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Abstract:  

The Riemann problem represents an essential problem in fluid dynamics which enables 

researchers to model shock waves together with both rarefactions and contact 

discontinuities. The research investigates analytical and numerical methodologies to 

solve fluid-dynamic Riemann problems and details their functional aspects as well as 

restrictions. Analytical solutions from the method of characteristics along with exact 

Riemann solvers form the basis for the research while numerical solutions come from 

finite volume schemes and Roe's and HLLC Riemann solvers. Numerical methods show 

both high precision and efficiency in their ability to generate accurate simulations of 

shock waves and rarefaction structures according to computational results. 
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I. INTRODUCTION 

Fluid dynamics experts recognize the Riemann problem as the fundamental initial value problem 

because it displays shock waves and rarefaction waves and contact discontinuities. Bernhard Riemann 

established this problem during the nineteenth century to serve as both computational fluid dynamics 

(CFD) and numerical methods for hyperbolic conservation laws' standard benchmark evaluation. The 

problem provides a straightforward yet effective mechanism for interpreting non-linear interactions 

between waves that occur inside compressible fluid systems [1]. 

The Riemann problem becomes crucial because it generates predictable wave forms from 

discontinuous fluid conditions which the Euler equations govern. Inviscid fluids obey the Euler 

equations which show mass and momentum and energy conservation in a hyperbolic partial differential 

system. When the problem exists solely in one dimension it shows two constant states and a 
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discontinuity point that produces either shock waves or rarefaction waves and contact discontinuities 

upon evolution. 

Research groups can understand wave propagation through analytical solutions of the Riemann 

problem only when they can derive exact results through characteristic methods. Solving the governing 

equations through method of characteristics decomposes the equations into separate regions that 

maintain constant solution values. The mathematical solution of this problem leads to either a shock 

wave or a rarefaction wave or a contact discontinuity depending on the specified conditions during 

initialization [3-6].  

Numerical methods have been established to efficiently compute approximate Riemann problem 

solutions because of their ability to address the original analysis limitations. Godunov set the 

foundation for the first numerical method through his approach that involved solving Riemann 

problems at individual cell interfaces throughout the discrete domain [12]. Numerical techniques based 

on Riemann solvers have allowed researchers to create different approximate solvers for Riemann 

problems resulting in Roe’s solver and the Harten-Lax-van Leer-Contact (HLLC) solver and the 

Weighted Essentially Non-Oscillatory (WENO) and Discontinuous Galerkin (DG) methods. 

Every numerical method provides particular benefits together with specific constraints. Roe's solver 

performs accurately in wave structure prediction however it experiences numerical problems close to 

shock points. The HLLC solver demonstrates better robustness and accuracy when dealing with contact 

discontinues due to its advanced resolution capabilities. Enhanced solution accuracy results from using 

WENO high-order schemes although the complexity of computations increases substantially. The 

decision regarding the appropriate solver depends on what fluid dynamics issues need to be solved in 

a particular situation [10]. 

Riemann solvers maintain a key position in computational fluid dynamics applications so researchers 

have studied various enhancements to their efficiency together with accuracy and stability 

characteristics. Modern solvers power the operation of large-scale simulations which perform 

simulations for aerospace applications and astrophysical and industrial fluid flow issues. The paper 

delves into detailed information about analytical and numerical methods to solve Riemann problems 

by examining their fundamental theories and implementation features and performance comparisons. 

Novelty and Contribution  

The research approaches the Riemann Fluid Dynamics problem through a combination of modern 

numerical methods with analytical perspective solutions [11]. Previous research mainly dealt with 

either deriving exact solutions or developing numerical approximations but this paper attempts to unify 

these independent methods. This research delivers three main contributions which follow: 

A. Comprehensive Comparative Analysis 

• This paper provides an extensive comparison between analytical and numerical solutions 

compared to the traditional approach when researchers analyze either methodology independently. The 

study explains both methods strengths and disadvantages. 
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• This work offers theoretical derivations for the method of characteristics as well as exact 

Riemann solvers and features implementation of modern numerical solvers including Roe, HLLC, and 

WENO. 

B. Implementation and Performance Evaluation of Modern Numerical Solvers 

• The study validates diverse numerical Riemann solvers based on their accuracy levels together 

with their computational efficiency and robustness properties. 

• The studied solvers demonstrate their suitability for particular fluid flow conditions by testing 

them against standard benchmark tests. 

C. Addressing Challenges in Numerical Simulations 

• The research focuses on essential problems affecting high-fidelity CFD simulations consisting 

of numerical dissipation, non-physical oscillations and computational efficiency difficulties. 

• The paper includes a review discussing ways to enhance hybrid models which merge analytical 

and numerical methods to optimize their operational effectiveness. 

D. Potential Applications and Future Directions 

• This research paper provides solutions that benefit aerospace engineering operations as well as 

astrophysical simulation methods and industrial Computational Fluid Dynamics systems. 

The conducted research adds to existing knowledge by performing a thorough examination of Riemann 

problem solution methods which include analytical and numerical techniques. This study provides 

valuable direction to researchers and engineers for choosing efficient methods to solve practical fluid 

dynamics applications. 

II. RELATED WORKS 

Scientists have thoroughly researched the Riemann problem in fluid dynamics because it represents an 

essential mathematical model for describing compressible flow wave dynamics. Scientists initially 

concentrated on using method of characteristics to develop exact solutions to acquire foundational 

knowledge about shock waves together with rarefaction waves and contact discontinuities. The 

framework of characteristic waves serves as the foundation for solving basic one-dimensional solutions 

of simple problems. The rise of complicated fluid flow problems surpassed the analytical methods 

because they failed to manage multidimensional effects as well as viscous interactions and turbulence. 

In 2005 E. F. Toro et.al. and V. A. Titarev et.al., [2] Introduce the numerical approaches were 

developed as a solution to overcome such restrictions which resulted in the establishment of different 

finite volume methods and approximate Riemann solvers. Numerical methods achieved their first 

major advancement by introducing a Godunov-type scheme that solves Riemann problems at cell 

interfaces to calculate approximate solutions.  

Numerical solver developers made multiple enhancements throughout years which improved both 

precision and conservation of solutions while decreasing computational time demands. Riemann 

solving techniques were created to replace pricey exact solvers yet delivered both speed and precision 

for their computations. The use of Roe’s solver spread widely because it generated efficient linearized 
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wave structure approximations. Roe's method produces non-physical oscillations in the vicinity of 

intense shock zones which necessitates entropy fixes for achieving better robustness. 

In 2021 D. Baigereyev et.al., N. Alimbekova et.al., A. Berdyshev et.al., and M. Madiyarov et.al. [14] 

introduce the extension of Harten-Lax-van Leer solvers managed to overcome a number of limitations 

that existed within Roe's method. The HLLC solver maintains computational efficiency for solving 

contact discontinuities and provides better accuracy in resolving anomalies than other approaches. The 

solver finds extensive use in CFD applications because aerospace and astrophysical simulations require 

high precision shock structure capture. 

Numerical methods of higher-order have emerged at the same time to reduce dissipation levels while 

delivering advanced discontinuity resolution capabilities. Weighted Essentially Non-Oscillatory 

(WENO) schemes together with Discontinuous Galerkin (DG) methods stand as the top methods for 

solving hyperbolic conservation laws because of their elite performance outcomes. Such approaches 

present practical problems with respect to computational complexity when applied to extensive 

simulations. 

Technological research of the Riemann problem in fluid dynamics remains comprehensive because it 

offers vital mathematical descriptions for compressible flow wave dynamics. Scientists employed the 

method of characteristics to generate exact solutions for obtaining basic shock wave comprehension 

as well as rarefaction wave knowledge and contact discontinuity information. Basic one-dimensional 

solutions of simple problems find their foundation within the characteristic wave framework. The 

analytical methods fell short of solving complex fluid flow problems since they lacked capability to 

control multidimensional effects alongside viscous interactions and turbulence. 

Product development through numerical methods solved these limitations and led to the creation of 

different finite volume methods and approximate Riemann solvers. The first major advancement in 

numerical methods brought forward Godunov-type schemes that resolve cell interface Riemann 

problems to obtain approximate solutions. The origins of contemporary CFD solver technology 

developed from this methodology providing the capability to simulate fast aerodynamic flows together 

with astrophysical systems as well as industrial fluid operations. 

Numerical solver developers made years of continuous work to enhance both solution precision and 

accuracy and reduce computational time requirements. Riemann-based methods emerged as less 

expensive solutions to replace traditional exact methods while performing accurate and speedy 

calculations on each step of computation. Roe’s solver became massively popular because it created 

efficient wave structure linearizations. The non-physical oscillations created by Roe's method near 

shock areas demand entropy treatments to reach robust solutions. 

In 2023 N. Kamran et.al., M. Asif et.al., K. Shah et.al., B. Abdalla et.al., and T. Abdeljawad et.al. [13] 

Introduce the extended version of Harten-Lax-van Leer solvers solved multiple problems that Roe's 

method previously contained. By employing HLLC solver calculations remain efficient for dealing 

with contact discontinuities and achieve superior anomaly detection precision in comparison to 

alternative methods. The solver addresses CFD applications specifically due to aerospace and 

astrophysical simulation requirements which demand highly precise shock structure detection. 



Communications on Applied Nonlinear Analysis 

ISSN: 1074-133X 

Vol 32 No. 10s (2025) 

  

883 
https://internationalpubls.com 

Different higher-order calculation methods emerged at the same time to reduce numerical losses while 

improving discontinuity resolution capabilities. WENO schemes together with DG methods represent 

the current best practices for accurate solutions of hyperbolic conservation laws since their 

performance quality outstrips other alternatives. Modern reconstruction techniques assist these 

methods to keep accuracy by minimizing numerical artifacts. Extended simulations face practical 

issues regarding computational complexity because of these applied methods. 

III. PROPOSED METHODOLOGY 

The methodology for solving the Riemann problem in fluid dynamics involves two primary 

approaches: an analytical approach based on exact solutions using the method of characteristics and a 

numerical approach employing finite volume methods and approximate Riemann solvers. This section 

details the governing equations, solution techniques, numerical discretization, and computational 

implementation [7]. 

A. Governing Equations of Fluid Dynamics 

An inviscid compressible flow consisting of the conservation laws requires the Euler equations to 

govern the Riemann problem. The one-dimensional Euler equations in conservative form present the 

mathematical system below: 

𝜕𝐔

𝜕𝑡
+
𝜕𝐅(U)

𝜕𝑥
= 0 

where 

𝐔 = [
𝜌
𝜌𝑢
𝐸
] , 𝐅(𝐔) = [

𝜌𝑢

𝜌𝑢2 + 𝑝
(𝐸 + 𝑝)𝑢

] 

Here, 𝜌 is the fluid density, 𝑢 is the velocity, 𝑝 is the pressure, and 𝐸 is the total energy per unit volume, 

defined as: 

𝐸 =
𝑝

𝛾 − 1
+
1

2
𝜌𝑢2 

where 𝛾 is the heat capacity ratio (typically 𝛾 = 1.4 for air). 

B. Analytical Approach: Exact Riemann Solver 

The exact solution of the Riemann problem involves solving the non-linear system formed by the 

Rankine-Hugoniot jump conditions and the rarefaction wave solution. The wave structures are 

determined by: 

• Shock Waves: Satisfy the Rankine-Hugoniot conditions: 

𝑠 =
𝜌𝑅𝑢𝑅 − 𝜌𝐿𝑢𝐿
𝜌𝑅 − 𝜌𝐿

 

where 𝑠 is the shock speed, and subscripts 𝐿 and 𝑅 denote left and right states. 

• Rarefaction Waves: Satisfy the self-similar solution using the method of characteristics: 
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𝑑𝑥

𝑑𝑡
= 𝑢 ±

𝑎

𝛾
 

where 𝑎 = √𝛾𝑝/𝜌 is the speed of sound. 

The solution is computed iteratively using Newton-Raphson methods to determine intermediate states. 

C. Numerical Approach: Finite Volume Discretization 

For practical fluid dynamics problems, numerical methods are employed. The finite volume method 

(FVM) is used to discretize the Euler equations over control volumes. Applying FVM to the governing 

equation, we obtain: 

𝜕

𝜕𝑡
∫  
𝑉𝑖

𝐔𝑑𝑉 +∫  
𝜕𝑉

𝐅(𝐔) ⋅ 𝐧𝑑𝐴 = 0 

Using numerical integration over each control volume, the semi-discrete form is written as: 

𝑑𝐔𝑖

𝑑𝑡
= −

1

Δ𝑥
(𝐅𝑖+1/2 − 𝐅𝑖−1/2) 

where 𝐅𝑖+1/2 represents the numerical flux computed using Riemann solvers. 

D. Approximate Riemann Solvers 

To efficiently compute the fluxes, approximate solvers such as Roe's solver and the HLLC solver are 

used. 

• Roe's Solver: Linearizes the Euler equations by approximating the Jacobian matrix: 

𝐀 =
𝜕𝐅

𝜕𝐔
 

The eigenvalues of 𝐀 determine wave speeds, and the flux is computed as: 

𝐅𝑖+1/2 =
1

2
[𝐅(𝐔𝐋) + 𝐅(𝐔𝐑)] −

1

2
∑  

𝑘

|𝜆𝑘|𝐫𝐤Δ𝐔 

• HLLC Solver: Improves upon the HLL method by resolving contact waves. It computes 

fluxes as: 

𝐅𝐻𝐿𝐿𝐶 = {
𝐅𝐿 ,  if 𝑠𝐿 > 0
𝐅∗,  if 𝑠𝐿 ≤ 0 ≤ 𝑠𝑅
𝐅𝑅 ,  if 𝑠𝑅 < 0

 

where 𝑠𝐿 and 𝑠𝑅 are the wave speeds. 

E. Computational Implementation 

The numerical scheme follows these steps: 

1. Initialization: Define initial left and right states (𝜌𝐿, 𝑢𝐿, 𝑝𝐿) and (𝜌𝑅 , 𝑢𝑅 , 𝑝𝑅). 

2. Flux Computation: Compute numerical fluxes using Roe or HLLC solvers. 
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3. Time Integration: Advance the solution using explicit time-stepping methods such as the 

RungeKutta method: 

𝐔𝑛+1 = 𝐔𝑛 + Δ𝑡 ⋅
𝑑𝐔

𝑑𝑡
 

4. Boundary Conditions: Apply transmissive or reflective boundary conditions. 

5. Iteration: Repeat until the solution reaches steady-state or final simulation time. 

 

Flowchart of the Proposed Method 

 

FIGURE 1: SOLUTION FRAMEWORK FOR ANALYTICAL AND NUMERICAL 

APPROACHES TO THE RIEMANN PROBLEM IN FLUID DYNAMICS 
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F. Validation and Performance Analysis 

To validate the methodology, the numerical solutions are compared against analytical solutions and 

benchmark test cases. The accuracy is evaluated using L2-norm error analysis: 

Computational efficiency is measured using execution time and iterations to convergence. The best 

performing solver is determined based on accuracy and efficiency trade-offs [8]. 

IV.  RESULT & DISCUSSIONS 

A thorough evaluation of the Riemann problem solution capabilities of analytical methods and 

numerical methods is conducted through various test cases. The assessment of solutions focuses on 

accuracy of solutions together with computational efficiency and how properly waves self-organize 

within numerical computations. The comparison between numerical solvers particularly between 

Roe’s solver and the HLLC solver demonstrates their benefits as well as their corresponding 

constraints. A comparison exists between numerical outcomes obtained from the method of 

characteristics and exact solutions [9]. 

The shock tube problem serves as the initial evaluation subject since it presents a classical Riemann 

problem that contains two pressure and density zones separated by an initial discontinuity. The 

computational process generates three characteristic features: shock wave, contact discontinuity and 

rarefaction wave. The exact solution for a shock tube case brings forth density, velocity, and pressure 

profiles through Figure 2 at t=0.2 seconds. The analytic solution reproduces fluid variable behavior by 

correctly representing the wave patterns which result from initial conditions that change suddenly. 

 

FIGURE 2: EXACT SOLUTION DATA FOR SHOCK TUBE TEST CASE 
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The evaluation of numerical solutions against the exact solution uses Roe’s solver coupled with the 

HLLC solver for wave structure approximation. Both calculation approaches generated the density 

profile results which are presented in Figure 3. Roe's solver displays minor oscillations close to the 

contact discontinuity that the HLLC solver does not produce although both methods provide correct 

representations of shock and rarefaction waves. The HLLC solver succeeds at resolving the contact 

wave thus proving its ability to maintain stable resolution of discontinuous solutions. 

 

FIGURE 3: DENSITY PROFILES USING ROE’S AND HLLC SOLVERS 

A quantitative analysis of solution errors occurs in Table 1 for numerical against exact results. The 

numerical dissipation performance of the HLLC solver shows better accuracy based on L2-norm error 

values. Although Roe’s solver maintains high efficiency it remains suitable for use in demanding large-

scale simulations that require superior performance levels. 

TABLE 1: L2-NORM ERROR COMPARISON BETWEEN ROE’S AND HLLC SOLVERS 

Solver Density Error (L2-

norm) 

Velocity Error (L2-norm) Pressure Error (L2-

norm) 

Roe’s Solver 0.0123 0.0089 0.0154 

HLLC Solver 0.0091 0.0073 0.0112 

 

The second performance assessment includes computing time tests with various grid resolutions to 

determine operational durations of both numerical methods. Figure 4 shows Roe’s solver outpaces 

HLLC in execution speed especially when the grid resolution is high. The HLLC computational 

process required extra wave structure resolution steps that lead to more accurate results at the cost of 

increased computational workload. 

0.127

0.271

0.807

0.125

0.265

0.812

0.125

0.265

0.812

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.2 0.4 0.6

Density Profiles Using Roe’s and HLLC Solvers

Roe Solver Density (ρ) HLLC Solver Density (ρ) Exact Density (ρ)



Communications on Applied Nonlinear Analysis 

ISSN: 1074-133X 

Vol 32 No. 10s (2025) 

  

888 
https://internationalpubls.com 

 

FIGURE 4: EXECUTION TIME FOR ROE’S AND HLLC SOLVERS 

The ability of solver methods to detect distinct wave types is analyzed through the results presented in 

Table 2. The performance analysis of shock wave, rarefaction wave and contact discontinuity capture 

capability of each solver examines their deviations from the analytical solution. The experimental 

evidence verifies that HLLC delivers improved contact discontinuity tracking as Roe's solver 

maintains excellence for shock wave prediction. 

TABLE 2: ACCURACY ASSESSMENT OF NUMERICAL SOLVERS FOR WAVE 

STRUCTURES 

Solver Shock Wave 

Accuracy 

Rarefaction Wave 

Accuracy 

Contact Discontinuity 

Accuracy 

Roe’s Solver High Moderate Moderate 

HLLC Solver High High High 

 

 The research demonstrates that numerical solvers effectively solve Riemann problems but users need 

to balance between precision and simulation speed. The Roe’s solver retains its position as the top 

solution for speedy simulations yet the HLLC solver stands out most effectively when contact 

discontinuity precision is the main goal.  

V. CONCLUSION 

The research elaborates on the advantages and boundaries of analytical and numerical methods in 

Riemann problem solution for fluid dynamics applications. The precise understanding of wave 

interactions comes from analytical solutions but such methods prove unpractical when dealing with 

complex systems. Future investigations need to establish combined analytical-numerical integration 

techniques because they will enhance both precision and performance within computational fluid 

dynamics models.  
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