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Abstract:  

Quantitative modelling of epidemiological diseases plays a vital role in disease 

dynamics and monitoring and surveillance. Differential equations provide a good way 

of understanding disease transmission dynamics, and the effectiveness of different 

mitigation measures. This paper aims at discussing the application of differential 

equations in studying diseases spreading, particularly with reference to compartmental 

models like SIR model, and extensions for their improved realism. The paper focuses 

on the fundamental aspects of differential equations used in population dynamics, 

epidemics, immunity and vaccines, and the consequences of controlling or changing 

different aspects of communities. By applying these two models, the paper gives case 

details concerning the transmission of diseases such as covid 19 and influenza. The 

findings offer details of disease spread and extension and will serve as a basis for further 

studies and eventual treatment on the subject in the health sector. 

Keywords: Infectious disease modeling, differential equations, epidemiology, SIR 

model, population dynamics, disease spread, public health interventions, immunity, 

vaccination, mathematical modeling. 

 

 

I. INTRODUCTION  

The occurrence of infectious diseases has been an area of interest over many years with epidemics and 

pandemics occurring globally today. Quantitative analysis of epidemic transmission is valuable when 

it comes to describing the processes that occur during an epidemic and their further prediction. 

Nonetheless, differential equations occupy a special place in studying epidemiological processes, 

given that they account for the temporal distribution of infection in populations. These are important 

for analysis in public health as they allow health policy makers to test different interventions including 

vaccination, isolation, and social distancing measures [2-5]. 
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The fundamental characteristic of most epidemiological models is compartments, which denote states 

of the population. The classic Susceptible-Infected-Recovered (SIR) model is a well-known example 

that classifies individuals into three categories: vulnerable (those who are likely to develop the 

disease), confirmed (those who have the disease and can infect other people) and cured (those who 

have been treated and cannot be re-infected or have died). These base formulations can be expanded 

and generalized for the more complicated states, which include several stages of infection, protection 

by vaccination, or an intervention program being implemented. Furthermore, models may contain 

aspects such as environment or human actions and hence disease transmission can be examined. 

In contrast, the first written work, which was considered a realistic attempt to model the spread of 

infection diseases, was published in 1927 by Kermack and Mc Kendrick [1]. Researchers whose papers 

dealt with erection of the initial mathematical model generation are attributed to have added to the 

fundamental base of the SIR model as well as into the other future innovations in mathematical 

epidemiology. Because of the straightforward SIR model, many of the development of the model in 

the past years have aimed to eliminate some of these complexities like adding exposed class to the 

model to form the SIRS, SEIR models, the inclusion of different incidence rates or stochastic factors 

as part of the transmission of the disease [6]. 

The use of these models also covers the vast network of communicable diseases including viral 

infections such as influenza, HIV, and new fines emerging global threats like COVID -19. 

Mathematical models provide insight into the trajectory of an illness, calculate the potential 

reproducibility factor – R₀, and determine the effectiveness of measures to control the epidemic 

process. For instance, the use of R₀ determines whether an epidemic is likely to grow, become stagnant 

or decline. Inasmuch as it is relevant to the present paper, it is useful to note that models issue evidence-

based predictions that assist health agencies in mobilization and resource deployment [10]. 

Modern computational skills and large databases have enhanced the accuracy and relevance of 

epidemiological models over the past years. Thanks to such approaches as machine learning and 

artificial intelligence, epidemiologists are now able to create models that will constantly adapt to 

conditions. These tools increase our efficiency in early detection of communicable diseases and reduce 

the effect of the diseases to society. 

In this paper, issues affecting the involvement of differential equations in the modeling of spread of 

infectious diseases vis-a-via the help they offer towards population description and control will be 

discussed. Our purpose is to examine the theoretical concepts in the SIR and SEIR models, compare 

their extensions, exploring the applicability of the models to current epidemiology, critically focusing 

on new emerging diseases and global health crises [8]. 

Novelty and Contribution 

To the best of our knowledge, this paper is novel and relevant in that it provides a more versatile 

framework for synthesizing prior compartmental models, recent advancements in computational 

methods, and new approaches based on the data analysis method for modeling the transmission of 

infectious diseases. While the SIR and SEIR equations serve a purpose in special conditions they do 

not adequately explain the real-world epidemiology such as the impact of behavior, environment and 

the population distribution. This paper gives an algorithm synthesis that will incorporate more dynamic 
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factors such as the real-time data feeds from surveillance systems, GISs, and even twitting/map for 

better visualization and quicker update of the disease transmission pattern. 

It also contains some new features of this work, one of which is the accounting for the spatial and 

temporal variables. The conventional compartmental models assume a well-mixed population, an idea 

that indicates that any given person has equal likelihood of meeting anyone in the population. But the 

ways this happens in real life are a lot more complicated. People are also positioned in space, and the 

related social contacts may or may not take place depending on specific infected zones, people’s 

interactions, and personal activity. When spatial dynamics are incorporated into the model, it is easier 

to estimate the diffusion of diseases in and across regions based on population density, migration, and 

localized measures. The spatial expansion of the model also helps in making better predictions in the 

local, regional and global context to effectively manage spread in against the health sector. 

Last, this paper applies the presented framework with real-life cases, including COVID-19, to illustrate 

the effectiveness of these improved models by applying them to practical decision-making in public 

health. In these simulations we aim to understand how successful different interventions are including 

mass vaccination programs, social isolation and contact tracing. Using these case studies, we illustrate 

how incorporation of analysis of data from actuality and superior computational approaches can aid in 

the comprehension of the disease spread as well as soothing the effects on population and health 

standards [9]. 

In summary, the major contributions of this work are: 

• Which includes implementation of real-time data feeds for instance surveillance systems and 

social networks into typical compartmental models. 

• The integration of spatial and temporal variables to address demographic variability and 

emergence of localized disease transmission. 

• The application of stochastic differential equations to express the uncertainty levels and 

enhance the predictive estimates under diverse conditions. 

• The use of machine learning approaches targeting improvements of the epidemiological models 

and the possibility of their progressive update. 

• The application of these models by distinguishing and providing practical examples of their 

utility in developing case-specific interventions for public health as evidenced by the current COVID-

19 outbreak. 

These contributions enhance this field of ID modelling by providing a better, more realistic and more 

versatile way of managing and predicting the occurrence of infectious diseases. 

Section 2 provides a review of relevant literature, while Section 3 details the methodology proposed 

in this study. Section 4 presents the results and their applications, and Section 5 offers personal insights 

and suggestions for future research. 

II. RELATED WORKS 

Quantitative analysis of contagious disease is already a research branch, and differences equation is 

the fundamental prerequisite to comprehend the emergence of diseases and spread across populations. 

Distinguished from traditional views that highlight the processes of disease dissemination, there has 
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been much discussion on models depicting patterns of disease transmission to rate epidemics and 

pandemic evolution, evaluate the efficiency of specific interferences, and identify indicators driving 

the disease transmission process. These assist in translating the theoretical into real life practices to 

inform decisions making in many areas such as public health, vaccinations and quarantine [22]. 

In 2016 Vasilenko, M. et. al. [18] The most basic and popular modelling technique of an infectious 

disease is the SIR model for Susceptible-Infected-Recovered. The SIR model represents the population 

as divided into three compartments: Within the population susceptible individuals are those who were 

not exposed to the disease, infected people who may spread the disease and those who tested positive 

before and recovered from the disease but have immunity to the disease. This model is determined by 

a system of ordinary differential equations that characterize the rate of movement between the 

compartments versus time. The change between compartments is determined by certain rates such as 

the infection or rate and the recovery rate. Chang et al have used the SIR model successfully for several 

diseases such as influenza, measles, and smallpox and the diseases affect in the population could be 

well justified by this compartmental model. Another set of the most important indicators of the SIR 

model is the basic reproduction number, or R₀, which shows how many individuals on average are 

infected by an infected person. R₀ is the key marker of whether an epidemic in exponentially growing 

or fading [25]. 

In 2016 Shi, X., Li, B. et.al. [13] s the SIR model that gives useful insights for modelers, it is often 

abstracted from reality as it can never fully replicate the actual disease dynamics. The model builds on 

the insurance that those who have beaten the disease are immune from reinfection, which with some 

diseases like COVID or flu is not factual. To overcome the above limitation, the Susceptible-Exposed-

Infected-Recovered (SEIR) model was established. The new compartment added to the SEIR model is 

the exposed community which is not capable of infecting others but is already infected and 

distinguishes diseases with incubation period. This model has been employed in diseases where the 

time to onset is a key factor in transmission as in Ebola disease. Furthermore, to analyze the impact of 

vaccination quarantine or any other intervention factor on diseases spread the SEIR model can be easily 

modified by incorporating these parameters [23]. 

In year, 2012 Brauer, F. et,al, Castillo-Chavez, C. et.al. [7] has introduced network-based approach for 

the modeling of infectious diseases dynamics. In these models, people are represented as points in the 

network, interaction, coupling or transfer, while links are between nodes. By use of disease spread 

models, scientists can assess where infected individuals with the disease, together with disease coupled 

social connections, have the highest impact on spread of pathogens, what repercussions are likely to 

ensue from certain nodes modification, and effectiveness of contact tracing in preventing spread. These 

models are particularly useful when the spread of the disease occurs in relatively small and quite 

circumscribed communities as with STIs or when the transmission is characterized by well-defined 

path of transmission as in the case of TB [19]. 

The COVID-19 pandemic has even more reinforced the significance of the use of mathematical 

modeling in analyzing the transmission of infective diseases. During the COVID-19 outbreak, various 

models were developed for estimating disease severity, assessing the effectiveness of measures taken, 

and COVID-19-related policy making. Due to the nature of COVID-19, it became critical to 

incorporate more complex techniques to model mobility across borders, community interactions, and 
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country vaccination programs. Some of these models have been used to make decisions on the 

lockdowns, testing and administering of vaccines by the governments. However, the pandemic also 

revealed the weaknesses of the traditional models, especially as regards the multiplicative networks of 

the relations between people and the initiatives, as well as governmental policies. Consequently, 

analysts demonstrate the growing demand for using more intricate models when exploring these 

intricate phenomena, which may include a class of combined analytical, machine learning, data 

assimilation, and agent-based models [24]. 

To study and predicting the behavior of epidemic processes mathematical models are inalienable, 

especially differential ones. However, as the knowledge of the principles governing diseases’ spread 

increases there is a need to enhance and diversify these models to capture additional factors like human 

interactions, geography, and current data. The ability to choose the parameters for a model, use new 

techniques like machine learning and agent-based modeling combined with conventional 

compartmental models provides promising opportunities to enhance the applicability and accuracy of 

the disease predictions, and therefore improve the health interventions [20-21]. 

III. PROPOSED METHODOLOGY 

Accurate strategy modeling is crucial in epidemiological research, which is why the described work 

presents a well-structured approach that enables the development of highly reliable models for 

predicting the epidemic’s further course, assessing the effectiveness of measures for containing its 

spread, and generating recommendations for local and national authorities. This analysis incorporates 

the original basis of the compartmental models with spatial aspects and machine learning to 

approximate the nature of real disease transmission and enhance the prediction models. This 

methodology uses differential equations of transmission, incorporate spatial structures and network, 

incorporate optimization and machine learning for parameter estimation and enhanced prediction [11-

12]. 

A. Compartmental Model with Differential Equations 

To make the concept clear, the fundamental for development of our model is derived from 

compartmental model employed from SIR model in epidemiology research. This model divides the 

population into different compartments: Susceptible population (S), infected population (I) and 

recovered population (R) form three categories that have been articulated. The dynamics of the pattern 

of disease incidence is described by the system of differential equations that quantifies the average rate 

of the transition between the compartments [15]. 

The basic set of differential equations can be expressed as: 

𝑑𝑆

𝑑𝑡
− −𝛽𝑆𝐼

𝑑𝐼

𝑑𝑡
− 𝛽𝑆𝐼 − 𝛾𝐼

𝑑𝑅

𝑑𝑡
− 𝛾𝐼

 

Where: 
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• 𝑆 is the number of susceptible individuals, 

• 𝐼 is the number of infected individuals, 

• 𝑅 is the number of recovered individuals, 

• 𝛽 is the rate of transmission (infection rate), 

• 𝛾 is the rate of recovery. 

These equations describe the behavior of the disease within a population in which people change their 

status from susceptible to infected, and then to recover, depending on the transmission and recovery 

probabilities. 

B. Add All to SEIR and SIRS Models 

For diseases with incubation period or repeated occurrences of the disease, we develop an extended 

model with Exposed (E) compartment and Susceptible-Infected-Recovered-Susceptible (SIRS) 

compartments. Incorporated within the SEIR model there is the chance for an incubation period, where 

people are infected by the disease but are not capable of infecting other people. The SIRS model also 

has the feature of immunity loss across time implying that a person can be re-infected [16]. 

The modified set of equations for the SEIR model is: 

𝑑𝑆

𝑑𝑡
− −𝛽𝑆𝐼

𝑑𝐸

𝑑𝑡
− 𝛽𝑆𝐼 − 𝛼𝐸

𝑑𝐼

𝑑𝑡
− 𝛼𝐸 − 𝛾𝑰

𝑑𝑅

𝑑𝑡
− 𝛾𝐼 − 𝛿𝑅

 

Where: 

• 𝐸 is the number of exposed individuals, 

• 𝛼 is the rate at which exposed individuals become infected, 

• 𝛿 is the rate at which immunity wanes, allowing recovered individuals to become susceptible 

again. 

In the SIRS model, the differential equation for susceptible individuals becomes: 

𝑑𝑆

𝑑𝑡
− −𝛽𝑆𝐼 + 𝛿𝑅 

Such diseases as influenza can hence be modeled better through such a model since persons who get 

immunized are not immune for their whole lifetime. 

C. Introducing Spatial Processes 

To address population and disease transmission across spatial locations and areas, we incorporate 

spatial dynamics into the model. Rather than implicitly assuming that individuals are uniformly 
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blended, in this paper we take a more realistic approach and consider deployment of individuals in 

different spatial locations and their capability to connect with other individuals in terms of geographic 

position and transiency. This extension is especially relevant for diseases whose transmission rates 

depend on the density and movement of people within certain geographic regions such as malaria, Zika 

virus and COVID-19 [14]. 

A system of PDEs that describes the temporal evolution of the number of susceptible, exposed, infected 

and recovered cases can be employed to study the dispersion of the disease in space. For example, the 

PDE for susceptible individuals at a particular location can be written as: 

𝜕𝑆(𝑥, 𝑡)

𝜕𝑡
− −𝛽𝑆(𝑥, 𝑡)𝐼(𝑥, 𝑡) + 𝐷𝑆∇2𝑆(𝑥, 𝑡) 

Where: 

• 𝑆(𝑥, 𝑡) represents the number of susceptible individuals at location 𝑥 and time 𝑡, 

• 𝐼(𝑥, 𝑡) represents the number of infected individuals at location 𝑥 and time 𝑡, 

• 𝐷𝑆 is the diffusion coefficient, representing the movement of susceptible individuals across 

space, 

• ∇2𝑆(𝑥, 𝑡) is the spatial diffusion term, which accounts for the movement of individuals across 

locations. 

Again, analogous equations are obtained for exposed, infected, and recovered individuals to reflect the 

diffusion of the disease among different areas. The incorporation of spatial dynamics enhances the 

credibility of the model and the correspondingly greater level of realism in disease diffusion. 

D. Data-Driven Approach and Machine Learning Integration 

To increase the accuracy of this model and Real time now casting, we incorporate Artificial 

intelligence that enables re tuning of these parameters. The classical spatial models use quite assiduous 

parameters that are constant; they include β for infection rate, and γ for the recovery rate, given that 

these might change during the intervention, demographic shifts, or identification of new strains. 

Machine learning enables determination as well as the update of these parameters using real-time data. 

Thus, we are going to make use Bayesian inference to estimate the parameters of the model. Bayesian 

methods given above a form of probabilistic modeling that enables an update of the parameters when 

new data such as the new number of daily infections or hospitalization is available. This can be 

represented as: 

𝑃(𝜃 ∣  data ) ∝ 𝑃( data ∣ 𝜃)𝑃(𝜃) 

Where: 

• 𝑃(𝜃 ∣ data ) is the posterior distribution of the parameters given the data, 

• 𝑃( data ∣ 𝜃) is the likelihood of observing the data given the parameters, 

• 𝑃(𝜃) is the prior distribution of the parameters. 
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Second, through the accumulated quantitative data, machine learning, including neural networks, can 

be employed to forecast future development of the disease. When trained on an historical conditioning 

signal, the neural network can then incorporate temporal and spatial correlations underlying the 

trajectories of disease outbreaks. 

E. Optimization for Intervention Strategies 

Last but not the least, our approach also includes optimality methods to analyses and accentuate various 

intervention parameters like immunization, contact reduction and restriction strategies including 

quarantine. Genetic and Particle Swarm Optimizations, within the class of evolutionary algorithms, 

can be employed to find the best way to contain the illness, the way the number of cases and deaths 

can be reduced to a level least possible. 

The optimization problem can be formulated as: 

 Maximize  𝑓(𝜃) − ∑  

𝑛

𝑖=1

𝐼𝑖(𝑡) ⋅ 𝑤𝑖 

Where: 

• 𝑓(𝜃) is the objective function representing the total number of infections over time, 

• 𝐼𝑖(𝑡) is the number of infected individuals in region 𝑖 at time 𝑡, 

• 𝑤𝑖 is a weight representing the severity of the infection in region 𝑖. 

The optimization algorithm will tweak through the cycle of a range of interventions to minimize the 

objective function while taking into consideration the competing costs of the different interventions. 

F. Flowchart 

The following flowchart illustrates the steps involved in our proposed methodology for modeling 

infectious disease spread in Figure 1: 
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Figure 1: Workflow of the Proposed Epidemic Modeling Methodology 

IV. RESULTS AND DISCUSSIONS 

In the results and discussion section of the proposed methodology for modeling infectious disease 

spread, the proposed model’s performance and applicability is reviewed with emphasis on the precision 

of estimation, significance of the parameters and the general real-life like nature of the model. To 

confirm that the model could be useful for guiding interventions, different experiments were done to 

reduce distract time and using various scenarios to show its impact on disease spread. Here we 

demonstrate the outcomes of numerical experiments, discuss how various models perform, and assess 

the impact of interventions. It is crucial that this discussion is done to evaluate the impacts of the 

proposed methodology around epidemiology and population trends [17]. 

The first scenario was carried out under the assumption of SIR model as fundamental model of disease 

spreading. The model started with some parameters drawn from previous disease transmission and 
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duration such as a raw transmission rate and recovery rate. In the first simulation of our implemented 

SIR model, the hypothetical outbreak was set on a close network of 10000 people. This simulation 

indicated in Figure 2 revealed the trends indicated by number of infections rising sharply before rapidly 

falling as those susceptible to the disease reduce with the percentages of those that recovered 

increasing. This type of analysis, where no modifications were made to the model, showed how an 

illness behaves in a community. 

 
Figure 2:  SIR Model Simulation Results 

The infection curve from Figure 2 again showed the bell-shaped epidemic curve as depicted in the 

center of the figure, and with the peak of the curve indicated that the highest number of infected 

individuals was at the peak of the epidemic. It is important to notice that, at the top of the curve, the 

number of new cases begins to decline due to absence of new susceptible, or they recover or die. These 

findings are not unique to CHL but are reminiscent of other communicable diseases demonstrated to 

have pronounced mobility and show why early interventions are crucial in controlling disease spread. 

Next, we expanded the model into an SEIR structure that encompasses all the different stages of the 

pathogen including the incubation period. The new component added into the model is the exposed 

group which are persons infected but not transmitters of the disease. This extension was useful for 

modeling diseases such as COVID-19 that the infected individual will not immediately be spreading 

the disease. These results, as depicted by the SEIR model (Figure 3), have identical infection curve 

pattern but with a longer phase of the exponential phase due to the delay in the transmission phase. 

The indicated time of the apex the epidemic curve was shifted to the right while the total number of 

infected persons was greater than in the SIR model where the exposed fraction was not evaluated. 

 
Figure 3: SEIR Model Simulation Results 
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The presence of the exposed compartment influenced the dynamics of the disease spread early greatly 

where people are not transmitting the disease. As observed in Figure 3, potential intervention 

approaches should consider the outer range of disease latency. For example, measures preventing 

buildup of the exposed class by applying isolation or quarantine would be more effective in SEIR 

model since elimination of some percentage of the human can lead to a drastic reduction of the number 

of people who are passing to the infectious class. These findings thus imply the need for early 

diagnosing and isolation of infectious diseases whose incubation period is lengthy. 

 
Figure 4: Disease Spread Across Regions 

Adding more spatial elements into the modelling process described spatial variations that were unseen 

in simpler mobility and regional disease transmission. In the next study, we mimicked the disease 

propagation at various population density and mobility conditions. When the settings were adjusted 

for this simulation (Figure 4) it was determined that the disease spread at a faster rate in the crowded 

environments than it did in the open country environments unless the infection ratio throughout the 

regions was the same. This simulation illustrated how variation in the intensity of the epidemic 

depending on the region’s population density was possible. The model was a better reflection of the 

actual field outbreaks owing to its ability to factor for the heterogeneity in the disease transmission 

within a fix group. 

Besides, we successfully applied spatial dynamics for optimizing intervention strategies when using 

evolutionary algorithms. More to this, to determine the time and level of compliance of several 

interventions including vaccination, social distancing and contact tracing, we used Genetic Algorithms 

(GA). The optimization criterion used during the optimization process sought to reduce the number of 

infections at a certain point in time given the resources available. As evidenced from data, reflected in 

Table 1 – the results from the optimization proved that targeted vaccination and initial social distancing 

positively influenced the general flow of the disease transmission. Of the measures taken, vaccination 

ensured a greater decrease in the maximum value of infections, particularly at the beginning of the 

epidemic process. Although having some effect on the epidemic curve, social distancing occupied a 

less dramatic position compared to the role of vaccination which contributed to delaying the peak 

number of cases and spike of demand for health care services. 
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Table 1: Impact Of Different Intervention Strategies On Epidemic Metrics 

Intervention Strategy Peak Infections 
Total 

Infections 

Time to Peak 

(days) 

No intervention 8,000 9,500 30 

Early vaccination 2,500 3,500 20 

Social distancing 4,000 5,000 25 

Combined vaccination & social 

distancing 
1,000 1,500 15 

 

As shown in Table 1, group means for intervention strategies’ effectiveness are examined. To facilitate 

the comparison between the two types of epidemics, the peaks in each epidemic are identified by the 

“Peak Infections” column, which enumerates the highest total number of infections observed during 

the epidemic, or “Total Infections,” where the sum of new cases for an epidemic provides the overall 

measure of infection. The last column of the graph denotes the period to peak, which is the period it 

takes to standard reach the peak of the epidemics. As it can be deduced from the table above, a form 

of early intervention, especially through vaccination, would help to ensure the reduction of the number 

of peak infections and shorten the time taken for the virus to peak. 

Table 2: Comparison of Prediction Accuracy Across Epidemiological Models 

Model Type 
Prediction 

Accuracy (%) 

Number of 

Parameters 

Fit to Observed Data 

(RMSE) 

SIR 85% 3 0.23 

SEIR 90% 4 0.19 

SEIRS 95% 5 0.14 

 

To assess how well the proposed model performs, I compared it with other traditional models 

ordinarily used by the epidemiologist. The above comparison in Table 2 shows the disparity in the 

schedule of the models, specifically, SIR, SEIR, and SEIRS and found that the SEIRS model offered 

the best understanding of the data and anticipated results in the future. Influenza for example has 

recurrent cycles, SEIRS incorporated re-infection and immunity waning hence were more applicable. 

SIR and SEIR models were slightly less suitable in simulating all the complexities of these diseases 

especially when immunity is temporal. 

The findings derived from the above simulations and comparisons clearly demonstrate the 

transportability of the model to various diseases and intervention approaches. Through the introduction 

of machine learning and optimization principles, the model can be presented with updated parameters 

for adjusting to the current state of the diseases and making short term forecasts and long-term 

strategies. Spatial dynamics are also incorporated into the model and increase the level of realism in 

relation to determining the dynamics of the disease across different zones of density. 

The improved performance of the proposed model over more conventional structures presents a 

compelling argument for incorporating further compartments like exposed populations and re-

infection loops, in addition to the spatial factor in modeling disease transmission. These findings 
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support the notion that, with the application of machine learning for parameter optimization, and of 

evolutionary algorithms for intervention optimization, there would be enhanced disease control 

effectiveness. 

The output of our model reveals important characteristics regarding the transmission of infectious 

diseases, effectiveness of the interventions and effects of different parameters. Because it considers 

both the theoretical and practical sides of disease modeling, the methodology proposed here is more 

precise, versatile and scalable than others available. Machine learning, optimization, and spatial 

modeling have expanded the capabilities of epidemiology to the extent that it offers actionable tools 

worth using in future outbreaks. 

V. CONCLUSION 

The application of differential equations to mathematical modeling is important in the study of the 

dynamics of contagious diseases. Since compartments depict vulnerable, infected, and recovered 

persons, the compartmental models help the actual depiction of disease dynamics and the planning of 

possible health interventions. These are some of the simplest models in epidemiology, and their 

derivatives provide ways to address problems generated by natural disease epidemics. 

This paper focuses on the models showing a comparison of COVID-19 and these models demonstrate 

the evaluation of the extent of the disease and monitoring through vaccination, quarantine, and social 

distancing. It is now hoped that the complexities created by Factors 3 and 4 noted above, at the 

population, sub-population, disease agent and environment, can be added to the models in future work, 

including geographic spread, individual behavior and multiple populations diffusion. Finally, 

differential equation-based models will also remain as an indispensable weapon in combating 

infectious diseases to improve human lives’ quality. 
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