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CONKERTS Abstract—We experimented analyzing motor vibration with aid

1. Introduction of Raspberry Pi when, at that time, the engine vibration was
abnormal. The Pi signal is transmitted to a relay by the motor
supply disconnection. The control unit, nevertheless, monitors and
3. Proposed Method sends the data to the storage system in good form with proper
4. Results and Discussion temperature. A FO-PID controller is utilized to analyze the effects
of IM due to harmonic current, vibration, and noise. The induction
motor’s response to harmonic and current fluctuations is stabilized
by a FO-PID controller. The findings can be displayed on the
mobile. The tests were carried out in a static state of vibration
condition, and fast Fourier transformation is used to analyze the
measured vibration data signals. The results of this model were
based on the convolutional neural network (CNN), which
considerably monitors early diagnostics of the vibration. With a
maximum delay of around 1s, the controller can forward cloud
vibration data. Using the CNN model train to analyze the
performance of the classification accuracy, the stored data are
collected. This article offers a novel way of building tools for
measuring vibration in real time based on the schematic
architecture provided by the Python mode.

2. Literature Survey

5. Conclusion
References

1. INTRODUCTION

In industry, rotating machines are an important factor in
modern society. Bearings have a big impact on the effi-
ciency and productivity of a rotating machine. Rotating
devices, such as wind turbines, gears, etc., are used in
many industrial applications. Bearings are typically under
full loads [1]. This can gradually reduce the impact and
lead to system failure. The industry does not want to stop
production due to possible system failures. When they
know the cause of failure, they can choose their defense
quickly and carefully. Thus, the industry could be pushed
Keywords: induction motor, vibration sensor, micro-electromechanical PESiCle et ST i i PRACIOON, Inesptens |2
systems sensor, convolution neural network, fast Fourier transform Measurements are often obtained for each machine end,
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by the vibration sensor, which monitors machine condition.



2 Electric Power Components and Systems, Vol. 0 (2023), No. 0

faults, mechanical instability, eccentricity, and misalign-
ment in milliampere seconds (mas). The source of the
motor vibration is from motor base, bearing, broken rotor
bar, two-line frequency, and motor imbalance [3]. It is
very important to understand that vibration signals are
always a combination of the forcing effect (source effect)
and the transfer function effect (structural transmission
path). The use of electric motors is continuously expand-
ing, and condition monitoring of those motors is of the
utmost importance [4]. Condition monitoring science is
looking into automated computer circuits to exclude human
experts from the condition monitoring process. However,
the development of artificial intelligence to monitor the
health of electric cars is still in its infancy, and a lot of
work is needed to implement these techniques for trad-
itional healthcare despite significant work in this area [4].
The structure of the induction motor (IM) is exposed in
Figure 1.

The abnormal behavior of the motor is first identified by
associating it with the vibration intensity limit [5]. An
accelerometer is an attractive option for piezoelectric cer-
amic micro-electromechanical systems (MEMS) in the

FIGURE 1. Construction of induction machine.

embedded field because of its small size, low energy, and
low cost. The MEMS accelerometer is widely used for use
in portable product devices such as smartphones and tab-
lets. This method of improvement not only reduced the
size and cost of the device but also increased the MEMS
accelerometer with greater accuracy and performance. The
accuracy and bandwidth of a MEMS sensor were depend
on the structure of its sensor components. On the one
hand, the high frequency of naturally sensitive components
influences large bandwidth. In contrast, sensitivity is
inversely proportional to the natural version class. The
strategy of MEMS-based sensor systems rotates around the
trade-off between accuracy and bandwidth. It is, therefore,
important to study the dynamic nature of sensory
components.

The dynamic and static properties of such components
have been investigated in Figure 2 context of a variety of
sandwich composites, nanostructures, microstructures, and
carbon nanobuses. The small MEMS AC accelerometer
makes it easy to connect small objects without affecting
the mechanical properties of the test device. In addition,
the multi-agent system charge amplifier (MAS CA) accel-
erometer requires fewer data acquisition components than a
power amplifier-based system. Most modern MEMS can be
connected directly to cheap microcontrollers via a serial
data bus. In addition, MEMS accelerometers can usually
retrieve data on acceleration along multiple axes at the
same time, which enables three-dimensional movements to
be registered. MEMS accelerometers are used in a variety
of measurement schemes, including shock quantification.
vehicle monitoring, rotating machines’ vibration analysis,
and motion and gesture recognition. Vibration detection or

— Abnoramal Condition
Normal Condition

FIGURE 2. Representation of normal and peak vibration effects.
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monitoring helps to discover any kind of unwanted vibra-
tion present in the motor, so the issue can be present at
that time. In existing, there is a lot of existing technology
to find faults in machines using the ToT. But until now,
some drawback occurs in that existing model, so we
planned to find vibration in the motor by using IoT. Here,
we mainly used Raspberry Pi, which is already used in
several IoT real-time projects. The major advantages of
this device are simplicity in size, low cost, and the benefit
of several interface ports. Analytical expression of vibra-
tion was developed for spline engines. The above problem
makes it more important to reduce harmonics for IM with
proportional integral derivative (PID) controllers. It is not
easy to obtain alternating current (alternating current) at
operating frequency for motor control, especially for IM
with a conventional PID controller. Stability is ensured by
active control of high-precision rotary motors, which
improves motor efficiency. Full-order PID (I0) and PID
(FO) controllers are already widespread in the industry.
The tuning techniques of FO P I ADu controllers have
been presented. To address and diagnose the mechanical
problems of the IMs, vibration analysis is presented in this
paper. The very fault operations of the adjustable speed
drives often make the infrequent voltage content for the
IMs inputs. The imbalance in voltage is caused by the sin-
gle-phase load in three phase-based power systems. The
main contributions are highlighted as follows:

e  Analysis of vibration for the IM is examined and diag-
nosed using the convolutional neural network (CNN)
method.

e The capacity to accurately evaluate the vibration data
is necessary for the machinery diagnostic performed
by vibration analysis to be accurate. For the vibration
data, in particular, the frequency spectra are evaluated.

The remaining paper is organized as follows: The state-
of-the-art methods for analyzing the vibration of IMs are
discussed in Section II. The proposed methodology is
described in Section III; Section IV discusses the experi-
mental results; finally, the conclusion for this paper is

given in Section V.

2. LITERATURE SURVEY

Introduced the open-source MEMS accelerometer and bat-
tery-powered IoT Memsio, it is a sensor unit that can be
used to sense and measure a wide variety of movements. It
is managed through a web browser [6], so it can be
accessed remotely via a smartphone and computer. In add-

ition, the results showed that Memsio can measure

accurately and reliably. Memsio’s operating time is about
one business day, depending on the time it takes to meas-
ure and the frequency of these measurements, which is
very large to finalize the value of it. In this study, we have
significantly diagnosed the vibration in the motor in real
time by using Raspberry Pi.

For classification purposes, we use the K-nearest neigh-
bor (K-NN). The result of this research is the development
of embedded systems to classify various failures in the
machine. This experiment is performed on a testing facility
in the mechanical vibration lab of the department of MED
[7]. The total accuracy of our experiment is 91.5%, which
is very less to analyze the behavior of the vibration
SEensors.

In the field of mechanical condition monitoring, diagnosis
of faults in bearing is a hot topic. From examining data, fea-
ture extraction and classification of pattern are the crucial
stages in bearings defect diagnosis. In the event that one or
more bearing components fail, the bearings will vibrate
more. The additional vibration frequency and the velocity of
bearing are connected via the fault characteristic frequency.
The HHT, the WT, EMD, and other methods were used for
feature extraction in conventional methods of signal process-
ing for the detection of bearing fault by utilizing signal vibra-
tions [8]. The frequency components of the initial signal
vibration are analyzed to identify the failing bearing [9]. The
feature vectors of the accelerometer signal were retrieved
using the WT. After training to categorize the feature vec-
tors, the ANFIS was used to classify the data. The suggested
method was successful even under varying load [10]. In
detecting fault diagnosis, SVMs were employed success-
fully. The extraction of feature vectors with CWT, and the
data examining for the three-phase IM was categorized using
an SVM [11]. To identify the bearing’s early problems, an
intelligent defect detection based on a BPNN. The EMD
method is used to acquire intrinsic mode functions (IMFs)
after initially acquiring IMFs by decomposition strategy of
wavelet packet. The signal fault pattern investigation was
identified by utilizing a three-layer BPNN. Fault diagnosis
was done using the Bayes net classifier and the naive Bayes
classifier. The signal vibrations were examined by wavelets
to obtain the discrete characteristics of wavelet and then
used as input for classification of Bayes net by suggested
technique is applied [12].

3. PROPOSED METHOD

In this section, we discussed the projected technique in
diagnosis of motor vibration. In this experimentation, we
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FIGURE 3. Proposed block diagram.

have proposed a method used to analyze the motor is
monitored and controlled using an IoT system. In this
study, we offered CNN-based monitoring and controlling
scheme for recording the vibration, temperature, and angle
of the vehicle. In this case, a power supply of 5V DC is
applied to turn ON the Raspberry Pi circuit. A Raspberry
Pi microcomputer is the heart of the system; the vibration,
temperature, and angle of the vehicle are collected by
Raspberry Pi using sensors; the data is used to make a
CNN model.

The system consists of sensors, an alert light-emitting
diode (LEDs), a relay, a Global System for Mobile
Communication (GSM) module, and a motor. The system
is monitoring the vibration of the motor and controls. In
this method, we have used three sensors as temperature,
vibration, and MEMS sensors. The MEMS sensor is used
as the ultralow-power for low, i.e., 23 uA for the measure-
ment mode and also 0.1 yA in the stand mode. An analog-
to-digital converter (ADC) MCP3008 of 8-channel 10-bit
used to convert the sensor output analog signal. This con-
verter through the general-purpose input/output (GPIO)
interface is connected to Raspberry Pi. The relay module is
used to break the supply to the motor, when vibration is
apart from normal, that time message will be transmitted to
the user by using the GSM module. Then, the vibration
and breaking values are stored in the cloud by using the

Python tool when the Raspberry Pi was used to preprocess
all the collected data and sent automatically to the database
for future to learn the CNN model by automatically break-
ing the supply to the motor. The performance metrics are
obtained by using the Python tool.

Figure 3 provides the block diagram for the proposed
architecture. The vibration sensor comprises a MEMS sen-
sor (ADXL345) and a small, thin, high-resolution ultra-
sonic accelerometer. It measures acceleration
applications as well as dynamic acceleration due to move-
ment or impact. The analog device sensor signal works in
analog-digital form and uses a capacitive measurement

static

method in which the capacitance between the pin beam
and the adjacent boom changes due to the weight of the
load.

3.1.

The different experimental tasks include diagnostic vibra-
tion and vibration control. Vibration in the damaged zone
determines the power deficiency during vibration diagnosis,
and the force selection is related to speed.
Diagnostics are generally measured in a narrow, low-fre-

Vibration Diagnostics

lines

quency band, both velocity, and acceleration of the vibra-
tion. Most vibration measures are often taken with the use
of piezoelectric vibration acceleration sensors. The energy
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supply for the electric charge sensor is the output signal of
this sort of sensor.

A vibration analysis device is an essential tool for
detecting faults in a machine. In general, machine vibration
is a static signal made up of random vibrations and noises.
Usually, FFT has been used to perform this analysis. If
random vibration and noise levels are high, you will
receive incorrect information about the condition of the
machine.

3.2. TInduction Motor Vibration

This experiment used different ratings as 3.7kW, 7.4kW,
and 14.7kW IMs. The harmonic instruments amplitudes
for the tested IM were considered based on the subsequent
equations,

_ (N [ bycos (p)
f(HZ) = (5)ﬁ 1 _—dp— (1)

(N [ bycos ([)’)_
f(He) = (5>fr 1 +7d,, @)
S = dof b |1 =22 — () 3)

P ]

For a train defect,
f(H) = £,/2) [l - 5’1%(’”] 4
7

where

e f. is identified as rotational frequency;

e d, is identified as diameter of ball pitch;

e by is identified as the diameter of ball;

e N is identified as the sum of balls;

e B isidentified as the ball contact angle.

The analysis of vibration spectrum is used to determine the
angle and temperature. The mistakes in vibration are
defined by the two-value association, the amplitude of the
harmonic components acquired from an observation of the
vibration spectrum, and the harmonic mechanism’s ampli-
tude at the equivalent frequency from the spectrum of the
position. This frequency of oscillation in the prevailing
spectrum, that is.

Jra = =] (%)

1,2,3, 4... -and f, is the characteristic of
the frequencies of vibration.

where k& =

The harmonic spectrum is constructed using FFT data,
which is a mathematical process that extracts the represen-
tation of the frequency of a time domain signal.

3.2.1. Design of Accelerometer Vibration. The accelerom-
eter is a widely used device for measuring the vibration of
vibrations and recording the vibration effects of various
machines. From the accelerometer record, the displace-
ments and velocity are attained by integration, and its
equations are following,

The acceleration ratio is given as

1

> —y (6)
[(1—r2)" + (2&r)°F
[(1 =) + (28r)’)
The operating speed can be written as
2
o = Rem2m) %)
Time
The accelerometer damped frequency as
Wy = 1-— ézwlz (8)
) ) r
—_— = 9)
@a \/1 - 52(})11 \/1 - éz
r=2\/1-¢& (10)
Wy

By taking ¢, the accelerometer undamped natural fre-

quency as
Wy = —t 1n
1-¢&
Since, w, = \/k/m
k= mwi (12)
The damping constant can be written as
c = 2mwy; (13)

3.2.2. Design of Vibrometer Calculation. This device con-
sists of a cage mass meter, a K spring, and a crossed C
connected to an oscillating body. With this arrangement,
the ends of the spring and the dashboard trim and their
vibrations move in the same way that the suspended mass
moves. Then, the displacement of the mass with respect to

the cell z = x —y, where x is the vertical displacement



6 Electric Power Components and Systems, Vol. 0 (2023), No. 0

R

Vibration
Sensor

FOPID

Power Supply (Sv DC)

|

Controller

Induction Motors In
Industries

FIGURE 4. Proposed vibration controller architecture.

of the suspended mass, can be calculated using the follow-
ing equation,
Assumed harmonic motion of vibration body

y(t) = Ysinowt (14)
The mass can be written as
mx+c(x—y)+k(x—y)=0 (15)
The relative displacement z as
z=Xx—y (16)
mz + cz + kz = my (17)
mz + ¢z + kz = mw? Vsin wt (18)
The steady-state solution is given by,
z(t) = Zsin(wt—0Q) (19)

where Z and @ are given by

7= Ya? 3 2Y
[(k 18 mw?_)?. +C2w2]1/2 [(1 _ 1,1)2 e (25}’)2]1/2
(20)
] co T 2%r
¢ =tan (7]{ — ma)z) = tan <—1 - r2> (21)
0}
r=-— (22)

wy

& R
R
A
S
G g G
P F P IoT
I I Module
0] = 0]
R
Y
P
I
& J
. c
°= 2mw, @3}

Therefore, the relative displacement between the mass
and the base is essentially the same as the displacement of
the base.

2(2) = Ysin(wt—0) (24)

1
(1= )+ 2]

With  y(f) = Ysinwt
motion y (t) with the exception of the phase delay. The
distance between these phases can be considered equal to
180, equal to & = 0. If the displacement thus recorded by
y (t) is delayed with respect to the time to measure the
z (t) offset, then there is no interval at that time if the base
offset y (¢) has a single harmonic element.

Figure 4 shows the proposed vibration controller architec-
ture for controlling motor vibration in industries. In this tech-
nique, we identified the vibration in both load and unload
conditions of motors, and also, here, we mentioned three
kinds of IMs used to analyze and control the vibration using
the FO PID controller. The vibration sensor sensitivity of
(£10%) and frequency range of (+3dB) are computed. In
order to receive important operating information via sensors,
the motor works in a safe environment for the person work-

~ 1 (25)

shows that z(¢) gives rectilinear

ing on the machine. Different conditions associated with
extreme temperatures, magnetic fields, vibration ranges,
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FIGURE 5. Diagram of an induction motor PID controller
depending on magnetic current, voltage, and torque.

frequency ranges, compatibility of electromagnetic, and dis-
charge conditions of electrostatic force, as well as the essen-
tial signal quality, require different types of sensors.

3.2.3. Scheme of FO PID Controller. Figure 5 shows a con-
trol scheme with the FO PID controller. For each of the con-
sidered parameter projects, the controller P depends on the
current, so that the same output signal relative to the error
E(T) current is generated. The P-controller upsurges the
standard slew rate for current and voltage. Adjust the error
condition to stable state until the error condition is zero by
using the I-controller. On the other hand, the I-controller
also confines response rates and disturbs system stability.
Controller D by future errors prediction solves this problem.
Controller D can develop system stability by changing the
phase delay state. If the controller parameter D is increased, the
motor closed loop has an acceptable speed to reach its refer-
ence. However, most D controllers will over-respond to the
motor and exceed the limit. The stability and efficiency of
active IM control can be enhanced. A master controller is
required to compensate for the delay in phase. This study
improves the FO PID controller to recover the robustness and
stability margins of the IM system compared to the broadly
used traditional PID controller. The FO PD controller  may be
appropriate and is also economical. However, by utilizing FO-
PID-u controller, there is still a static position error due to sev-
eral kinds of integral terms. To solve this problem, an FO-PID
controller is proposed, but FO-PID ADu does not act as a PID
controller for IM control. Project factors as follows
! de(t)

u(t) = Kpelo) + K | elo)at + K325
J0

where E (T) represents an error value, proportional gain
represents a genetic component, that represents an integral
component, and K represents a derivative component. p, /.,
and u cannot be positive integers. The PID controller func-
tion provides a control value of U for most preprocesses.
In general, tuning methods of parameter for Pp I ADu con-
trollers can be logically obtained by solving non-linear
devices and satisfying the phase transition frequency and
vector space between gain position and edge settings.

(26)

0.007

0.0065

0.006

0.0055

Vibration peak to peak (mm)

0.005 ———N N
1 3 5 7 9

FIGURE 6. Vibration measured results of 3.73 kW induc-
tion motor.
0.007
0.0065
0.006

0.0055

0.005

Vibration peak to peak (mm)

= 0.0045

0.004

1 2 3 4 5 6 7 8 ] 10

FIGURE 7. Vibration measured results of 7.4kW induc-
tion motor.

The consequences of the PID vector vibration control
for driving IMs are also presented. The analysis of IME
domain regulates the effect of changing PID controller
operating factors on vibration and noise.

Figures 6, 7, and 8 show that the investigational conse-
quences show a case study of the vibration characteristics
for three types of rotary IMs. Measurements show that
PID-controlled asynchronous drives can reduce motor-gen-
erated noise and vibrations. The results of the motor speed
experiment show that a higher speed (1200 rpm) is applied
to the IM. This is greater than the low-speed IM (500 rpm)
because the PID controller has an unbalanced current.

According to the graphical results plotted in Figure 9,
the vibration rate is not increased when the load is passing
into it. For the two distinct situations, such as those with
and without a load. In this instance, both the load and the
motor’s speed are altered. As a result, the significance of
the vibration rate in relation to speed is examined.

3.2.4. Comparison of PID Controller and FO PID
Controller Performance. The vibration suppression effect
of an IM is compared to separating the PID controller and
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the conventional PID controller. The different speeds of
spectrum vibration and the spectrum stator current of the
motor are analyzed and compared. The FO-PID controller’s
vibration suppression provides improved performance on
comparing with conventional PID controller.

The spectrum data on stable functioning below 450,
600, and 750 rpm are compared and analyzed in Table 1.
The FO-PID controller has some advantages over the
vibration suppression efficiency of the FPID controller.

0.007

o
8
&
«

0.006

0.0055

0.005

Vibration peak to peak (mm)

0.0045

0.004

1 2 3 4 5 6 7 8 ] 10

FIGURE 8. Vibration measured results of 14.7kW induc-
tion motor.
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FIGURE 9. Vibration rate for speed of motor.

PID controller FO PID controller

34kHz 68kHz 34kHz 6.8kHz

spectrum  spectrum  spectrum  spectrum
Speed peak peak peak peak
Data type | rpm value value value value
Vibration | 450 63.64 25.54 36.62 14.74
frequency | 600 72.93 22.61 52.47 19.35
(mg) 750 138.71 18.08 69.19 13.44

TABLE 1. Comparisons of two controller performances of
vibration and current ratio under the diverse speed.

4. RESULTS AND DISCUSSION

We evaluate vibration diagnostic performance; experiments
are done with 4GB RAM, I5 Processor, and 1GB hard
drive using Python tool 3.6.8. With the measurement of the
angle, vibration, and temperature of the motor, we analyze
the efficiency diagnostic of vibrations in different loads.
Here, the performance of classification was calculated with
the confusion matrix.

The derived data of phase 2 from the piezoelectric accel-
erometer are presented in Figure 10. A piezoelectric acceler-
ometer is fitted to the electric machine chassis. The analysis
of transmitted vibration signals is, therefore, very important.

Figure 11 shows the analyzed frequencies F1 and F2 for
amplitude vibration, and sideband 150-3 Hz is greater than
the same motor.

It is very important to analyze the vibration magnitude,
as a variance of more than 11% can indicate a trick.

In Table 2, we analyze the temperature and vibration in
normal and peak conditions of the motor.

m/s?

0m | ‘
0m \\i i

400m

20m

4] l (1 |‘I
) - - -
100 30 l(IH Z}X) Ik 3k Ik

FIGURE 10. IM harmonic vibration spectra with normal
vibration condition.

=]

S~

m/sZ

0m

A0

7 4
. L&

10 30 K 30 I
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T 1
K Kk

FIGURE 11. IM harmonic vibration spectrums at peak
vibration condition.
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fl1{Hz} Average
100 f2{Hz} (150-300)Hz
Normal Vibration 0.11 0.040 0.050
condition amplitude
[mm/s?]
Peak Vibration 0.18 0.055 0.069
condition amplitude
[mm/s?]

TABLE 2. Vibration analysis in peak and normal conditions.

Motor Vibration Level
as

a7

a4

Acceleration (m/s)

a3

a0

|
|
|
e

Frequency (H2)

FIGURE 12. Comparison between normal and peak vibra-
tion under harmonic vibration spectrums.
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FIGURE 13. IM with normal vibration condition under
harmonic current spectrum.

In Figure 12, we detect arise of the vibration in the high
temperature and peak vibration state.

In Figures 13 and 14, we present the harmonic noise
spectrums for normal or peak vibration of TM.

4.1. Performance Analysis Using Convolution Neural
Network

In this section, we conducted the deep learning technique of
CNN used to analyze the performance measure. Initially, the
sensor data are in nature of the analog signal, converted to

v1
_ Warking : Input : Input : FFT Analyzer
10m
im
100u
Il ﬂl ﬂl] l l l : .

30 100 300 1k 3k 10k
[Hz]

FIGURE 14. IM with peak vibration condition under har-
monic current spectrum.

Convolution Neurai
Network

l

Preprocessing the
Data

|

Performance
Evaluation

Sensor Digital Datai——y  Raspberry PI  —» collected Data  —

Motor condition
(ON/OFF)

FIGURE 15. Performance evaluation of CNN by using
cloud-stored data.

the digital signal, and then given to the Raspberry Pi, which
controls the motor vibration and decision to ON/OFF the
motor. When vibration occurs under abnormal conditions, it
will operate the relay to disconnect motor supply, but if the
motor operating at normal vibration speeds, it monitors the
temperature, angle, and vibration of the motor. The Python
software is used to collect and monitor data to store it in the
cloud. That cloud-recorded file is used to train the neural net-
work to analyze the performance and great work in the kind
of robotically. This technique is used to safeguard from
minor or major damage to the motor. In Figure 15, the sensor
data are used to train and analysis the performance of CNN.

4.1.1. Convolution Neural Network. CNN with multiple
layers such as the pooling, ReLU, and fully connected
layer. The feature of the images is mainly identified by
using CNN to find the image edge and shape.

4.1.2. Convolutional Layer. In CNN architecture, the
approach of first-come, first-served is usually complicated.
Normally, CNN accepts the input level of MxNx1. Here are the
different levels of MxN vibrational data. CNN utilizes filters
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that are equally valid for the data and are inserted into the fil-
tered data with certain parameters. The process of convection
can be equated (27). :

s(1) = (¥'w)(r) 27

4.1.3. Pooling Laver. To reduce the data size, this layer is
designed. The organization of the matrix data in various parts
and the whole segment is grouped into a single value, lowering
the dimensions of the metric data. Some prominent pooling
characteristics are the max pool and the average pool when all
arrays in the current layer change to the average or high level.
In this layer, the vibration frequency is computed with reference
to the number of occurrences of the periodic event per time,
and also it is estimated using cycles/seconds. In this case,
1 cycle requires 2s to complete, and also the frequency of the
1 cycle is 2s representing the vibration frequency of 0.5 Hz.

4.1.4. Fully Connected Layer. These layers have been modi-
fied to fit the architecture at the network level. A fully linked
layer is a working action between a meter and N in which the
input and output parameters are connected. This layer con-
nects all action from the previous layer to the next network
level, just like a classic artificial nerve network in general.

4.1.5. Softmax Layer. Softmax turns the previous levels’
inputs into class probabilities. That level, therefore, plays a
critical influence in the output, because the most probabil-
ity for given inputs is the forecasted output class. In par-
ticular, assume that the input is Xji for that this softmax
layer computes the output, and also Ej represents the vibra-
tion sensor features extracted in the fully connected layer;
finally, the predicted probability is computed as follows,

~. 1

i = [t 52 2ar
Y=1 + exp (—w'.9; + b) where &= [XJXJ - ’ef}

(28)
Here, w is the learnable weight value, and this is the
value prediction problem; thus, it increases with the 1 — f’l

4.2. Preprocessing

Preprocessing is the important technique for raising the cali-
ber of the cloud data stream. The SNR and data amplitude
have been reduced by the implementation of many process
stages, including the elimination of data artifacts on the input
signal. The subsequent steps involve the selection of the
vibrational signal is also a part of the preprocessing phase.

4.3. Training and Classification

Based on the CNN algorithm, a two-level classification is
used to determine the vibration of the engine and its

intensity. Of the selected subsets of functions for each load
level, the entire test data set is classified based on engine
vibration. The former uses the entire training set to train
CNN, while the latter uses the training data for vibration,
temperature, or motor angle from the CNN classifier. Using
the training set, the grid search returns twice the accuracy of
cross-validity, where the accuracy of cross-validity is the
percentage of accurately classified data. Then, the values that
correspond to the best cross-validity accuracy are selected.
The entire training dataset is retrained with optimal parame-
ters to define the CNN classification. They trained the infor-
mation backward propagation algorithm in a multi-layer
network propagation feed forward, is a self-organized net-
work with a 2D map functions. The input stator current of
the neural network and/or the motor vibration frequency are
typical.

The evaluation metrics are utilized to measure the
effectiveness and classification of our technology as (0, 50,
or 100) percent in various load conditions. For the classifi-
cation, parameters for evaluation includes precision (P),
specificity (SP), sensitivity (SE), and accuracy (AC). The
performance measures parameter as follows:

P o (28)
tp +fP
_
= tp + fn 27
n
EE tm+fp 30)
tp+m 1)

ztp+fp—|—tn+fn

where fp, tn, fp, and fn signify the sum of predicted cir-
cumstances, which are exemplified as true positive and
negative, false positive and negative.

The performance of classification of vibration diagnos-
tics in different load conditions was shown in Table 3 and
Figure 16. It has an accuracy of 96% and a sensitivity of

Load
Classification | condition Speci- Preci- Sensi-
model (%) ficity sion  tivity Accuracy
CNN 0% 85%  89%  90% 96%
CNN 50% 90%  86%  88% 94%
CNN 100% 87%  87%  86% 93%

TABLE 3. Performance analysis of the proposed model under
various loads.
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FIGURE 16. Classification performance under different
load conditions.
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FIGURE 17. Classification performance under different
load conditions (DNN).

90% when there is no load. Additional 50% of the load
conditions, 90% of the specificities and accuracy, followed
by 100% of the loads, 87% of the accuracy, and 93% of
the classifications performance have achieved the accuracy,
while the classification of vibration diagnostics in various
load conditions for ongoing work has accomplished the
accuracy, i.e., DNN deep learning model was shown in
Figure 17.

5. CONCLUSION

We proposed a new methodology for diagnosing vibrations in
an IM in this version at an early stage without significant
motor damage. The approach provided is IoT controller-based
on the of Raspberry Pi and evaluating the performance by uti-
lizing a deep neural network based on CNN. The FO PI con-
troller can increase the induction engine performance, based
on design trials. The frequencies of vibration are analyzed
using FFT and CNN. In experimental results that compared a
classification with a typical under various stress settings, the
approach proposed has the maximum detection and the least
false rate. Experimental results reveal a considerable increase
in efficiency and intensity in the proposed two-tier classifica-
tion. In our proposed solution, when peak vibration is in the
engine, it can automatically turn away from the engine. At
that time, the proposed model can communicate to senior

industry managers and also alert industry personnel. The data
are safely kept by the Python idle tool on the cloud. These
data are utilized to diagnose the performance of the suggested
model. In this study, we employ CNN, based on the technol-
ogy of a deeper learning concept. The description of a neural
network-based diagnostic approach makes it clear that much
work has to be done before the neural network can be devel-
oped, and its learning process can be used, but the findings are
successfully used in the industry. Finally, this experimental
result proved that the proposed technique was a better vibra-
tion diagnosis scheme in real-time application.
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