
in UP-Growth algorithm and UP-Growth+ algorithm is
described. Then, the proposed IAUP-Growth as well as
IAUP-Growth+ are described in detail. The UP-Growth
and UP-Growth+ methods exhibit poor temporal and spatial
localities. To get better spatial and temporal localities in UP-
Growth and UP-Growth+ by identifying strategies by which
UP-Growth and UP-Growth+ can be made I/O conscious
and by using cache conscious prefix tree. Initially, UP-Tree
is created to retain the details of HUIs in the transactions. It
avoids frequent scanning of original database and increases
the mining performance. UP-Growth is very similar to FP-
Growth with two strategies are DLU and DLN. With FP-
Growth two strategies such as DNU and DNN was incor-
porated to get UP-Growth+. So the problems of FP-Growth
are reflected in UP-Growth and UP-Growth+. The problems
associated with existing algorithms. It causes poor tempo-
ral and spatial localities. This is due to its access behavior
and construction process of the mining algorithm. The spa-
tial and temporal locality problem in UP-Growth and UP-
Growth+ is solved by the same strategies used in proposed
algorithms.

3.1 � Problem definition

3.1.1 � Poor spatial locality

A leaf node is inserted into the branch during construction
of UP-Tree and it also maintains the property of prefix path
in the UP-Tree. In UP-Tree, prefix path are formed and their
nodes are placed in the linear memory depending upon the
sequential order by which transaction were read and included
into the file structure. While constructing the UP-Tree, the
nodes of prefix path in the UP-Tree are not located linear
to each other. This may leads to infrequent cache misses
when the algorithm determines the prefix paths during the
UP-Tree construction or traversing UP-Tree. Furthermore,
when the branch of UP-Tree is located in the disc by using
virtual memory management system, multiple discs swaps
and primary memory may be explored during the process

of HUIM. Since regular page faults, leads lack of memory
space allocation for the nodes. Therefore the process of high
utility mining requires maximum space and time.

3.1.2 � Poor temporal locality

Virtual memory manager (VMM) is like memory managers
which manages the memory requests made by the system
and its application. The UP-Tree needed to load into primary
memory while the remaining part of UP-Tree is resides in
the secondary storage. It needs to be performed for all item-
sets in the header table. While performing this step, the UP-
Growth algorithm loads several times backward and forward
from hard disc to main memory. This leads to poor temporal
locality of the data.

3.2 � Resolving spatial and temporal locality issue

3.2.1 � Resolving spatial locality issues

By rearranging the UP-Tree nodes in depth first manner,
the spatial memory allocation is improved. The reorganized
version of original UP-Tree called conscious prefix tree is
used in this task. Initially, a contiguous block of memory
is allocated which is equivalent to the UP-Tree size. Then,
UP-Tree is navigated in the approach of depth first. In order
to guarantee the improved spatial locality of nodes in the
same prefix path, UP-Tree nodes are copied linearly into new
assigned contiguous memory. The mining algorithm wants
to go across the tree several times by bottom up approach. By
rearranging the tree traversal on cache conscious prefix tree,
it enhances the performance in spatial locality of nodes. The
Fig. 1 shows an example for UP-Tree with node construction
and allocation in the memory. The nodes are numbered in
red color based on the nodes allocation or creation time. An
allocation of node in the memory is represented by array like
manner. The spatial problem in UP-Tree is solved by rear-
ranging the nodes as well as traversed by depth first manner.
The rearranged UP-Tree nodes are depicted in Fig. 2.

3.2.2 � Resolving temporal locality issue

The UP-Growth shows poor temporal locality since UP-Tree
is read multiple times in the header table for each itemsets.
In this process, to determine the conditional pattern bases,
need to collect the counts in the first step then builds the
conditional UP-Tree from collected patterns. The system
goes slow down massively due to thrashing process. When
the virtual memory management system accumulates a
part of tree in secondary memory, then it leads to constant
page faults. This problem is overcome by rearranging the
computational part of the UP-Growth through the process
of page blocking. The computational part is rearranged by

An improved memory adaptive up-growth to mine high utility itemsets from large transaction…

1 3

exhausting the specific block in I/O conscious UP-Tree.
Accordingly, when the system is necessary to load the blocks
from the disk to main memory, then the block is loaded
only once which reduces the page faults dramatically. This is
briefly explained in the following algorithm which resolves
the spatial and temporal locality problem in UP-Growth.

In the following IAUP-Growth (IAUP-Growth+) algo-
rithm, UP denotes the UP-Tree, x denotes the high utility
itemsets, b denotes the block, H denotes the header table, s
denotes the user specified minimum utility threshold, agg-
count-list denotes the aggregated count list and is a binary
operation on a set. It is calculated that combines two ele-
ments in the set. The UP-Growth and UP-Growth+ algorithm
are briefly explained in.

Root

E:5 A:1

A:3 F:2

F:2 B:1

B:2

D:1

G:v

G:1

C:1

C:1

D:v

C:1

D:1

G:1

1 7

2

3

4

5

6

8

9

10

11

12
16

13

14
15

E:5 A:3 F:2 B:2 D:1 G:1 A:1 C:1 D:1 G:1 F:2 B:1 C:1 D:1 C:1 G:1

1 2 3 4 5 6 75 8 9 10 11 12 13 14 15 16

Fig. 1   UP-Tree node creation and memory allocation

	 D. Sathyavani, D. Sharmila

1 3

IAUP-Growth (IAUP-Growth+) Algorithm

Initialize s, H

Step 1: IAUP-Growth(UP, H, s, alg)

{

Step 2: for each block b in UP-Tree do

{

Step 3: for each high utility item x in H do

{

Step 4: To traverse the nodes in b, follow the x node links from H

Step 5: Calculate the support count and set the criteria of minutil threshold.

}

}

Step 6: for each x in H do

{

Step 7: Aggregate conditional pattern base then collect for block b to

produce agg-count-list

}

Step 8: for each block b UP do

{

Step 9: for each x in H do

{

Step 10: if all entries of arenot lesser than s

{

Step 11: Build the conditional UP-Tree

}

}

}

Step 12: for each x in H do

{

Step 13: if exists then

{

Step 14: if (alg==UP-Growth())

{

Step 15:UP-Growth is the header

table for

Step 16: else

Step 17: UP-Growth+

}

}

}

}

An improved memory adaptive up-growth to mine high utility itemsets from large transaction…

1 3

3.3 � Memory management strategy

The memory management is the core of the proposed IAUP-
Growth. The memory management unit does all translation
need to store the over flowed memory-based compact data
structure like UP-Tree into secondary memory as sequential
based file structures. Also it loads the data from file structure
to preferred memory-based structure when the translation
is necessary. In proposed memory management strategy,
the tree translation unit is used as memory management
unit in HUIM. This method transforms the memory-based
UP-Tree which contains the UP-node list into secondary
storage-based version of I/O conscious prefix tree. Initially,

UP-Tree nodes are generated by searching UP-Tree in depth
first manner with exclusive spatially aware node-Id. Then,
the UP-Tree was split into blocks. The size of block must
be lesser than or equal to block size of file for each node in
the tree. The divided blocks are translated to I/O conscious
prefix tree. Then it is stored in the disk as sequential file
structures followed by node-IDs. Each node-Id is matches
with unique pointer position in the file. Moreover, the tree
node-Ids are generated I a single traversal and the tree blocks
are translated into disc. Hence, it does not require any extra
memory to store node Ids. The translated disc-based prefix
tree and memory based UP-Tree is corresponds with indi-
vidual Ids in the tree. UP-Tree node-Ids are saved into Disc

Root

E:5 A:1

A:3 F:2

F:2 B:1

B:2

D:1

G:1

G:1

C:1

C:1

D:1

C:1

D:1

G:1

1 13

2

3

4

5

6

14

15

16

11

8
12

9

10
7

E:5 A:3 F:2 B:2 D:1 G:1 G:1 B:1 C:1 D:1 F:2 C:1 A:1 C:1 D:1 G:1

1 2 3 4 5 6 75 8 9 10 11 12 13 14 15 16

Fig. 2   Reorganizing UP-Tree in depth first order

	 D. Sathyavani, D. Sharmila

1 3

Tree location Table (DTLT) structure which is performed in
the final translation process. Thus, the boundary of blocks
is stored in the file structure which is used for identifica-
tion of particular prefix-tree. Furthermore, the whole header
table and node-link Ids are mapped into Item Location Table
(ILT) structure by memory management strategy.

4 � Result and discussion

The effectiveness of proposed method for HUIM is per-
formed based on memory utilization and execution time for
HUIs. For the experimental purpose, there are two datasets
are used called as T10I4d100k and mushroom dataset. The
T10I4d100k came from IBM Data Generator and mushroom
dataset taken from FIMI repository. The T10I4d100k dataset
has 300,000 transactions, 1000 number of different items
and 33.8 mean length of all transaction itemsets. Another
dataset called mushroom dataset has 8124 numbers of trans-
actions, 119 numbers of distinct items, 23 mean lengths of
all transaction itemsets.

4.1 � Memory usage

Memory usage refers the total amount computational stor-
age required for mining HUIs from transaction database.
The following Table 1 shows the memory usage with fixed
minimum utility (0.05%) value for existing UP-Growth, UP-
Growth+ and proposed IAUP-Growth, IAUP-Growth+ under
different number of transactions.

From the Table 1, it is clear that the proposed IAUP-
Growth, IAUP-Growth+ algorithms has low memory usage
for different number of transactions than the existing UP-
Growth, UP-Growth+ algorithms.

Figures 3 and 4, shows the comparison between pro-
posed approaches of IAUP-Growth, IAUP-Growth+ with
existing UP-Growth, UP-Growth+ algorithms based on
memory usage for T10I4d100k dataset and mushroom
dataset respectively. X axis denotes minimum utility
(MinU %) and Y axis denotes the memory usage in terms
of MB. A large number of utility itemsets are extracted
as HUIs, while minimum utility value is low. So a lot of

memory is required to store those HUIs and vice versa.
In order to analysis, the minimum utility is taken in the X
axis as well as memory usage is taken in the Y axis. From
the figures, it is proven that the proposed IAUP-Growth+
have less memory usage than the other methods.

Table 1   Comparison of memory usage (MB) (MinU = 0.05%)

No. of
transac-
tions

T10I4d100k Mushroom

UP-Growth UP-Growth+ IAUP-Growth IAUP-Growth+ UP-Growth UP-Growth+ IAUP-Growth IAUP-Growth+

2000 600 510 400 320 520 480 400 312
4000 720 590 510 450 624 514 450 380
6000 800 710 600 520 735 627 501 412
8000 950 812 703 652 800 722 652 567

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 . 0 2 0 . 0 4 0 . 0 6 0 . 0 8 1

UP-Growth

UP-Growth*

IAUP-Growth

IAUP-Growth*

MEMORY USAGE(GB)

M
EM

O
RY

 U
SA

GE
(G

B)

MinU(%)

Fig. 3   Evaluation of memory usage for T10I4d100k

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 . 0 2 0 . 0 4 0 . 0 6 0 . 0 8 1

UP-Growth

UP-Growth*

IAUP-Growth

IAUP-Growth*

MEMORY USAGE(GB)

M
EM

O
RY

 U
SA

GE
(G

B)

MinU(%)

Fig. 4   Evaluation of memory usage for mushroom

An improved memory adaptive up-growth to mine high utility itemsets from large transaction…

1 3

4.2 � Running time

Running Time denotes the amount of time taken for min-
ing the HUIs from the transaction database. The following
Table 2 shows the running time with fixed minimum util-
ity (0.05%) value for existing UP-Growth, UP-Growth+
and proposed IAUP-Growth, IAUP-Growth+ under differ-
ent number of transactions.

From the Table 2, it is clear that the proposed IAUP-
Growth, IAUP-Growth+ requires less running time for
different number of transactions than existing the UP-
Growth, UP-Growth+ algorithms.

Figures 5 and 6, shows the comparison of computa-
tional time between proposed IAUP-Growth, IAUP-
Growth+ and existing UP-Growth, UP-Growth+ algo-
rithms for T10I4d100k dataset and mushroom dataset
respectively. The minimum utility (MinU %) represented
by X axis and memory usage is represented by Y axis
in terms of MB. From the figures, it is proved that the
proposed IAUP-Growth+ has less running time than the
other methods.

5 � Conclusion

IAUP-Growth and IAUP-Growth+ are proposed to improve
UP-Growth and UP-Growth+ algorithm in HUIM. In UP-
Tree, nodes are re-organized in depth first manner which
resolves the spatial problem. Moreover, the computational
part of UP-Growth and UP-Growth+ rearranged by using a
page blocking technique which resolves the temporal locality
problem by proposed algorithms. A memory management
strategy managed the memory of nodes of UP-Tree and by
using this strategy there is no need to retain additional space
for the node ID in each UP-node. The experiment is carried
out in T10I4d100k and mushroom datasets and proves the
effectiveness in terms of space requirement and execution
time.

References

Adnan M, Reda A (2011) A bounded and adapted memory-based
approach and adaptive memory-based approach to mine frequent
patterns from very large databases. IEEE Trans Syst Man Cybern
41(1):154–172

Anitha P, Kaarthick B (2019) Oppositional based Laplacian grey wolf
optimization algorithm with SVM for data mining in intrusion

Table 2   Comparison of running time (s) (MinU = 0.05%)

No. of
transac-
tions

T10I4d100k Mushroom

UP-Growth UP-Growth+ IAUP-Growth IAUP-Growth+ UP-Growth UP-Growth+ IAUP-Growth IAUP-Growth+

2000 1.7 1.5 1.2 0.8 1.5 1.3 1 0.7
4000 2.3 2.1 2 1.8 2.2 1.9 1.7 1.4
6000 2.9 2.7 2.4 2.1 2.7 2.5 2.3 2
8000 3.4 3.1 2.8 2.6 3.2 2.9 2.7 2.4

0

50

100

150

200

250

300

0 . 0 2 0 . 0 4 0 . 0 6 0 . 0 8 0 . 1

UP-Growth

UP-Growth*

IAUP-Growth

IAUP-Growth*

Running Time (Secs)

RU
N

N
IN

G
TI

M
E

(S
EC

S)

MinU(%)

Fig. 5   Evaluation of Running Time for T10I4d100k dataset

0

50

100

150

200

250

300

0 . 0 2 0 . 0 4 0 . 0 6 0 . 0 8 0 . 1

UP-Growth

UP-Growth*

IAUP-Growth

IAUP-Growth*

Running Time (Secs)

RU
N

N
IN

G
TI

M
E

(S
EC

S)

MinU(%)

Fig. 6   Evaluation of Running Time for mushroom dataset

	 D. Sathyavani, D. Sharmila

1 3

detection system. J Ambient Intell Humaniz Comput. https​://doi.
org/10.1007/s1265​2-019-01606​-6

Chu CJ, Tseng VS, Liang T (2008) An efficient algorithm for mining
temporal high utility itemsets from data streams. J Syst Softw
81(7):1105–1117

Gan W, Lin JCW, Fournier-Viger P, Chao HC, Hong TP, Fujita H
(2018) A survey of incremental high-utility itemset mining. Wiley
Interdiscip Rev Data Min Knowl Discov 8(2) http://fimi.ua.ac.be/
data/mushr​oom.dat

Joshi M, Patel M (2014) A survey on high utility itemset mining using
transaction databases. IJCSIT International Journal of Computer
Science and Information Technologies, ISSN, 0975-9646

Krishnamoorthy S (2018a) Efficiently mining high utility itemsets with
negative unit profits. Knowl Based Syst 145:1–14

Krishnamoorthy S (2018b) Efficient mining of high utility itemsets
with multiple minimum utility thresholds. Eng Appl Artif Intell
69:112–126

Lin CW, Hong TP, Lu WH (2011) An effective tree structure for mining
high utility itemsets. Expert Syst Appl 38(6):7419–7424

Lin CW, Lan GC, Hong TP (2012a) An incremental mining algorithm
for high utility itemsets. Expert Syst Appl 39(8):7173–7180

Lin MY, Tu TF, Hsueh SC (2012b) High utility pattern mining using
the maximal itemset property and lexicographic tree structures.
Inf Sci 215:1–14

Lin JCW, Gan W, Fournier-Viger P, Hong TP, Tseng VS (2016) Fast
algorithms for mining high-utility itemsets with various discount
strategies. Adv Eng Inform 30(2):109–126

Lin JCW, Zhang J, Fournier-Viger P, Hong TP, Zhang J (2017) A two-
phase approach to mine short-period high-utility itemsets in trans-
actional databases. Adv Eng Inform 33:29–43

Manike C, Hari O (2014) Sliding-window based method to discover
high utility patterns from data streams. Comput Intell Data Min
3:173–184

Memar M, Deypir M, Sadreddini MH, Fakhrahmad SM (2012) An
efficient frequent itemset mining method over high-speed data
streams. Comput J 55(11):1357–1366

Tseng VS, Shie BE, Wu CW, Philip SY (2013) Efficient algorithms for
mining high utility itemsets from transactional databases. IEEE
Trans Knowl Data Eng 25(8):1772–1786

Tseng VS, Wu CW, Fournier-Viger P, Philip SY (2016) Efficient algo-
rithms for mining top-k high utility itemsets. IEEE Trans Knowl
Data Eng 28(1):54–67

Wang L, Meng J, Xu P, Peng K (2018) Mining temporal association
rules with frequent itemsets tree. Appl Soft Comput 62:817–829

Zhang L, Fu G, Cheng F, Qiu J, Su Y (2018) A multi-objective evo-
lutionary approach for mining frequent and high utility itemsets.
Appl Soft Comput 62:974–986

Zida S, Fournier-Viger P, Lin JCW, Wu CW, Tseng VS (2015) EFIM:
a highly efficient algorithm for high-utility itemset mining. In:
Mexican International Conference on Artificial Intelligence.
Springer, Cham, pp 530–546

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/s12652-019-01606-6
https://doi.org/10.1007/s12652-019-01606-6
http://fimi.ua.ac.be/data/mushroom.dat
http://fimi.ua.ac.be/data/mushroom.dat

	An improved memory adaptive up-growth to mine high utility itemsets from large transaction databases
	Abstract
	1 Introduction
	2 Related works
	3 Proposed methodology
	3.1 Problem definition
	3.1.1 Poor spatial locality
	3.1.2 Poor temporal locality

	3.2 Resolving spatial and temporal locality issue
	3.2.1 Resolving spatial locality issues
	3.2.2 Resolving temporal locality issue

	3.3 Memory management strategy

	4 Result and discussion
	4.1 Memory usage
	4.2 Running time

	5 Conclusion
	References

