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Abstract 

Cancer is a very serious disease in which some cells in one part of the body start growing in a way 
that is not natural and form lumps. Predicting the condition, diagnosing it quickly and properly, and 
accurately predicting the prognosis are all necessary to lower the chance of mortality in this disease. 
Researchers from many different backgrounds have looked at how ML and Deep Learning techniques 
might be used in the fields of biology and bioinformatics to better categorize cancer patients into high- 
and low-risk groups. Algorithms from the fields of artificial intelligence (AI), machine learning (ML), 
and deep learning (DL) are already being put to good use in the healthcare system. AI is a simulation 
of human intellect that makes predictions using data, rules, and knowledge that has been put into it. 
In the realms of machine learning and artificial intelligence, deep learning (DL) has found widespread 
use in fields as diverse as healthcare and the development of new medicines. As a result of the 
widespread availability of powerful computers, DL has become the go-to method of data analysis. We 
investigate how AI aids in cancer diagnosis and prognosis, focusing on its remarkable accuracy, which 
is even greater than that of conventional statistical applications in oncology.AlexNet, GoogleNet, and, 
DenseNet, convolutional neural networks (CNNs are just some of the methods used in the advancement 
of forecasting models for predicting a cure for cancer. We show how these techniques contribute to 
the field's progress as well.The experiments are carried out on three different datasets,Cancer Genome 
Atlas Lung Adenocarcinoma (TCGA-LUAD), Digital Database for Screening Mammography's 
Curated Breast Imaging Subset(CBIS-DDSM), and Brain MRIs.  
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1. Introduction 

Numerous approaches exist for dealing with cancer now [13-15]. A lot of progress has been made in 
the efficacy of cancer treatment during the 2010s [11-15]. But due to diagnostic ambiguities, even with 
the plethora of new procedures, scientifically adequate therapeutic results for each afflicted individual 
are elusive. An accurate prognosis would allow for the implementation of treatment plans tailored to 
the individual patient. In fact, if doctors could better forecast how their patients would respond to 
various therapies, they might better plan for their patient’s care and ultimately alleviate the physical 
and psychological suffering that often accompanies diseases like this. In the United States, it is 
expected that there will be 1.7 million new cases of cancer in 2019, with 0.6 million deaths as a direct 
result of the disease [11]. Modern laparoscopic surgery, robotic surgery, tumor adjuvant treatment, and 
other emerging technologies are more important for enhancing survival time and decreasing the risk 
of local recurrence as cancer rates and deaths continue to climb dramatically [12]. Erroneous 
prognostic predictions continue to be a bottleneck for clinicians despite the fact that fundamental 
clinical findings can be blended with the application of the conventional Staging system approach 
(based on the size of the tumor (T), the dispersion of cancer into adjacent lymph nodes (N), and the 
expanded of cancer to other parts of the body (M, for metastasis) in empirical tests [16]. Clinical 
researchers still face a significant barrier in attempting to improve prognosis accuracy using cutting-
edge AI technologies. 

Current developments in elevated computing and ground-breaking deep-learning algorithms [8] are 
being used to integrate the massive amounts of data obtained from multi-omics investigations into the 
precision oncology landscape, which is being reshaped by AI. In particular, AI is finding more and 
more uses, with recent examples including novel methods for diagnostic imaging, screening, treatment, 
and classification; characterization of cancer genomics; evaluation of tumor cells; evaluation of 
biomarkers for prognostic and forecasting purposes; and evaluation of methods for follow-up and drug 
development [9-10]. 

DL algorithms show potential for enhancing the accuracy of cancer diagnostic picture interpretation. 
Diagnostic imaging techniques including MRI, CT, and x-ray images have been used to verify DL-
generated models, showing classification accuracy that often exceeds that of skilled doctors. [1-3] 
Nonetheless, DL models' universal applicability and robustness are crucial to their success. It has been 
demonstrated that DL algorithms' output varies depending on subtle shifts in the input data. Observing 
such variation in reaction to very slight modifications may indicate an unstable algorithm, which may 
in turn cause misclassification and transferability issues. However, DL models' vulnerability to 
adversarial assaults is a serious drawback. Adversarial pictures are photos that have had subtle changes 
made to them at the pixel level in order to trick deep learning algorithms. [4] Adversarial pictures' 
pixel-level variations, which are frequently undetectable to humans but can have significant effects on 
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the model's prediction accuracy. [5] Concerns regarding the generalization of Learning algorithms and 
the reliability of their useful purposes in medicine are raised by their poor performance against 
adversarial pictures. As deep learning (DL) methods for diagnostic picture analysis grow more 
commonplace in healthcare settings, adversarial images pose a future security risk. [6-7] Instability in 
DL models that try to approximate the classification precision of radiologists is further supported by 
their sensitivity to adversarial assaults.  

In this article, we propose a categorization method that is both accurate and automated, and it was 
developed for the three different forms of malignant tumors. The implementation uses a deep transfer 
learned CNN model for feature extraction from images. The retrieved characteristics are then 
categorized with the assistance of tried and tested classifiers. After then, an exhaustive analysis of the 
system that has been proposed is carried out. When assessed using the open dataset, the suggested 
system had the best classification performance of all the comparable efforts. This was the case when 
compared to other systems. In addition, it has been discovered that the suggested algorithm may 
provide satisfactory outcomes with a much-reduced amount of training examples. 

The remaining portion of this article will be structured in the following manner. The following is 
presented after Section 2's introduction to the concepts of transfer learning and benchmark models and 
Section 3's description of the detailed architecture of the proposed classification algorithm. Section 4 
describes the experiments conducted and the dataset used in this study. The findings of the evaluation 
are presented in section 5, along with a commentary of the outcomes. This study comes to a close with 
the discussion included in Section 6. 

2. Related Works 

Artificial intelligence's usage of deep learning (DL), which uses complicated computer models to 
represent abstractions gleaned from data, has skyrocketed in recent years, finding widespread use in 
fields as diverse as speech processing and visual processing. These techniques are effective because 
they use a backpropagation algorithm to find subtle patterns in massive, frequently complicated 
datasets. Conventional approaches, including machine learning-based methods, have difficulties 
handling natural data in its raw form without preprocessing [17], but DL overcomes these difficulties. 
In the realm of deep learning (DL), Convolutional Neural Networks (CNNs) have the ability to learn 
invariant features. A convolutional neural network (CNN) is a collection of layers, including a filter 
bank, feature pooling layer, batch normalization layer, dropout layer, and dense layer, that collaborate 
to generate patterns for various object identification tasks, such as detection, segmentation, and 
classification. With CNNs, training involves redistributing inputs over several layers of the hierarchy. 
Pre-processed inputs, including those produced by whitening, etc., are extremely desirable to gain 
higher performances across jobs [18]. Other CNN versions, like the DenseNet architecture, have 
shorter connections that can help with feature circulation and allow for a lower number of 
hyperparameters to be used in the design of more effective designs [19]. Focused and non-focused 



Frontiers in Health Informatics 
ISSN-Online: 2676-7104 

2024; Vol 13: Issue 3 

 www.healthinformaticsjournal.com 

Open Access 

 

 

 
 
 
  
 

10933 

 

 

EEG signals have been studied and recognized using feature selection and neural network techniques 
in the adjustable Q-factor wavelet transform domain [20]. In a recent paper [21], researchers explored 
the use of low-density parity-check (LDPC) codes in IoT networks by employing a unique approach 
to retrieve the first two minima of the check-node update operation of the min-sum-LDPC decoder. 

Artificial intelligence (AI), machine learning (ML), and deep learning (DL) strengthen the practice of 
predicting the likelihood of developing cancer. All of these algorithms employ information gathered 
from a patient's medical record, including their medical history, tests, scans, and other diagnostic 
procedures [31]. There is a wide range of obstacles in the path. In the field of medicine, for instance, 
the use of AI has traditionally been limited to a select few groups, with minorities and new types of 
patients often being excluded [31]. Correctly diagnosing various malignancies and distinguishing 
tumors from benign growth or any other condition can be challenging and need a great deal of accuracy 
and years of expertise. Knowing the prognosis is important since it forms the foundation of the 
treatment strategy. Scientists are working on image-based risk models, but they need to be confirmed 
by widespread scientific demonstration in several hospitals and computational progress [31]. The 
likelihood of a negative consequence occurring in the future can be assigned to a person using a factor 
model [32]. 

 In addition, future resilient networks, including several 6G scenario examples, have been reviewed 
and addressed in [22]. ResNets, Xception, and Google Net are some more prominent CNN designs of 
recent years. Degradation in performance across jobs as the network gets deeper, the requirement for 
multiscale processing, and the hunt for better designs with fewer parameters [23–26] all point to the 
necessity of such networks. Storage capacity for long periods of time is another important concern in 
DL. Long-term, short-term memory is one potential approach (LSTM). The LSTM architecture 
achieves its results by the enforcement of a non-global error flow in space and time via the states of 
specialized units [27].  

In DL, the concept of transfer learning is also important to discuss. Features from deep CNNs are 
mined for transfer learning, which then applies to fresh problems. This is necessary because there may 
not be enough labeled data or other data to train or adapt a DL architecture to new tasks, especially 
when generic tasks differ significantly from the original tasks. Simple strategies may be used reliably 
through transfer learning to modify characteristics so that they convey adequate generalization [28–
30]. Optimizing DL model architecture design parameters is a challenge worth tackling. The use of 
reinforcement learning strategies can be helpful in this endeavor. The NASNetarchitecture  is 
illustrative; it employs many distinct network topologies to discover recurrent motifs that may be 
chained together to process inputs with variable spatial dimensions and depth[33][34]. 

3.Materials and Methods 

 Using enriched cancer datasets, we investigate and assess several of the most well-known CNN 
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designs, including AlexNet, GoogLeNet, and Densenet. Transfer learning strategies are implemented 
with these pre-trained CNN architectures in order to get the visually discriminative and rich features. 
At this point, the visual patterns are given a classification using a log-based softmax layer. The 
following subsections will go through the most important aspects of the proposed framework. After 
that, we go on to a discussion of the measurement matrices in order to evaluate the performance of our 
suggested systems. 

3.1 CNN Model 

Computational models known as convolutional neural networks (CNNs) are constructed of numerous 
processing layers to recover features from raw data using multilayer interpretations and progressive 
abstraction [19]. Convolutional layers, full-connection layers, pooling layers, and input and output 
layers, make up the overall structure of CNN models, as depicted on the right side of Figure 1. CNN 
uses 4 convolutional layers, 2 full-connection layers,2 pooling layers, and 6 softmax, tanh, and 
ReLulayers, as shown in Figure 2. Several methods can be incorporated, including nonlinear filtering, 
data augmentation, local response normalization, hyper-parameter optimization, and multiscale 
representation, to improve object classification even further. Nowadays, VGG, LeNet, Resnet101, U - 
net, Imagenet, YOLO, R-CNN, and Long short-term memory, GoogleNet are among the most popular 
deep learning models. 

The Convolution Neural Network, often known as CNN, is a type of neural network that is typically 
used to analyze, identify, or categorize pictures since it helps to simplify the images for more effective 
analysis. The fact that this network requires fewer human efforts and less pre-processing makes it an 
attractive option. Backpropagation is a component of the learning process that contributes to the 
development of a more accurate network. It is conceptually somewhat similar to the MLP in that it has 
an input layer of neurons, many hidden layers, and an output layer. Moreover, it also has numerous 
hidden layers. Every neuron in one layer is coupled to each and every neuron in the layer that follows 
it. The image that has to be categorized or analyzed is taken through a number of different layers. After 
executing convolution on the picture, the convolution layer is then utilized to apply a filter to it in order 
to accentuate the features. After that, pooling layer-down samples of the sample of features extracted 
will (lower the sample size of) the sample.  
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Figure 1. The Model structure of CNN -1 

As a result, the procedure will go more quickly when the parameters are decreased. This is due to its 
capacity to detect breast cancer earlier. So, contributes to the process of early breast cancer identification, 
which enables the disease to be treated at an earlier, less advanced stage, before it has a chance to spread 
further. 

 

Figure 2. The Model architecture of CNN -2 

The following mathematical description provides an overview of the process of employing a trained 
CNN-based model for lesion malignancy prediction. The output of a convolutional neural network 
(CNN) model, given a suspicious area (𝑆௫), may be written as where 𝐻 is the number of hidden 
layers and 𝑎 is the activation function in the 𝑗th layer. 

𝑂 = 𝑓(𝑆௫) = 𝑓ு(𝑓ுିଵ(. . . . . . . 𝑓(𝑆௫)))                                                                                             (1) 

While evaluating the performance of the network, we utilized a method known as k-fold cross-
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validation. Both of the methods that were used, which were both different from one another, comprised 
of a 10-fold cross-validation. The first method, known as record-wise cross-validation, consisted of 
arbitrarily dividing the data into ten groups that were roughly equivalent to one another. This was done 
to ensure that each type of tumor was represented in the same proportion across all of the groups. The 
second method included randomly dividing the data into ten sets, each of which had nearly the same 
amount of information, but the information pertaining to a certain issue could only be discovered in 
one of the sets. This method, known as subject-wise cross-validation, ensures that each data set has 
information from at least two individuals, irrespective of the kind of tumour being studied. The second 
strategy was put into action in order to evaluate the generalisation potential of the network in the 
context of medical diagnostics.  

3.2 Transfer Learning 

As shown in Fig. 2, AlexNet and GoogleNet is used to investigate transfer learning strategies. In the 
case of a fine-tune approach to the pretrainedAlexNet, we have tested several settings to provide the 
best possible results in terms of network performance and accuracy. Following the guidelines in Table 
1, we have trained the network using the sgdm, adam, and rms prop basic solvers with varying batch 
sizes and verification frequencies.  

 

 

 

 

 

 

 

 

Fig.2. Parallel Transfer Learning Model for deep feature extraction  

Using SGDM, adam SGDM with a batch size of 20, validating frequency of 200, and the best network, 
you can get an accuracy of 97.39 percent. Both convolutional and fully connected layers are explored 
for feature extraction in the event of a frozen approach to the pre-trainedAlexNet. We have taken the 
generic representation of the pictures in the source dataset and retrieved features from the 
convolutional layers. In order to get a more complete and accurate representation of the pictures in the 
source dataset, we additionally collected features from fully connected layers. According to the reports, 
AlexNet's Conv5 produces the most accurate findings at 99.8 percent. 
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Table 1. Hyperparameter tuning 

Hyper-Parameter CNN Alexnet GoogleNet 

Optimizer Adam Adam, rms prop nAdam 

Batch size 64 20 128 

Validation Frequency 300 200 300 

Epochs 200 100 100 

Learning Rate 0.0001 0.00001 0.0001 

Activation ReLu,softmax ReLu,Softmax Tanh, Softmax 

Figure 2 depicts the architecture of GoogleNet, a convolutional neural network. This network's model 
was supposedly created to take into consideration high image features utilizinga million photos of 
commonplace objects included in the massive dataset known as ImageNet. It can recognize patterns in 
around a thousand photos. It makes use of only a twelfth as many parameters as Alexnet. This model 
takes in pictures as input and output labels of one of its learned classes together with the level of 
confidence, just like other neural networks used in computer vision applications. GoogleNet has 22 
layers, with 9 of them being inception units. A modified Inception module that employs learnable 
filters ranging in size from (1𝑥1) to (5𝑥5) to conduct convolution in parallel, therefore facilitating the 
collection of features at varying degrees of detail [35]. 

4. Experimental setup 

4.1 Dataset 

The Cancer Genome Atlas Lung Adenocarcinoma (TCGA-LUAD) [33] data gathering is part of a 
wider initiative to develop a research community focused on linking cancer phenotypes to genomes by 
offering health pictures matched to participants from the Atlas. The Genomic Data Commons (GDC) 
Data Portal holds clinical, genomic, and pathological data, while The Cancer Imaging Archive holds 
radiological data.Researchers may search the TCGA/TCIA datasets for tissue genotyping, radiological 
phenotype, and clinical outcomes using matched patient IDs. To meet accrual objectives of 500 
specimens per cancer type, TCGA gathered tissues from various sites worldwide. This makes image 
data sets quite varied in scanner modalities, vendors, and acquisition techniques. Most of the photos 
were taken during ordinary treatment, not clinical trials. The information is a small sample of cancer 
imaging data as shown in figure 2. These are the middle section of all CT scans with properly tagged 
age, modality, and contrast. The final tally is 475 series representing 69 unique patients. 



Frontiers in Health Informatics 
ISSN-Online: 2676-7104 

2024; Vol 13: Issue 3 

 www.healthinformaticsjournal.com 

Open Access 

 

 

 
 
 
  
 

10938 

 

 

 

Fig.2. Sample CT images from the TCGA/TCIA dataset. 

 From the Digital Database for Screening Mammography's Curated Breast Imaging Subset(CBIS-
DDSM), a total of 1,696 lesions were imaged.So far, [34] the CBIS DDSM has accumulated 1,566 
mammograms from four different locations in the United States. Clinical information was utilized to 
generate areas of interest that were then used to obtain mammographic lesions for DL model training. 
Verified pathologic reports were used to establish the existence of malignancy.  

 

Fig.3.Mammography images from CBIS-DDSM 

Brain MRIs were collected from 831 individuals who were enrolled in a brain metastases registry at a 
single institution. [35] Almost 4,000 MRI-detected brain lesions were evaluated for malignancy. 
Radiologists, neurosurgeons, and radiation oncologists all worked together to pinpoint the areas of 
interest. Pathological evidence or a general medical opinion established the diagnosis of cancer. 

4.2 Data augmentation 

When there isn't enough data for training, data augmentation can help. By operations like lightening, 
scaling, and flipping the original data, new pictures may be created while maintaining the same label; 
this is known as data augmentation. When given more data, deep learning models tend to perform 
better. Oversampling the underrepresented group in the training set is one way that data augmentation 
can address the issue of class imbalance and produce more representative results. 

To improve contrast and eliminate noise in MRI scans, CT and Mammographyare the major goal of 
medical image analysis. The various techniques of acquisition used for MRI, CT, and mammography 
might produce artifacts and incorrect intensity of exercise. Because of this, a variety of machine 
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learning and image processing methods were used to improve the contrast of MRI scans. The high-
resolution contrast pictures were created with the help of the contrast stretching algorithm of pre-
processing. Low-contrast pictures can benefit from contrast stretching since it expands the range of 
grayscale values seen in such images. Using this relationship, we can improve the contrast of scans. 

𝑓(𝑎, 𝑏) =
𝑓(𝑎, 𝑏) − 𝑓

𝑓௫ − 𝑓
× 2                                                                                                              (2) 

4.3 Performance Evaluation 

In order to evaluate the efficacy of our network in relation to that of other cutting-edge methodologies, 
we also conducted tests on our network in the absence of k-fold cross-validation (one test). In each of 
the aforementioned strategies, the testing phase utilised two data subsets, the validation phase utilised 
two data subsets, and the training phase utilised six data subsets. Each approach was applied to both 
the original and the modified datasets to see how they performed. 

5. Result and Discussion 

One of the most used metrics for evaluating classification models is accuracy. It's a representation of 
the proportion of accurate forecasts to total predictions. Obtaining high accuracy that is skewed 
towards the class with the largest instance count is possible for an unbalanced dataset. To maximise 
accuracy, the classifier may potentially classify every test case as belonging to the big class, with the 
result that the classifier's performance would be proportional to the proportion of the more common 
labels in the test set. Because of this, precision is not always the best indicator of performance. The 
following Equation, where l denotes the number of classes, shows that the balanced accuracy, which 
may be defined as the average accuracy attained on either class, is a superior generalizability metric. 
We obtained 98%,97% and 100% accuracy for lung cancer, Breast cancer and Brain tumour. 

In order to determine whether or not the proposed tumour and detection system is successful, 
evaluation metrics are determined based on the four major results that are utilized to test the 
classification algorithm: true positives (𝑡𝑟), false positives (𝑓𝑎), true negatives (𝑡𝑟), and false 

negatives (𝑓𝑎). The following metrics are used to determine the system's effectiveness. 

Correctly differentiating between different forms of brain tumours depends on how accurate the 
diagnosis is. We may measure a test's precision by computing the ratio of true positives to false 
negatives across all instances using the following relations: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝐴𝑐) =
𝑡𝑟 + 𝑓𝑎

𝑡𝑟 + 𝑓𝑎 + 𝑓𝑎 + 𝑡𝑟
                                                                               (2) 

The percentage of correct diagnoses is used to determine the system's level of sensitivity for detecting 
brain cancers. 



Frontiers in Health Informatics 
ISSN-Online: 2676-7104 

2024; Vol 13: Issue 3 

 www.healthinformaticsjournal.com 

Open Access 

 

 

 
 
 
  
 

10940 

 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(𝑆𝑒) =
𝑡𝑟

𝑡𝑟 + 𝑓𝑎
                                                                                                          (3) 

The figure 3 depicts the accuracy of the transfer learning model on the three dataset. 

 

  (a) Lung Cancer    (b) Breast Cancer 

 

(c) Brain Cancer 

Fig.3. Accuracy of the Parallel Transfer Learning Model 

The figure 4 shows the loss value obtained from the transfer learning model. Compared to the 
baseline model, the minimum loss value is obtained.  

The model's specificity, or its ability to correctly identify the true brain tumour kind, is measured as 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦(𝑆𝑝) =
𝑡𝑟

𝑡𝑟 + 𝑓𝑎
                                                                                                        (4)   
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The genuine positive measure is precision, which may be calculated with the following relation: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑃𝑟) =
𝑡𝑟

𝑡𝑟 + 𝑓𝑎
                                                                                                        (5)   

 

  (a) Lung Cancer    (b) Breast Cancer 

 

(c) Brain Cancer 

Fig.4. Loss of the Parallel Transfer Learning Model 

The accuracy plot shows that after around 100 iterations, the algorithm begins to stabilise within half 
a standard deviation of the final result. It's also been noted that the algorithm's training process is prone 
to volatility. Non-uniform imaging circumstances are to blame for these variations in the results. Also, 
the data augmentation added an extra layer of difficulty to this task. Yet, when a deep learning model 
is applied to real-world issues with imperfect data, it is presumed that these conditions are the norm.In 
addition, the findings demonstrate that the trained model attained a sensitivity of 99.08% and a 



Frontiers in Health Informatics 
ISSN-Online: 2676-7104 

2024; Vol 13: Issue 3 

 www.healthinformaticsjournal.com 

Open Access 

 

 

 
 
 
  
 

10942 

 

 

specificity of 99.7%. Because the major goal of classification models is to increase the sensitivity, 
which manifests the success or hit rate, while maintaining the specificity, which represents the real 
negative rate , it is imperative that these models be able to achieve this goal. The values obtained by 
these metrics reflect the legitimacy of the proposed structure (ROI retrieval preceded by deep learning) 
in classifying data of similar modalities, and this is especially true when compared to the same 
algorithm that was applied without any pre-processing that was also implemented by the writers, which 
scores somewhere around 100% accurateness.These measures were presented here. Figure 5 provides 
a presentation of the confusion matrix for the results that have been described. 

 

  (a) Lung Cancer    (b) Breast Cancer 

 

(c) Brain Cancer 

Figure 5. confusion matrix for all three datasets 
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We show that ROC curves in their conventional form, which do not include threshold values, have an 
unpredictable shape even when accounting for the same area under the curve (AUC). This makes it 
difficult to compare the performance of different models depending on the threshold. By comparing 
ROC curves with categorization plots, which provide sensitivity and specificity based on risk 
thresholds, we find that ROC curves provide a more accurate picture. The figure 6 shows the ROC 
curves of the cancer predictions aimed in this paper. 

 

 

(a) Lung Cancer    (b) Breast Cancer

 

(c) Brain Cancer 

Figure 5. ROC of all three datasets 

The results of the classification accuracy tests conducted on the fine-tuned transfer learning approach 
and the CNN model are presented in Table 2. When compared to other models, it is clear that the 
GoogleNet + AlexNet model that was fine-tuned to reach optimal performance got superior results. 
The vast majority of the accuracy scores that were achieved are at or above 90%. In the breast cancer 
dataset, we achieved the maximum accuracy score possible, which was 100%. In addition to that, a 
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score of one hundred percent accuracy was achieved in the lung cancer dataset. DenseNet and 
GoogleNet produced the most appropriate results, with accuracy rates of 99% and 98%, respectively. 

Table 2. Performance Evaluation of the model we used in this study 

Model 

Lung Cancer Breast Cancer Brain Cancer 
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CNN 98% 97% 98% 97% 98% 99% 99% 97% 96% 97% 97% 98% 

AlexNet 99% 98% 98% 99% 99% 98% 98% 97% 97% 96% 98% 99% 

GoogleNet 96% 97% 96% 96% 96% 97% 97% 96% 96% 97% 96% 97% 

DenseNet 98% 98% 97% 97% 97% 96% 95% 95% 95% 96% 96% 95% 

GoogleNet 
+ AlexNet 

100% 100% 99% 99% 100% 100% 100% 100% 98% 99% 98% 98% 

 

According to the findings, the accuracy rates of the Alexnet and GoogleNet designs were found to be 
99% and 97%, respectively. The results demonstrated that the Alexnet architecture was superior than 
the GoogleNet architecture. In addition, the amount of time needed to train the AlexNet is far less than 
that required for the GoogleNet. Consequently, in comparison to GoogleNet, the brain tumour type 
categorization according to AlexNet is regarded as being of higher quality. 
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Figure 6. Comparative analysis of the model's performance that is proposed in this article 

It can be seen from figure 6 that the combination of GoogleNet and AlexNet results in the best similar 
accuracy to the other baseline models.  

6.Conclusion 

In a nutshell, the work that was presented is a ground-breaking study in the field of brain tumour 
classification that makes use of transfer learning and deep CNN architectures. We used transfer 
learning algorithms on natural photos from the dataset, and we identified tumours from the dataset to 
determine the type of brain tumour each patient had. In order to determine the nature of the tumour, 
we used three sophisticated deep CNN architectures (AlexNet, GoogLeNet, and DenseNet) to analyse 
medical images. Two studies of transfer learning, known as fine-tune and freeze, are being carried out 
to extract the visually distinguishable characteristics and patterns present in MRI slices in order to 
evaluate and investigate the performance of deep neural networks. By utilising the fine-tune 
GoogleNet network, we were able to achieve the maximum accuracy of 100% across all of our trials. 

In spite of the fact that this work analysed three architectures of deep CNN and transfer learning 
techniques for brain tumour, breast cancer and lung cancer in the medical imaging arena, there is still 
a great deal that has to be researched. In the near future, we will investigate various vital and strong 
deep neural network topologies for the categorization of brain tumours that need less time complexity. 
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