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ABSTRACT: An error, bug, flaw, failure, mistake or fault in a computer program or system that generates 

inaccurate/unexpected outcome or prevents software from behaving as intended is a software defect. A project 

team wants to procreate a quality software product with zero defects. High-risk components in a software 

project must be caught early to enhance software quality. Software defects incur cost regarding quality and time. 

This article investigates Support Vector Machine’s (SVM) classification accuracy for Software Defect 

Prediction (SDP) and proposes a new optimized MRMR and SVM with firefly algorithm. 

Keywords:- Software Defect, Software Defect Prediction (SDP), optimized Support Vector Machine Radial 

Basis Function (SVM – RBF), Firefly. 
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I. INTRODUCTION 

Defects can be defined in disparate ways but are generally aberration from specifications or ardent 

expectations which lead to procedure failures. Defect data analysis of classification and prediction types to 

extract models describing significant defect data classes or predict future defect trends. Classification predicts 

categorical/discrete, and unordered labels, while prediction models predict continuous valued functions. Such 

analysis provides better understanding of software defect data [1]. 

Software Defect Prediction (SDP) is essential in software engineering. Predicting defect is a proactive 

process, characterizing defect types in software’s content, design and codes to produce a high-quality product. 

Predicting defects in a system testing phase especially functional defects are important in test process 

improvement [2]. Software teams tries to produce a zero defect product. Defect prediction leads to a high- 

quality product and quality assurance. Software defects prediction reduces software testing efforts by guiding 

testers through software systems defect classification. If a defective product goes to customers it leads to issues. 

A defect reduces software reliability. Predicting defects needs practice and knowledge. Hence, defect prediction 

is important in software quality and software reliability [3]. 

Feature selection is a data preprocessing activity extensively studied in the machine learning and data 

mining community. The goal of feature selection is selecting a features subset that reduces classifiers prediction 

errors [4]. Feature selection techniques are divided into wrapper-based approaches and filter-based approaches. 

The former involves training a learner during feature selection, while the latter uses data intrinsic characteristics 

for feature selection based on a metric without depending on training a learner. The advantage of a filter-based 

approach over a wrapper-based approach is its faster computation. But, if computational complexity is not a 

factor, then a wrapper-based approach is the best overall feature selection scheme regarding accuracy [5]. 

Classification finds a set of models that describe/distinguish data classes/concepts. The derived model 

is represented in forms like classification rules and decision trees. When classes are defined the system infers 

rules governing classification. Hence, a system should find a description of each class. A description should 

refer to the training set’s prediction attributes so that positive examples satisfy the description. A rule is correct 

if its description covers all positive examples of a class [6]. 

Many classification methods were suggested to build SDP models. In [7], an association rule 

classification method which gets a comprehensible rule set from the data is proposed. They compared CBA2 [8] 

with other rule based classification methods to see whether association rules based classification algorithms suit 

software fault prediction. They investigated performance of an association rule based classification method for 
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software defect prediction. Experiments were conducted on data sets and results were compared with other 

classifiers. Satisfactory performance without losing comprehensibility resulted. 

SDP is a supervised binary classification problem. Software modules are represented by software 

metrics being labeled defective or non-defective. To learn defect predictors, data tables of historical examples 

are formed; one column has a Boolean value for ‖defects detected‖ (dependent variable) and other columns 

describe software characteristics regarding software metrics (independent variables) [9]. 

Naive Bayesian classifier is a Bayes theorem based with independence assumptions between  

predictors. The model is easy to build, having no complicated iterative parameter estimation making it useful for 

large datasets. Despite simplicity, a Naive Bayesian classifier does surprisingly well and is used as it 

outperforms other sophisticated classification methods [7]. 

Classification divides data samples into target classes. Software modules are categorized as ―defective‖ 

or  ―not-defective‖  by  classification  approaches.  In  Classification,  class  categories  are  known  and  so  it  is  a 

supervised learning approach [10]. There are two classification methods: Binary and Multilevel. Binary 

classification divides a class into 2 categories; ―defective‖ and ―not-defective‖. While Multi-level classification 

is used  when there are more than two classes. It divides a class as ―highly complex‖, ―complex‖ or ―simple‖ 

software programs. Classification approach works in Learning and Testing phases. So, it divides a dataset into 

training and testing parts. Various approaches like cross fold, Leave-one-out partition a dataset. During learning 

phase, a classifier learns using a training dataset and is evaluated using a testing dataset[11]. 

SVM formulation was proposed by Vapnik et al., in 1990s based on statistical learning theory [12]. 

SVM was developed to solve 2 classification problems but was later formulated and extended to solve 

multiclass problem [13]. SVM divides data samples of both classes by determining a hyper-plane in original 

input space maximizing the separation between them. SVM works effectively for data samples classification not 

separable linearly, by using the kernel function theory. Many kernel functions for example Gaussian, 

Polynomial and Sigmoid are available to map data samples into higher dimension feature space. SVM 

determines a hyper-plane in feature space to divide data samples of different classes [14]. Thus, it is a better 

choice for both linearly and nonlinearly separable data classification. 

SVM has many advantages like providing a global data classification solution. It generates a unique 

global hyper-plane to separate different classes data samples rather than local boundaries as compared with 

other current data classification approaches. As SVM follows a Structural Risk Minimization (SRM) principle,  

it reduces risk occurrence during training phase and also enhances generalization capability [15]. A data sample 

on and near hyper-plane is termed support vector. SVM is used by researchers to construct a predictive SDP 

model [16]. This article investigates SVM’s classification accuracy for SDP. It proposes MRMR and SVM with 

firefly algorithm. 

 
II. LITERATURE REVIEW 

A work to validate predictor feasibility built with a simplified metric set for SDP in different scenarios 

was presented by He et al., [17]. It investigated practical guidelines for training data choice, classifier and metric 

subset of a project. First, based on 6 classifiers, it constructed 3 types of predictors using the software metric set 

size in 3 scenarios. Next, it validated the predictor’s acceptable performance based on Top-k metrics regarding 

statistical methods. Finally, it tried to minimize a Top-k metric subset by removing redundant metrics. Its 

stability was tested by a one-way ANOVA tests. 

A new dynamic SVM method based on improved cost-sensitive SVM (CSSVM) optimized by a GA 

was proposed by Shuai et al., [18]. The GA through selecting geometric classification accuracy as fitness 

function improved the performance of CSSVM by enhancing the defective modules accuracy and reducing total 

cost of the whole decision. Results showed that GA-CSSVM achieved higher AUC value denoting better 

prediction accuracy for minority and majority samples in an imbalanced software defect data set. 

A Twin Support Vector Machine (TSVM) to predict defects in a new software product version was 

presented by Agarwal & Tomar [19]. This model has a nearly perfect efficiency compared to other models. 

Twin Support Vector Machine based software defects prediction model using Gaussian kernel function has 

better performance as compared to earlier software defect prediction approaches. By predicting the new 

version’s defects, it attempts to solve the issue of ensuring high software quality. The new model revealed its 

impact on the software product’s testing phase by reducing overall cost and effort. 
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A new model for SDP using PSO and SVM called P-SVM model proposed by Can et al., [20] takes 

advantage of SVM’s non-linear computing capability and PSO’s parameters optimization capability. P-SVM 

uses PSO algorithm to calculate SVM’s best parameters and adopts the optimized SVM model to predict 

software defect. Results showed that P-SVM had a higher prediction accuracy than BP NN, SVM, and GA- 

SVM. 

A novel model based on Locally Linear Embedding and SVM (LLE-SVM) was proposed by Shan et 

al., [21]. SDP improves software security by helping testers locate software defects accurately. SVM is used as 

basic classifier in the model and LLE algorithm solves data redundancy by its ability to maintain  local 

geometry. A comparison between LLE-SVM and SVM was experimentally verified on the NASA defect data 

set. Results indicate that new LLE-SVM model performs better than SVM model, and it avoids accuracy 

decrease due data redundancy. 
 

A static code metrics for a collection of modules in eleven NASA data sets used with a SVM classifier 

was presented by Gray et al., [22]. Rigorous pre-processing steps were applied to data prior to classification, 

including balancing both classes (defective or otherwise) and removal of many repeating instances. The SVM in 

this experiment yielded an average of 70% accuracy on previously unseen data. 

A hybrid attribute selection approach, where feature ranking is used to reduce search space, followed 

by feature subset selection was proposed by Gao et al., [23]. Seven different feature ranking techniques were 

evaluated, and 4 different feature subset selection approaches considered. The models are trained with 5 

common classification algorithms. The study is based on software metrics and defective data from multiple 

releases of a large real-world software system. Results proved that while some feature ranking techniques 

performed the same, automatic hybrid search algorithm performed the best among feature subset selection 

methods. 

A new method of using Fuzzy Support Vector Regression (FSVR) to predict software defect numbers 

was proposed by Yan et al., [24] . Fuzzification regressor input handles unbalanced software metrics dataset. 

Compared to support vector regression approach, the experiment conducted by applying MIS and RSDIMU 

datasets inferred that FSVR leads to lower mean squared error and higher total defects accuracy for modules 

with large number of defects. 

A rough hybrid approach was compared with neuro-fuzzy and partial decision trees to classify software 

defect data by Bhatt et al., [25]. The extension has a comparison with linear and non-linear SVMs to classify 

defects. It also compared SVM classification results with neuro-fuzzy decision trees (NFDT), partial decision 

trees, and LEM2 algorithm based on rough sets, fuzzy-rough classification trees (FRCT) and rough-neuro-fuzzy 

decision trees (R-NFDT). The result analyses included statistical tests for classification accuracy. 

A comprehensive empirical study examining 17 different ensembles of feature ranking techniques 

(rankers) including 6 common feature ranking techniques, signal-to-noise filter technique and 11 threshold- 

based feature ranking techniques was presented by Wang et al., [26]. This study used 16 real-world software 

measurement data sets of various sizes and built 13,600 classification models. Results indicated that ensembles 

of few rankers are effective and better than those of many or all rankers. 
 

 

Dataset 

III. METHODOLOGY 

 
KC1 dataset is NASA Metrics Data Program [27] that verifies/improves predictive software 

engineering models. KC1 is a C++ system that implements storage management for ground data 

receipt/processing. The dataset has McCabe and Halstead feature code extractors and module based measures. 

KC1 NASA's data set is from promise software engineering repository [27]. It has 2109 modules with 326 

defective instances. Table 3.1, depicts the KC1 dataset’s source code metrics. Of 22 attributes, defect is a string 

value of either true or false or 1/0 which states whether a module is defective. This DEFECT is a predicted 

value. And the remaining attributes are numeric. loc: This describes the total lines for a module. This is a sum of 

executable lines and commented lines of code and blank lines. It is a pure, simple count from open bracket to 

close bracket and includes lines in between, regardless of character content. 
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Table 3.1. LIST OF KC1 DATASET ATTRIBUTES 
 

1 Loc 

2 v(g) 

3 ev(g) 

4 iv(g) 

5 N 

6 V 

7 L 

8 T 

9 D 

10 I 

11 E 

12 B 

13 lOCode 

14 lOComment 

15 lOBlank 

16 locCodeAndComment 

17 uniq_Op 

18 uniq_Opnd 

19 total_Op 

20 total_Opnd 

21 branchCount 

22 defects {false,true} 

McCabe's line count of code 

McCabe" cyclomatic complexity‖ complexity" 

McCabe "essential complexity" 

McCabe "design complexity" 

Halstead total operators + operands 

Halstead "volume" 

Halstead "program length" 

Halstead's time estimator 

Halstead "difficulty" 

Halstead "intelligence" 

Halstead "effort" 

Halstead's "error estimate" 

Halstead's line count 

Halstead's count of lines of comments 

Halstead's count of blank lines 

Total lines of Code And Comment 

unique operators 

unique operands 

total operators 

total operands 

of the flow graph 

{false,true}module has/has not one or more reported defects 

Table 3.2 illustrates the defect detectors and the calculations. 

Classifier Calculation Result 

A Classifier predicts no defects and module has no error. 

B Classifier predicts no defects and module has error 

C Classifier predicts some defects and module has no error. 

D Classifier predicts some defects and module has error. 

 

Detection probability (pd) or recall, precision (prec), Accuracy, probability of false alarm (pf), and effort are calculated using 

the formulas. 

A ccu ra cy = 

 
d 

reca ll = 

a + d 
 

 

a + b + c + d 

 
 

(1) 

 

 
pf = 

b + d 

c 
 

 

(2) 

a + c 

d 

(3) 

p rec = 

 
 

e ffo r t = 

c + d 

c .L O C + d .L O C 
 

 

T o ta l L O C 

 
(4) 

 

 
(5) 

KC1 dataset has 2109 instances and 22 varied attributes including 5 different LOC, 12 Halstead 

metrics, 3 McCabe metrics, a branch count and 1 goal-field. Dataset’s attribute information is: design 

complexity, McCabe's line count of code (LOC), total operands, program length, Halstead class, cyclomatic 

complexity, effort, and others. 
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Feature selection - Minimum Redundancy — Maximum Relevance (MRMR) 

Feature Selection (FS), also called attribute selection, is a significant issue in classification model 

construction. Feature selection reduces input features and selects relevant features for a classifier to improve 

predictive performance. FS obtains relevant data for future analysis, as per problem formulation. As there are 

many software metrics available in the software dataset repository, so FS selects significant features which 

reduces total project cost [28].When a feature has expressions randomly/uniformly distributed in different 

classes, its mutual information with such classes is zero. If a feature is differentially expressed for different 

classes, it has large mutual information. So, mutual information is a measure of features relevance. For 

discrete/categorical variables, mutual information I of two variables x and Y is defined based on the joint 

probabilistic distribution P(x,Y) and respective marginal probabilities p(x) and p(y): 

p ( xi 
, y 

i ) 
I  ( x , y ) =  

i , j    

p ( x 
i 
, y 

i ) lo g 
 

 

p ( xi ) p ( y 
i ) 

. (6) 

 

For categorical variables, mutual information measures level of "similarity" between features. The idea 

of minimum redundancy is selecting features so that they are mutually maximally dissimilar. Minimal 

redundancy makes feature sets a better representation of the dataset. Let S denote a subset of features sought. 

Minimum redundancy condition is 

 

m in W 
I 
, W 

I 
= 2     

S i , j S 

I ( i , j ) , (7) 

 

where I (i, j) represents I (gi , gj ) for notational simplicity, and  (= m) is number of features in S. 

To measure level of discriminant powers of genes when differentially expressed for different target classes, mutual 

information I (h, gi ) between targeted classes h = {hl, h2 ,..., hK } (h classification variable) is used and feature expression  gi. 

I (h, gi) quantifies relevance of gi for classification task. Thus, maximum relevance condition is maximizing total relevance 

of all genes in S: 

m a x V 
I 
, V 

I
 =  

i S 

I ( h , i ) 
 

where I (h, gi) is referred as I (h, i) (8) 

 

Minimum Redundancy — Maximum Relevance (MRMR) feature set is got by optimizing the conditions in the 

above equations simultaneously. Optimization of both conditions combines them into a single criterion function. This paper 

treats both conditions as equally important and considers two simple combination criteria: 
 

m ax (V
I    

− W 
I   ) ,  m ax (V I 

W 
I  
) . (9) 

 

For continuous data variables (or attributes), the F -statistic between features and classification variable h as score 

of maximum relevance is chosen. The F -test value of feature variable gi in K classes denoted by h has the following form 

  2 

F ( g 
i 
, h ) =   n 

k ( g 
k 
− g ) ( K − 1 )   , (10) 

  k  

where g- is  mean value of  gi in  samples, g-k is  mean value of gi within the kth class, and 

 
2 
= 

 
 ( n − 1 ) ( n − k ) 


 

 
(11) 

  k  

is pooled variance (where nk and σk are the size and variance of kth class). F- test reduces to t-test for 2-class classification, 

with the relation F = t2. Hence, for feature set S, maximum relevance is written as: 
1 

m a x V 
F 

, V 
F
 =  

i S 

F ( i , h )  

(12) 

1 
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IV. SUPPORT VECTOR MACHINE (SVM) 

SVM classifier is trained before use; thus reduced input data is partitioned (yi), i=l,…,n into 2, T 

⊂{l,…,n} training set and V ⊂{l,…,n} testing (or validation) set with T ∪ V = {l,…,n} and T ∩V={}. Training 

data set T is labeled manually into 2 classes with ground truth, l(yi)=±1. Once classifier is trained and decision 

function evaluation d(yi)= ±1 yields classification of any data yi. In detail, SVM [11] tries to separate data φ(yi) 

mapped by selected kernel function φ by a hyperplane wTφ(yi)+b=0 with w normal vector and b translation. 

Decision function is d(yi) =sgn(wTφ(yi)+b). Maximizing margin and introducing slack variables ζ = (ζ i) for 

non-separable data, a primal optimization problem is received: 

 

m in = 
w , b , 

w T w + C   
2 i T     

w i th co n s tra in s l ( y ) ( w T  ( y ) + b )  1 −  

  0 fo r i  T , 

 

 

(13) 
 

where C is user-determined penalty parameter. Easier computation is possible when switched to dual 

optimization problem, 
 

1 T T 

m in =  Q  − e  
 2 

w i th co n s tra in s 0    C fo r i  T 

 
i T     

y  = 0,  

 

where α = (αi) are so-called support vectors, e = [l,…,l]T and Q is positive semi-definite matrix formed by Qjk= 

/(yj)/(yk)K(yj,yk), and K(yj,yk) =φ(yj)T φ(yk) is kernel function from φ. When optimization problem is solved, 

hyperplane parameters w and b, w are determined directly as w =   i l ( y 
i )  ( y 

i ) and b via one of Karush- 
i T     

Kuhn-Tucker conditions as b = -l(yi)yiTw, for those i with 0<αi C. So, trained SVM classifier's decision 

function ends up as 
 

  
d ( y ) = sg n ( w T  ( y ) + b ) = sg n    l ( y ) K ( y , y ) + b  

i i j j j i 

 jT      (14) 
 

Inner feature space product has equal kernel in input space [29], 
 

K ( x , x ' ) =  ( x ) ,  ( x ' ) 
 

When certain conditions hold. When K is a symmetric positive definite function that satisfies Mercer's 

Conditions 
 

 

K ( x , x ' ) =  a 
m 

 m ( x )  m ( x ' ) 
m 

 
a  0 , 

 K  ( x , x ' ) g ( x ) g ( x ' ) d xd x '  0 , g  L 
2 
, 

 
(15) 

 

then kernel represents an inner feature space product. Valid functions satisfying Mercer's conditions are given, 

which are valid for real x and x'. 

i 

1 
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Radial basis functions (RBF) received attention, usually with a Gaussian of form, 

  
K  ( x , x ' ) = ex p  −  . (16) 

 2 
2  

  
 

Classical techniques with RBF are centers subset determiners. Clustering selects a centers subset first. 

SVM feature' attraction is that selection with support vectors contributes one local Gaussian function centered 

on data point which is implicit. 

 
Parameter selection is crucial as SVM algorithm is sensitive to adequate parameter values choice and 

affects prediction accuracy. In SVM, parameters regularization constant C, and coefficients of SV kernel, e.g. 

kernel width σ in RBF impact prediction. Regularization parameter C determines trade-off cost between 

minimizing training error and minimizing model complexity, which reduces generalization capability when set 

too small or excessive. And σ reflects support vector correlation which determines generalization capability and 

prediction accuracy. Selecting cost parameter is NP hard. This work proposes using a new Firefly algorithm to 

locate the ideal C parameter. 

 
Firefly algorithm is based on fireflies flashing lights. In a firefly algorithm, the objective function of an 

optimization problem is associated with flashing light or light intensity which helps a firefly swarm to move to 

brighter/more attractive locations to get efficient optimal solutions. Some flashing characteristics of fireflies are 

idealized to develop a firefly-inspired algorithm [30]. 

 
The following 3 idealized rules were used to describe the new Fireflies Algorithm,: 1) all fireflies are 

unisex so one firefly is attracted to another regardless of sex; 2) Attractiveness is proportional to brightness, so 

for 2 flashing fireflies, the less brighter moves toward the brighter one. As attractiveness is proportional to 

brightness it decreases as distance increases. If there is no brighter firefly it moves randomly; 3) a firefly’s 

brightness is affected/determined by the objective function’s landscape. 

For a maximization problem, the brightness is proportional to the objective function value. Other forms 

of brightness are defined similar to a fitness function in Gas. The basic steps of a FA are as follows based on the 

above rules: 
 

Objective function f(x), x = (x1,..., xd)T 

Generate initial population of fireflies xi (i = 1, 2,..., n) 

Light intensity Ii at xi is determined by f(xi) 

Define light absorption coefficient γ 

while (t <MaxGeneration) 

for i = 1 : n all n fireflies 

for j = 1 : i all n fireflies 

if (Ij > Ii), Move firefly i towards j in d-dimension; end if 

Attractiveness varies with distance r via exp[−γr] 

Evaluate new solutions and update light intensity 

end for j 

end for i 

Rank the fireflies and find the current best 

end while 

Postprocess results and visualization 
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Technique 

Classification 

Accuracy 

Precision 

Recall 

RMSE 

SVM 

SVM with firefly MRMR and SVM with RBF MRMR and SVM 

algorithm fire fly algorithm kernel RBF Kernel 

89.61 

0.7874 

0.758 

0.2147 

91.03 

0.8179 

0.7948 

0.1826 

86.09 

0.7182 

0.7604 

0.3834 

88.18 

0.7533 

0.7725 

0.2458 

 

V. RESULTS AND DISCUSSION 

The software complexity measures such as Cyclomatic complexity, Base Halstead measures, Derived 

Halstead measures, and LOC measure of KC1 (NASA) dataset are used to classify the software modules. All 

classification in this investigation is carried out on Weka. For the performance evaluation of classifiers, 2107 

samples from KC1 Dataset is used, where 716 samples are used as testing set, and 1391samples are used for 

training. Weka was used on KC1 dataset for classification, and result is summarized in Table 4.1 and Figure 4.1. 

 

Table 4.1 Results 
 

 

Figure 4.1 Classification Accuracy 

 

The MRMR and SVM with firefly algorithm improved the classification accuracy by 5.58% when compared to 

the SVM. 
 

Figure 4.2 Precision 
 

The MRMR and SVM with firefly algorithm improved precision by 4.42% when compared to the 

SVM. 
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Figure 4.3 Recall 

 

The MRMR and SVM with firefly algorithm improved recall by 1.91% when compared to the SVM 

with firefly algorithm. 
 

 

Figure 4.4 RMSE 

 

The MRMR and SVM with firefly algorithm reduced RMSE by 13.5071% when compared to the SVM 

with firefly algorithm. 

 

V CONCLUSION 

Software defects are expensive regarding quality and cost. Also, the cost of capturing and correcting 

defects is a very expensive software development activity. SVM is popular and most of the researchers use it to 

construct a predictive model for SDP. Parameter selection is crucial as SVM algorithm is sensitive to the choice 

of parameter values affecting prediction accuracy. This article proposes a new optimized MRMR and SVM with 

firefly algorithm (MRMR-SVM with firefly algorithm) to predict SDP. Experiments show that the new method 

improved classification accuracy. 
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