
1

International Journal of Engineering Research And Development

e- ISSN: 2278-067X, p-ISSN: 2278-800X, www.ijerd.com

Volume 13, Issue 12 (December 2017), PP.01-11

Optimized Support Vector Machine for Software Defect

Prediction

1M. Thangavel, 2Dr. R. Pugazendi
1Department of Computer Applications, Erode Sengunthar Engineering College, Thudupathi - 57.

2Department of Computer Science, Government Arts College(Autonomous),Salem-7.

Corresponding Author: M.Thangavel

ABSTRACT: An error, bug, flaw, failure, mistake or fault in a computer program or system that generates

inaccurate/unexpected outcome or prevents software from behaving as intended is a software defect. A project

team wants to procreate a quality software product with zero defects. High-risk components in a software

project must be caught early to enhance software quality. Software defects incur cost regarding quality and time.

This article investigates Support Vector Machine’s (SVM) classification accuracy for Software Defect

Prediction (SDP) and proposes a new optimized MRMR and SVM with firefly algorithm.

Keywords:- Software Defect, Software Defect Prediction (SDP), optimized Support Vector Machine Radial

Basis Function (SVM – RBF), Firefly.

Date of Submission: 20 -11-2017 Date of acceptance: 28-12-2017

I. INTRODUCTION

Defects can be defined in disparate ways but are generally aberration from specifications or ardent

expectations which lead to procedure failures. Defect data analysis of classification and prediction types to

extract models describing significant defect data classes or predict future defect trends. Classification predicts

categorical/discrete, and unordered labels, while prediction models predict continuous valued functions. Such

analysis provides better understanding of software defect data [1].

Software Defect Prediction (SDP) is essential in software engineering. Predicting defect is a proactive

process, characterizing defect types in software’s content, design and codes to produce a high-quality product.

Predicting defects in a system testing phase especially functional defects are important in test process

improvement [2]. Software teams tries to produce a zero defect product. Defect prediction leads to a high-

quality product and quality assurance. Software defects prediction reduces software testing efforts by guiding

testers through software systems defect classification. If a defective product goes to customers it leads to issues.

A defect reduces software reliability. Predicting defects needs practice and knowledge. Hence, defect prediction

is important in software quality and software reliability [3].

Feature selection is a data preprocessing activity extensively studied in the machine learning and data

mining community. The goal of feature selection is selecting a features subset that reduces classifiers prediction

errors [4]. Feature selection techniques are divided into wrapper-based approaches and filter-based approaches.

The former involves training a learner during feature selection, while the latter uses data intrinsic characteristics

for feature selection based on a metric without depending on training a learner. The advantage of a filter-based

approach over a wrapper-based approach is its faster computation. But, if computational complexity is not a

factor, then a wrapper-based approach is the best overall feature selection scheme regarding accuracy [5].

Classification finds a set of models that describe/distinguish data classes/concepts. The derived model

is represented in forms like classification rules and decision trees. When classes are defined the system infers

rules governing classification. Hence, a system should find a description of each class. A description should

refer to the training set’s prediction attributes so that positive examples satisfy the description. A rule is correct

if its description covers all positive examples of a class [6].

Many classification methods were suggested to build SDP models. In [7], an association rule

classification method which gets a comprehensible rule set from the data is proposed. They compared CBA2 [8]

with other rule based classification methods to see whether association rules based classification algorithms suit

software fault prediction. They investigated performance of an association rule based classification method for

http://www.ijerd.com/

Optimized Support Vector Machine For Software Defect Prediction

2

software defect prediction. Experiments were conducted on data sets and results were compared with other

classifiers. Satisfactory performance without losing comprehensibility resulted.

SDP is a supervised binary classification problem. Software modules are represented by software

metrics being labeled defective or non-defective. To learn defect predictors, data tables of historical examples

are formed; one column has a Boolean value for ‖defects detected‖ (dependent variable) and other columns

describe software characteristics regarding software metrics (independent variables) [9].

Naive Bayesian classifier is a Bayes theorem based with independence assumptions between

predictors. The model is easy to build, having no complicated iterative parameter estimation making it useful for

large datasets. Despite simplicity, a Naive Bayesian classifier does surprisingly well and is used as it

outperforms other sophisticated classification methods [7].

Classification divides data samples into target classes. Software modules are categorized as ―defective‖

or ―not-defective‖ by classification approaches. In Classification, class categories are known and so it is a

supervised learning approach [10]. There are two classification methods: Binary and Multilevel. Binary

classification divides a class into 2 categories; ―defective‖ and ―not-defective‖. While Multi-level classification

is used when there are more than two classes. It divides a class as ―highly complex‖, ―complex‖ or ―simple‖

software programs. Classification approach works in Learning and Testing phases. So, it divides a dataset into

training and testing parts. Various approaches like cross fold, Leave-one-out partition a dataset. During learning

phase, a classifier learns using a training dataset and is evaluated using a testing dataset[11].

SVM formulation was proposed by Vapnik et al., in 1990s based on statistical learning theory [12].

SVM was developed to solve 2 classification problems but was later formulated and extended to solve

multiclass problem [13]. SVM divides data samples of both classes by determining a hyper-plane in original

input space maximizing the separation between them. SVM works effectively for data samples classification not

separable linearly, by using the kernel function theory. Many kernel functions for example Gaussian,

Polynomial and Sigmoid are available to map data samples into higher dimension feature space. SVM

determines a hyper-plane in feature space to divide data samples of different classes [14]. Thus, it is a better

choice for both linearly and nonlinearly separable data classification.

SVM has many advantages like providing a global data classification solution. It generates a unique

global hyper-plane to separate different classes data samples rather than local boundaries as compared with

other current data classification approaches. As SVM follows a Structural Risk Minimization (SRM) principle,

it reduces risk occurrence during training phase and also enhances generalization capability [15]. A data sample

on and near hyper-plane is termed support vector. SVM is used by researchers to construct a predictive SDP

model [16]. This article investigates SVM’s classification accuracy for SDP. It proposes MRMR and SVM with

firefly algorithm.

II. LITERATURE REVIEW

A work to validate predictor feasibility built with a simplified metric set for SDP in different scenarios

was presented by He et al., [17]. It investigated practical guidelines for training data choice, classifier and metric

subset of a project. First, based on 6 classifiers, it constructed 3 types of predictors using the software metric set

size in 3 scenarios. Next, it validated the predictor’s acceptable performance based on Top-k metrics regarding

statistical methods. Finally, it tried to minimize a Top-k metric subset by removing redundant metrics. Its

stability was tested by a one-way ANOVA tests.

A new dynamic SVM method based on improved cost-sensitive SVM (CSSVM) optimized by a GA

was proposed by Shuai et al., [18]. The GA through selecting geometric classification accuracy as fitness

function improved the performance of CSSVM by enhancing the defective modules accuracy and reducing total

cost of the whole decision. Results showed that GA-CSSVM achieved higher AUC value denoting better

prediction accuracy for minority and majority samples in an imbalanced software defect data set.

A Twin Support Vector Machine (TSVM) to predict defects in a new software product version was

presented by Agarwal & Tomar [19]. This model has a nearly perfect efficiency compared to other models.

Twin Support Vector Machine based software defects prediction model using Gaussian kernel function has

better performance as compared to earlier software defect prediction approaches. By predicting the new

version’s defects, it attempts to solve the issue of ensuring high software quality. The new model revealed its

impact on the software product’s testing phase by reducing overall cost and effort.

Optimized Support Vector Machine For Software Defect Prediction

3

A new model for SDP using PSO and SVM called P-SVM model proposed by Can et al., [20] takes

advantage of SVM’s non-linear computing capability and PSO’s parameters optimization capability. P-SVM

uses PSO algorithm to calculate SVM’s best parameters and adopts the optimized SVM model to predict

software defect. Results showed that P-SVM had a higher prediction accuracy than BP NN, SVM, and GA-

SVM.

A novel model based on Locally Linear Embedding and SVM (LLE-SVM) was proposed by Shan et

al., [21]. SDP improves software security by helping testers locate software defects accurately. SVM is used as

basic classifier in the model and LLE algorithm solves data redundancy by its ability to maintain local

geometry. A comparison between LLE-SVM and SVM was experimentally verified on the NASA defect data

set. Results indicate that new LLE-SVM model performs better than SVM model, and it avoids accuracy

decrease due data redundancy.

A static code metrics for a collection of modules in eleven NASA data sets used with a SVM classifier

was presented by Gray et al., [22]. Rigorous pre-processing steps were applied to data prior to classification,

including balancing both classes (defective or otherwise) and removal of many repeating instances. The SVM in

this experiment yielded an average of 70% accuracy on previously unseen data.

A hybrid attribute selection approach, where feature ranking is used to reduce search space, followed

by feature subset selection was proposed by Gao et al., [23]. Seven different feature ranking techniques were

evaluated, and 4 different feature subset selection approaches considered. The models are trained with 5

common classification algorithms. The study is based on software metrics and defective data from multiple

releases of a large real-world software system. Results proved that while some feature ranking techniques

performed the same, automatic hybrid search algorithm performed the best among feature subset selection

methods.

A new method of using Fuzzy Support Vector Regression (FSVR) to predict software defect numbers

was proposed by Yan et al., [24] . Fuzzification regressor input handles unbalanced software metrics dataset.

Compared to support vector regression approach, the experiment conducted by applying MIS and RSDIMU

datasets inferred that FSVR leads to lower mean squared error and higher total defects accuracy for modules

with large number of defects.

A rough hybrid approach was compared with neuro-fuzzy and partial decision trees to classify software

defect data by Bhatt et al., [25]. The extension has a comparison with linear and non-linear SVMs to classify

defects. It also compared SVM classification results with neuro-fuzzy decision trees (NFDT), partial decision

trees, and LEM2 algorithm based on rough sets, fuzzy-rough classification trees (FRCT) and rough-neuro-fuzzy

decision trees (R-NFDT). The result analyses included statistical tests for classification accuracy.

A comprehensive empirical study examining 17 different ensembles of feature ranking techniques

(rankers) including 6 common feature ranking techniques, signal-to-noise filter technique and 11 threshold-

based feature ranking techniques was presented by Wang et al., [26]. This study used 16 real-world software

measurement data sets of various sizes and built 13,600 classification models. Results indicated that ensembles

of few rankers are effective and better than those of many or all rankers.

Dataset

III. METHODOLOGY

KC1 dataset is NASA Metrics Data Program [27] that verifies/improves predictive software

engineering models. KC1 is a C++ system that implements storage management for ground data

receipt/processing. The dataset has McCabe and Halstead feature code extractors and module based measures.

KC1 NASA's data set is from promise software engineering repository [27]. It has 2109 modules with 326

defective instances. Table 3.1, depicts the KC1 dataset’s source code metrics. Of 22 attributes, defect is a string

value of either true or false or 1/0 which states whether a module is defective. This DEFECT is a predicted

value. And the remaining attributes are numeric. loc: This describes the total lines for a module. This is a sum of

executable lines and commented lines of code and blank lines. It is a pure, simple count from open bracket to

close bracket and includes lines in between, regardless of character content.

Optimized Support Vector Machine For Software Defect Prediction

4

Table 3.1. LIST OF KC1 DATASET ATTRIBUTES

1 Loc

2 v(g)

3 ev(g)

4 iv(g)

5 N

6 V

7 L

8 T

9 D

10 I

11 E

12 B

13 lOCode

14 lOComment

15 lOBlank

16 locCodeAndComment

17 uniq_Op

18 uniq_Opnd

19 total_Op

20 total_Opnd

21 branchCount

22 defects {false,true}

McCabe's line count of code

McCabe" cyclomatic complexity‖ complexity"

McCabe "essential complexity"

McCabe "design complexity"

Halstead total operators + operands

Halstead "volume"

Halstead "program length"

Halstead's time estimator

Halstead "difficulty"

Halstead "intelligence"

Halstead "effort"

Halstead's "error estimate"

Halstead's line count

Halstead's count of lines of comments

Halstead's count of blank lines

Total lines of Code And Comment

unique operators

unique operands

total operators

total operands

of the flow graph

{false,true}module has/has not one or more reported defects

Table 3.2 illustrates the defect detectors and the calculations.

Classifier Calculation Result

A Classifier predicts no defects and module has no error.

B Classifier predicts no defects and module has error

C Classifier predicts some defects and module has no error.

D Classifier predicts some defects and module has error.

Detection probability (pd) or recall, precision (prec), Accuracy, probability of false alarm (pf), and effort are calculated using

the formulas.

A ccu ra cy =

d

reca ll =

a + d

a + b + c + d

(1)

pf =

b + d

c

(2)

a + c

d

(3)

p rec =

e ffo r t =

c + d

c .L O C + d .L O C

T o ta l L O C

(4)

(5)

KC1 dataset has 2109 instances and 22 varied attributes including 5 different LOC, 12 Halstead

metrics, 3 McCabe metrics, a branch count and 1 goal-field. Dataset’s attribute information is: design

complexity, McCabe's line count of code (LOC), total operands, program length, Halstead class, cyclomatic

complexity, effort, and others.

Optimized Support Vector Machine For Software Defect Prediction

5

S

S

1

 k 

Feature selection - Minimum Redundancy — Maximum Relevance (MRMR)

Feature Selection (FS), also called attribute selection, is a significant issue in classification model

construction. Feature selection reduces input features and selects relevant features for a classifier to improve

predictive performance. FS obtains relevant data for future analysis, as per problem formulation. As there are

many software metrics available in the software dataset repository, so FS selects significant features which

reduces total project cost [28].When a feature has expressions randomly/uniformly distributed in different

classes, its mutual information with such classes is zero. If a feature is differentially expressed for different

classes, it has large mutual information. So, mutual information is a measure of features relevance. For

discrete/categorical variables, mutual information I of two variables x and Y is defined based on the joint

probabilistic distribution P(x,Y) and respective marginal probabilities p(x) and p(y):

p (xi
, y

i)
I (x , y) = 

i , j

p (x
i
, y

i) lo g

p (xi) p (y
i)

. (6)

For categorical variables, mutual information measures level of "similarity" between features. The idea

of minimum redundancy is selecting features so that they are mutually maximally dissimilar. Minimal

redundancy makes feature sets a better representation of the dataset. Let S denote a subset of features sought.

Minimum redundancy condition is

m in W
I
, W

I
= 2 

S i , j S

I (i , j) , (7)

where I (i, j) represents I (gi , gj) for notational simplicity, and (= m) is number of features in S.

To measure level of discriminant powers of genes when differentially expressed for different target classes, mutual

information I (h, gi) between targeted classes h = {hl, h2 ,..., hK } (h classification variable) is used and feature expression gi.

I (h, gi) quantifies relevance of gi for classification task. Thus, maximum relevance condition is maximizing total relevance

of all genes in S:

m a x V
I
, V

I
 = 

i S

I (h , i)

where I (h, gi) is referred as I (h, i) (8)

Minimum Redundancy — Maximum Relevance (MRMR) feature set is got by optimizing the conditions in the

above equations simultaneously. Optimization of both conditions combines them into a single criterion function. This paper

treats both conditions as equally important and considers two simple combination criteria:

m ax (V
I

− W
I) , m ax (V I

W
I
) . (9)

For continuous data variables (or attributes), the F -statistic between features and classification variable h as score

of maximum relevance is chosen. The F -test value of feature variable gi in K classes denoted by h has the following form

  2

F (g
i
, h) =   n

k (g
k
− g) (K − 1)   , (10)

 k 

where g- is mean value of gi in samples, g-k is mean value of gi within the kth class, and


2
=


 (n − 1) (n − k)



(11)

 k 

is pooled variance (where nk and σk are the size and variance of kth class). F- test reduces to t-test for 2-class classification,

with the relation F = t2. Hence, for feature set S, maximum relevance is written as:
1

m a x V
F

, V
F
 = 

i S

F (i , h)

(12)

1

Optimized Support Vector Machine For Software Defect Prediction

6

i

i i i

i

i i

m

IV. SUPPORT VECTOR MACHINE (SVM)

SVM classifier is trained before use; thus reduced input data is partitioned (yi), i=l,…,n into 2, T

⊂{l,…,n} training set and V ⊂{l,…,n} testing (or validation) set with T ∪ V = {l,…,n} and T ∩V={}. Training

data set T is labeled manually into 2 classes with ground truth, l(yi)=±1. Once classifier is trained and decision

function evaluation d(yi)= ±1 yields classification of any data yi. In detail, SVM [11] tries to separate data φ(yi)

mapped by selected kernel function φ by a hyperplane wTφ(yi)+b=0 with w normal vector and b translation.

Decision function is d(yi) =sgn(wTφ(yi)+b). Maximizing margin and introducing slack variables ζ = (ζ i) for

non-separable data, a primal optimization problem is received:

m in =
w , b ,

w T w + C  
2 i T

w i th co n s tra in s l (y) (w T  (y) + b)  1 − 

  0 fo r i  T ,

(13)

where C is user-determined penalty parameter. Easier computation is possible when switched to dual

optimization problem,

1 T T

m in =  Q  − e 
 2

w i th co n s tra in s 0    C fo r i  T


i T

y  = 0,

where α = (αi) are so-called support vectors, e = [l,…,l]T and Q is positive semi-definite matrix formed by Qjk=

/(yj)/(yk)K(yj,yk), and K(yj,yk) =φ(yj)T φ(yk) is kernel function from φ. When optimization problem is solved,

hyperplane parameters w and b, w are determined directly as w =   i l (y
i)  (y

i) and b via one of Karush-
i T

Kuhn-Tucker conditions as b = -l(yi)yiTw, for those i with 0<αi C. So, trained SVM classifier's decision

function ends up as

 
d (y) = sg n (w T  (y) + b) = sg n    l (y) K (y , y) + b 

i i j j j i

 jT  (14)

Inner feature space product has equal kernel in input space [29],

K (x , x ') =  (x) ,  (x ')

When certain conditions hold. When K is a symmetric positive definite function that satisfies Mercer's

Conditions



K (x , x ') =  a
m

 m (x)  m (x ')
m

a  0 ,

 K (x , x ') g (x) g (x ') d xd x '  0 , g  L
2
,

(15)

then kernel represents an inner feature space product. Valid functions satisfying Mercer's conditions are given,

which are valid for real x and x'.

i

1

Optimized Support Vector Machine For Software Defect Prediction

7

3.

4.

x − x '
2

Radial basis functions (RBF) received attention, usually with a Gaussian of form,

 
K (x , x ') = ex p  −  . (16)

 2
2 

 

Classical techniques with RBF are centers subset determiners. Clustering selects a centers subset first.

SVM feature' attraction is that selection with support vectors contributes one local Gaussian function centered

on data point which is implicit.

Parameter selection is crucial as SVM algorithm is sensitive to adequate parameter values choice and

affects prediction accuracy. In SVM, parameters regularization constant C, and coefficients of SV kernel, e.g.

kernel width σ in RBF impact prediction. Regularization parameter C determines trade-off cost between

minimizing training error and minimizing model complexity, which reduces generalization capability when set

too small or excessive. And σ reflects support vector correlation which determines generalization capability and

prediction accuracy. Selecting cost parameter is NP hard. This work proposes using a new Firefly algorithm to

locate the ideal C parameter.

Firefly algorithm is based on fireflies flashing lights. In a firefly algorithm, the objective function of an

optimization problem is associated with flashing light or light intensity which helps a firefly swarm to move to

brighter/more attractive locations to get efficient optimal solutions. Some flashing characteristics of fireflies are

idealized to develop a firefly-inspired algorithm [30].

The following 3 idealized rules were used to describe the new Fireflies Algorithm,: 1) all fireflies are

unisex so one firefly is attracted to another regardless of sex; 2) Attractiveness is proportional to brightness, so

for 2 flashing fireflies, the less brighter moves toward the brighter one. As attractiveness is proportional to

brightness it decreases as distance increases. If there is no brighter firefly it moves randomly; 3) a firefly’s

brightness is affected/determined by the objective function’s landscape.

For a maximization problem, the brightness is proportional to the objective function value. Other forms

of brightness are defined similar to a fitness function in Gas. The basic steps of a FA are as follows based on the

above rules:

Objective function f(x), x = (x1,..., xd)T

Generate initial population of fireflies xi (i = 1, 2,..., n)

Light intensity Ii at xi is determined by f(xi)

Define light absorption coefficient γ

while (t <MaxGeneration)

for i = 1 : n all n fireflies

for j = 1 : i all n fireflies

if (Ij > Ii), Move firefly i towards j in d-dimension; end if

Attractiveness varies with distance r via exp[−γr]

Evaluate new solutions and update light intensity

end for j

end for i

Rank the fireflies and find the current best

end while

Postprocess results and visualization

Optimized Support Vector Machine For Software Defect Prediction

8

Technique

Classification

Accuracy

Precision

Recall

RMSE

SVM

SVM with firefly MRMR and SVM with RBF MRMR and SVM

algorithm fire fly algorithm kernel RBF Kernel

89.61

0.7874

0.758

0.2147

91.03

0.8179

0.7948

0.1826

86.09

0.7182

0.7604

0.3834

88.18

0.7533

0.7725

0.2458

V. RESULTS AND DISCUSSION

The software complexity measures such as Cyclomatic complexity, Base Halstead measures, Derived

Halstead measures, and LOC measure of KC1 (NASA) dataset are used to classify the software modules. All

classification in this investigation is carried out on Weka. For the performance evaluation of classifiers, 2107

samples from KC1 Dataset is used, where 716 samples are used as testing set, and 1391samples are used for

training. Weka was used on KC1 dataset for classification, and result is summarized in Table 4.1 and Figure 4.1.

Table 4.1 Results

Figure 4.1 Classification Accuracy

The MRMR and SVM with firefly algorithm improved the classification accuracy by 5.58% when compared to

the SVM.

Figure 4.2 Precision

The MRMR and SVM with firefly algorithm improved precision by 4.42% when compared to the

SVM.

Optimized Support Vector Machine For Software Defect Prediction

9

Figure 4.3 Recall

The MRMR and SVM with firefly algorithm improved recall by 1.91% when compared to the SVM

with firefly algorithm.

Figure 4.4 RMSE

The MRMR and SVM with firefly algorithm reduced RMSE by 13.5071% when compared to the SVM

with firefly algorithm.

V CONCLUSION

Software defects are expensive regarding quality and cost. Also, the cost of capturing and correcting

defects is a very expensive software development activity. SVM is popular and most of the researchers use it to

construct a predictive model for SDP. Parameter selection is crucial as SVM algorithm is sensitive to the choice

of parameter values affecting prediction accuracy. This article proposes a new optimized MRMR and SVM with

firefly algorithm (MRMR-SVM with firefly algorithm) to predict SDP. Experiments show that the new method

improved classification accuracy.

REFERENCES

[1]. Rawat, M. S., & Dubey, S. K. (2012). Software defect prediction models for quality improvement: a

literature study. International Journal of Computer Science.

[2]. Clark, B., & Zubrow, D. (2001). How good is the software: a review of defect prediction

techniques. sponsored by the US department of Defense.

[3]. Fenton, N., Krause, P., & Neil, M. (2001). A probabilistic model for software defect prediction. IEEE

Trans Software Eng.

Optimized Support Vector Machine For Software Defect Prediction

10

[4]. Wahono, R. S., & Suryana, N. (2013). Combining Particle Swarm Optimization based Feature Selection

and Bagging Technique for Software Defect Prediction.International Journal of Software Engineering &

Its Applications, 7(5).

[5]. Menzies, T., Milton, Z., Turhan, B., Cukic, B., Jiang, Y., & Bener, A. (2010). Defect prediction from

static code features: current results, limitations, new approaches. Automated Software Engineering, 17(4),

375-407.

[6]. Kaur, M. P. J., & Pallavi, M. (2013). Data mining techniques for software defect prediction. International

Journal of Software and Web Sciences, 54-57.

[7]. Baojun, M., Dejaeger, K., Vanthienen, J., & Baesens, B. (2011). Software defect prediction based on

association rule classification. Available at SSRN 1785381.

[8]. Liu, B., Ma, Y., & Wong, C. K. (2000). Improving an association rule based classifier. In Principles of

Data Mining and Knowledge Discovery (pp. 504-509). Springer Berlin Heidelberg.

[9]. Song, Q., Jia, Z., Shepperd, M., Ying, S., & Liu, J. (2011). A general software defect-proneness

prediction framework. Software Engineering, IEEE Transactions on, 37(3), 356-370.

[10]. Jiawei, H., & Kamber, M. (2001). Data mining: concepts and techniques. San Francisco, CA, itd:

Morgan Kaufmann, 5.

[11]. Agarwal, S., & Tomar, D. (2014). A Feature Selection Based Model for Software Defect

Prediction. assessment, 65.

[12]. Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning,20(3), 273-297.

[13]. Dietterich, T. G., & Bakiri, G. (1995). Solving multiclass learning problems via error-correcting output

codes. arXiv preprint cs/9501101.

[14]. Schölkopf, B., Burges, C. J., & Smola, A. J. (Eds.). (1999). Advances in kernel methods: support vector

learning. MIT press.

[15]. Sastry, P. S. (2003). An introduction to support vector machines. Computing and information sciences:

Recent trends, 53-85.

[16]. Sundararaghavan, V., & Zabaras, N. (2005). Classification and reconstruction of three-dimensional

microstructures using support vector machines.Computational Materials Science, 32(2), 223-239.

[17]. He, P., Li, B., Liu, X., Chen, J., & Ma, Y. (2014). An Empirical Study on Software Defect Prediction

with Simplified Metric Set. arXiv preprint arXiv:1402.3873.

[18]. Shuai, B., Li, H., Li, M., Zhang, Q., & Tang, C. (2013, December). Software Defect Prediction Using

Dynamic Support Vector Machine. In Computational Intelligence and Security (CIS), 2013 9th

International Conference on (pp. 260-263). IEEE.

[19]. Agarwal, S., & Tomar, D. (2014, March). Prediction of software defects using Twin Support Vector

Machine. In Information Systems and Computer Networks (ISCON), 2014 International Conference

on (pp. 128-132). IEEE.

[20]. Can, H., Jianchun, X., Ruide, Z., Juelong, L., Qiliang, Y., & Liqiang, X. (2013, May). A new model for

software defect prediction using particle swarm optimization and support vector machine. In Control and

Decision Conference (CCDC), 2013 25th Chinese (pp. 4106-4110). IEEE.

[21]. Shan, C., Chen, B., Hu, C., Xue, J., & Li, N. (2014, May). Software defect prediction model based on

LLE and SVM. In Communications Security Conference (CSC 2014), 2014 (pp. 1-5). IET.

[22]. Gray, D., Bowes, D., Davey, N., Sun, Y., & Christianson, B. (2009). Using the support vector machine as

a classification method for software defect prediction with static code metrics. In Engineering

Applications of Neural Networks (pp. 223-234). Springer Berlin Heidelberg.

[23]. Gao, K., Khoshgoftaar, T. M., Wang, H., & Seliya, N. (2011). Choosing software metrics for defect

prediction: an investigation on feature selection techniques. Software: Practice and Experience, 41(5),

579-606.

[24]. Yan, Z., Chen, X., & Guo, P. (2010). Software defect prediction using fuzzy support vector regression.

In Advances in Neural Networks-ISNN 2010 (pp. 17-24). Springer Berlin Heidelberg.

[25]. Bhatt, R., Ramanna, S., & Peters, J. F. (2009). Software Defect Classification: A Comparative Study of

Rough-Neuro-fuzzy Hybrid Approaches with Linear and Non-linear SVMs. In Rough Set Theory: A True

Landmark in Data Analysis (pp. 213-231). Springer Berlin Heidelberg.

Optimized Support Vector Machine For Software Defect Prediction

11

M.Thangavel,―Optimized Support Vector Machine For Software Defect Prediction.‖ International

Journal Of Engineering Research And Development , vol. 13, no. 12, 2017, pp. 01–10.

[26]. Wang, H., Khoshgoftaar, T. M., & Napolitano, A. (2010, December). A comparative study of ensemble

feature selection techniques for software defect prediction. In Machine Learning and Applications

(ICMLA), 2010 Ninth International Conference on (pp. 135-140). IEEE.

[27]. Shirabad, J. S., & Menzies, T. J. (2005). The PROMISE repository of software engineering

databases. School of Information Technology and Engineering, University of Ottawa, Canada, 24.

[28]. Akay, M. F. (2009). Support vector machines combined with feature selection for breast cancer

diagnosis. Expert systems with applications, 36(2), 3240-3247.

[29]. Gunn, S. R. (1998). Support vector machines for classification and regression.ISIS technical report, 14.

[30]. X.-S. Yang, ―Firefly algorithms for multimodal optimization,‖ in Stochastic Algorithms: Foundations and

Applications(Springer, 2009), pp. 169–178.

