
Concise Papers __

Efficient Mining of Large Maximal Bicliques
from 3D Symmetric Adjacency Matrix

S. Selvan, Senior Member, IEEE, and
R.V. Nataraj, Member, IEEE

Abstract—In this paper, we address the problem of mining large maximal

bicliques from a three-dimensional Boolean symmetric adjacency matrix. We

propose CubeMiner-MBC algorithm which enumerates all the maximal bicliques

satisfying the user-specified size constraints. Our algorithm enumerates all

bicliques with less memory in depth first manner and does not store the previously

computed patterns in the main memory for duplicate detection. To efficiently prune

duplicate patterns, we have proposed a subtree pruning technique which reduces

the total number of nodes that are processed and also reduces the total number of

duplicate patterns that are generated. We have also incorporated several

optimizations for efficient cutter generation and closure checking. Experiments

involving several synthetic data sets show that our algorithm takes less running

time than CubeMiner algorithm.

Index Terms—Data mining, maximal bicliques, algorithms, mining methods.

Ç

1 INTRODUCTION

ENUMERATION of maximal bicliques (also known as complete
bipartite subgraph) can model several applications in the field of
data mining including web mining, bioinformatics, and telecom-
munication usage data analysis [1]. However, the maximal biclique
mining is a computationally demanding task [8] and the running
time of the algorithm increases exponentially with respect to the
number of vertices of the given graph. Several algorithms have
been proposed for maximal biclique mining including Eppstein
algorithm [11] and MICA [7]. Recently, the relationship between
closed item set mining and maximal biclique has been well studied
in [1] and LCM-MBC algorithm has been proposed for maximal
biclique mining which extends the LCM closed item set mining
algorithm [12] to generate maximal bicliques. However, these
maximal biclique mining algorithms are limited to 2D data sets.
The 2D data sets can be extended to 3D data sets by adding another
dimension and enumeration of maximal bicliques from a 3D data
set gives more useful information. One typical example is the web
network data. Web communities are discovered by identifying
maximal bicliques from web networks [1] and adding a dimension
such as month/week gives rise to 3D data. In 2D version, the users
are represented by vertices and their interactions are represented
as edges [1]. Such a two-dimensional model of the scenario is not
efficient as it does not focus on the strength of interaction. Also, if a
weighted graph is used to counter this problem, it does not account
for the pattern of the interaction with time. Therefore, if this is
added as the third dimension (maybe in slices of month or year, as

required), it will be useful in analyzing the density of interaction
over a period. Thus, three-dimensional modeling of the interaction
using 3D adjacency matrix provides more information and biclique
patterns from 3D adjacency matrix represent the interactions as
well as their strength over time. The same idea can be extended to
mobile communication networks to discover interacting customer
communities [1]. Like LCM-MBC algorithm, which extends the
LCM algorithm, it is possible to use the existing 3D closed pattern
mining algorithms such as CubeMiner [2], [6] and TRIAS [17] for
3D maximal biclique enumeration. However, this is not computa-
tionally efficient since all the maximal biclique patterns will be
generated twice [1]. The symmetry property of the graph data set
can be exploited to develop efficient algorithms for 3D maximal
bicliques mining. In this paper, we propose CubeMiner-MBC
algorithm for efficient mining of 3D maximal bicliques from
3D Boolean adjacency matrix containing no self loops. CubeMiner-
MBC algorithm applies a subtree pruning technique, derived from
the symmetric property of the graph data set, which prunes certain
nodes in the enumeration tree and reduces the overall running
time of the algorithm. The CubeMiner-MBC algorithm also
incorporates several optimizations for efficient cutter generation
and closure checking.

The rest of the paper is organized as follows: Section 2 presents

the preliminaries associated with this paper. In Section 3, we

present the subtree pruning technique, CubeMiner-MBC algorithm
and its description. Section 4 analyzes the experimental results

comprehensively while Section 5 concludes the paper.

2 PRELIMINARIES

In this section, we present the basic definitions that are associated

with this paper followed by the problem definition. Let D ¼
fH;R; Cg be the 3D data set and let H ¼ fH1; H2; . . .Hng be the set
of adjacency matrices. Let Ri ¼ fR1; R2; . . .Rmg be the set of row

vertices and Ci ¼ fC1; C2; . . .Cmg be the set of column vertices of

the adjacency matrix Hi where 1 � i � n. Throughout this paper,
we assume that Hi represents an undirected graph without self

loops. A subgraph Pi ¼ fR : Cg is a complete bipartite subgraph of

Hi iff R � Ri , C � Ci, and all the row vertices interact with all the
column vertices. Pi is a maximal complete bipartite subgraph iff

:9 r 2 fRinRg such that ðr; CÞ ¼ 1 (i.e., there is an edge between

each c in C and r) and :9 c 2 fCinCg such that ðR; cÞ ¼ 1. In the
context of closed pattern mining, Pi is a maximal bipartite

subgraph iff R : C forms a closed pattern in Hi. An example for

3D Boolean adjacency matrix with three height instances is given
in Table 1. A pattern P ¼ fH : R : Cg is a 3D maximal biclique iff

:9 h 2 fHnHg such that hxðRxCÞ ¼ 1;:9 c 2 fCnCg such that

cxðHxRÞ ¼ 1 and :9 r 2 fRnRg such that rxðHxCÞ ¼ 1. In other
words, H : R : C is a 3D maximal biclique iff H : R : C forms a

closed pattern in D. A 3D maximal biclique is said to be of large

size with respect to the user-specified height size constraint
ðmin hÞ, column size constraint ðmin cÞ, and row size constraint

ðmin rÞ iff jHj � min h; jRj � min r, and jCj � min c. For exam-

ple, H1 H2 H3 : R3 R4 : C1 C5 is a large 3D maximal biclique
subgraph for the data set given in Table 1 with respect to

min r ¼ 2;min c ¼ 2, and min h ¼ 2 constraints.
Problem definition. Given a 3D symmetric adjacency matrix,

the problem is to mine all the large maximal bicliques in 3D context

satisfying the user-specified size constraints (min h;min r, and
min c).

Since CubeMiner-MBC extends CubeMiner algorithm [2], we
provide a short description of CubeMiner. The CubeMiner
algorithm processes the entire data set as a whole for generating

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 12, DECEMBER 2010 1797

. S. Selvan is with the Department of Computer Science, Francis Xavier
Engineering College, 103 G2, By Pass Road, Vannarapettai, Tirunelveli
627003, Tamil Nadu, India. E-mail: drselvan@ieee.org.

. R.V. Nataraj is with the Department of Information Technology, PSG
College of Technology, Peelamedu, Coimbatore 641004, Tamil Nadu, India.
E-mail: rvn@ieee.org, rvnataraj@mail.psgtech.ac.in.

Manuscript received 8 Mar. 2009; revised 8 Aug. 2009; accepted 11 Oct. 2009;
published online 1 June 2010.
Recommended for acceptance by Z.-H. Zhou.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-2009-03-0121.
Digital Object Identifier no. 10.1109/TKDE.2010.97.

1041-4347/10/$26.00 � 2010 IEEE Published by the IEEE Computer Society

3D patterns. The algorithm generates a ternary tree and visits the
ternary tree in depth first manner. The root node contains the
entire height set, row and column vertex set and the algorithm
uses cutters for generating the left, middle, and right child of a
node. A cutter is a subcube, h0 � r0 � C0 such that none of their
elements are in relation with others, i.e., in the context of Boolean
adjacency matrix they contain false (“0”) values. Since h0 and r0

contain only one element each, they are denoted using lower case
letters. The cutters are recursively applied and the child nodes
will have less number of false values than their parents. If H :
R : C is the node, then the left son, middle son, and right son are
generated as follows: LS ¼ fHnh0 : R : Cg;MS ¼ fH : Rnr0 : Cg,
and RS ¼fH : R : CnC0g. The leaf nodes contain no false values
and all the leaf nodes are 3D closed patterns. For the example
data set given in Table 1, the root node is fðH1 H2 H3Þ;
ðR1; R2; R3; R4; R5Þ; ðC1; C2; C3; C4; C5Þg. The cutter for the root
node is {H1 : R1 : C1}. The left son, middle son, and right son are
fðH2 H3Þ; ðR1; R2; R3; R4; R5Þ; ðC1; C2; C3; C4; C5Þg; fðH1 H2 H3Þ;
ðR2; R3; R4; R5Þ; ðC1; C2; C3; C4; C5Þg and fðH1 H2 H3Þ; ðR1; R2;
R3; R4; R5Þ; ðC2; C3; C4; C5Þg, respectively. While generating every
node, several checks are performed to ensure their unicity and
closeness. The following checks are performed while generating
the left son: size constraint check, left track check, and close row
set check. While generating the middle son, the size constraint
check, middle track check, and close height set check are
performed. For generating right son, the following checks
are performed: size constraint check, close row set check, and
close height set check. Note that middle track and left track
checking are done to ensure the unicity. Left track checking
ensures that the height atom of the cutter is never removed in
the middle and right son subtree whereas middle track checking
ensures that the row atom of the cutter is never removed in the
right son subtree. For more details, readers may refer [2].

3 3D MAXIMAL BICLIQUE MINING

The existing CubeMiner algorithm can be directly applied for

generating 3D biclique patterns from symmetric adjacency

matrices. However, there is a major disadvantage with this

approach, i.e., all the 3D maximal biclique patterns will be

generated twice [1]. We can avoid printing duplicate biclique

patterns by comparing the minimum element of row vertices and

the minimum element of column vertices, i.e., if min(row vertex set)

is lexicographically greater than min(column vertex set), then the

pattern can be outputted. It is easy to verify the correctness of this

technique. For example, let H : R : C be a 3D pattern and H 0 : R0 :

C0 be another pattern which is a duplicate. If minðRÞ > minðCÞ,
then minðR0Þ < minðC0Þ. Hence, only one pattern would be

printed. Notice that, if a vertex is present in R then the same

vertex will not be present in C since the data set is assumed to

contain no self loops. (It is to be noted that, if self loops are allowed

then the number of closed patterns need not be even and Lemma 1

stated in this paper may not hold true. The property of self loops

and its relation to closed pattern mining is well discussed in [1].)

The same technique has been adopted in [1] for the removal of

duplicate patterns. Even if we use this technique to avoid

outputting duplicate patterns, the problem is that we generate all

the duplicate patterns and this is a computationally expensive task

and the algorithm takes more running time. Is there any way to

avoid the generation of duplicate patterns? We provide an answer

to this question using CubeMiner-MBC algorithm. The CubeMi-

ner-MBC algorithm extends the CubeMiner algorithm by includ-

ing a subtree pruning strategy which avoids the generation of

duplicate patterns to some extent (for dense data sets, duplicate

patterns are avoided to a greater extent). The quantified results

related to duplicate elimination are discussed in Section 4. The

CubeMiner-MBC algorithm also includes an efficient cutter

generation strategy using row cutter index and height cutter index

which is later explained in this section. Also, an efficient closeness

checking scheme is proposed which reduces the running time of

the algorithm for dense data sets.

3.1 Subtree Pruning

The CubeMiner algorithm generates a ternary tree with patterns in

the leaf node. From our detailed analysis, we have concluded that

the right subtree of the root node need not be generated for the root

node since all the patterns of the right subtree are duplicates with

respect to some of the patterns of the middle son subtree of the root

node, i.e., the symmetric pair of the patterns generated in the right

subtree will be generated in the middle son subtree. Also, all the

right son subtree of the left node with no middle son or right son in

their path from the root can be pruned since the symmetric pair of

the patterns that are generated in the right subtree will be

generated in their corresponding middle son subtree.
We define the symmetric pair of a 3D biclique pattern as

follows: Let H : R : C be a 3D biclique pattern. Then, its symmetric

pair is H : C : R. For example, if H1 H2 H3 : R3 R4 : C1 C5 is a

pattern, then its symmetric pair is H1 H2 H3 : R1 R5 : C3 C4. We

denote a pattern as P and its symmetric pair pattern as P 0.

Lemma 1. Let D be the data set and P be the set of maximal biclique

subgraph patterns of D. Then, 8P 2 P, P 0 2 P.

Proof. Refer [1]. tu
Lemma 2. Let Z be the first cutter applied at the root node. Let h0 be the

height atom of Z, r0 be the row atom of Z and C0 be the column atom of

Z. Then, all patterns that include h0 will be generated only in the

subtree of middle son and right son of the root node. Also, all the

patterns that are generated will include h0.

Proof. Since h0 is removed from the left son node, the subtree of

the left node will not generate any pattern that includes h0.

Hence, patterns that include h0 will only be generated in the

right son and middle son subtree. Also, the left track checking

ensures that the h0 is never removed in the middle son and

1798 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 12, DECEMBER 2010

TABLE 1
An Example for 3D Adjacency Matrix

right son subtree. Hence, all the patterns that are generated
will include h0. tu

Lemma 3. Let Z be the cutter of the root node with h0, r0, and C0 be their

height, row, and column atoms. All patterns that include h0 and r0

will be generated only in the right son subtree of the root node.

Proof. According to Lemma 2, all the patterns will include h0.
According to middle track checking, r0 will never be removed in
the right son subtree whereas r0 is removed in the middle son
subtree. Hence, all patterns that include h0 and r0 will only be
generated in the right son subtree. tu

Lemma 4. Let P be a maximal biclique and P 0 be the symmetric pair of P.

If P is generated in the right son subtree of the root node then P 0 will

be generated only in the middle son subtree of the root node.

Proof. LetH:R:C be the root node. Let Z be the cutter applied at the
root node. Let h0; r0, andC0 be the height, row, and column atoms
of Z. Since the graph data set is assumed to be containing no self
loops, the following holds: C0 � r0. By applying a cutter Z at the
root node, we get a left son (LS), a middle son (MS), and a right
son (RS) as follows: LS ¼ fHnh0 : R : Cg, MS ¼ fH : Rnr0 : Cg,
and RS ¼ fH : R : CnC0g. All the patterns, P 0 ¼ H 0:R0:C0, in the
right subtree include r0 in R0 (Lemmas 2 and 3). Hence, by
symmetric property, P should contain r0 in C0. But in the right
son, r0 is removed from its column set and hence the symmetric
pair will not occur in the right son subtree. Hence, if P 0 occurs in
the right son subtree of the root node then P occurs in the middle
son subtree of the root node. tu

Example. Let us consider the root node and its cutter for the
example data set given in Table 1. The root node is fðH1 H2 H3Þ;
ðR1; R2; R3; R4; R5Þ; ðC1; C2; C3; C4; C5Þg and the cutter is
H1 : R1 : C1. According to Lemmas 2, 3, and 4, all the patterns of
the right subtree will not include C1 whereas R1 is included in
all the patterns. Hence, symmetric pair of the right son subtree
must include C1 in their column and patterns with C1 in their
column will be generated only in the middle son subtree.

Lemma 5. Let LS be the set of Left son nodes with no middle son or right

son in their path from the root node. Then, 8 LS 2 LS, right son of

LS can be pruned.

Proof. Let Z be the cutter applied at the root node with h0 as height
atom. It should be noted that, in the left son of the root node, a
height element, h0, is removed and the resulting datum is
another 3D data set (provided there are at least two elements in
the height set). Hence, according to Lemma 4, the right subtree
of the left son can be pruned. tu

It should be noted that, this subtree pruning technique can
be applied only when min r ¼ min c because all the patterns will
be generated twice. If min r !¼ min c, the algorithm may prune
one of the patterns as not satisfying the size constraint. For
example, consider the following pattern P ¼ H1 H2 H3 : R1 :

C2 C3 C4. The symmetric pair, P 0, of the pattern P is H1 H2 H3 :

R2 R3 R4: C1. If min r ¼ 1 and min c ¼ 3 then P will be generated
whereas P 0 will not be generated since P 0 does not satisfy the
min c size constraint.

3.2 CubeMiner-MBC Pseudocode

INPUT: R (set of row vertices), C (set of column vertices), H (set of

heights) and size constraints (min_r, min_c, min_h)

OUTPUT: set of maximal bicliques satisfying the size constraints.

1. construct the data set D in memory after removing the rows,

columns that are not supported by min_r and min_c constraint from

all the height sets

2. h0 ¼ r0 ¼ C0 ¼ null (cutter atoms are initialized to null)

3. MC ¼ LC ¼ null (meant for left and middle track checking)

4. Call CubeMiner-MBC(H;R; C)

5. CubeMiner-MBC(H, R, C)

6. {

7. while(true)

8. generate cutter for the current node

9. if (cutter-exists)

10. update h0; r0; C0, LC

//generate right child

11. if (!lemma 5) //subtree pruning

12. if jCnC0j � min c
13. push H, R, CnC0;MC [r0, LC to stack

14. endif

15. endif

//generate middle child

16. if jRnr0j � min r
17. if 9 r0 2 MC //middle track check

18. discard middle child(unicity constraint)

19. else

20. push H, Rnr0, C, MC, LC to stack

21. endif

22. endif

//generate left child

23. if jHnh0j � min h
24. if h0! ¼ LC //left track check

25. H ¼ Hnh0
26. continue

27. endif

28. endif

29. else //cutter does not exist

//check for height closure and row closure

30. if :9 h 2 ðHnHÞ&&ðR� CÞ 2 h
31. if :9 r 2 ðRnRÞ&&ðH � CÞ 2 r
32. if min(R) > min(C)

33. write H : R : C as 3D maximal biclique

34. endif

35. endif

36. endif

37. endif

38. if (stack not empty)

39. pop from stack to H, R, C MC, LC

40. continue

41. else

42. break

43. endif

44. endwhile

45. }

3.3 Description

The CubeMiner-MBC algorithm starts with a root node contain-
ing the entire height set, row set vertices, and column set
vertices. For the root node, the algorithm generates a cutter (line
no. 8) and pushes the right son (line no. 13), and middle son
(line no. 20) into the stack. While pushing the right son, the
algorithm checks whether it satisfies the Lemma 5 constraint
(line no. 11) and size constraint (line no. 12). Similarly, while
pushing the middle son, the algorithm checks for the size
constraint on row vertex set (line no. 16) and middle track
constraint (line no. 17). After pushing the middle and right son

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 12, DECEMBER 2010 1799

into the stack, the algorithm processes the left son (provided left
track constraint and size constraint are satisfied) and the process
gets repeated. In the pseudocode, the variables H;R, and C are
used to store the currently processed height set, row vertex set,
and column vertex set, respectively. The h0; r0, and C0 store the
height atom, row atom, and column atoms of the current cutter.
The variable LC stores the previously applied height atom for
left track checking and the variable MC is used to store the row
atom of the right son cutter for middle track checking. For the
proof of left track checking and middle track checking, readers
may refer [2]. If no cutter exists, the algorithm checks for its
height set closure (line no. 30) and row vertex set closure (line
no. 31) of the 3D pattern. If the pattern is found to be closed,
duplicate checking is done by comparing the minimum of row
vertex set and column vertex set. It is to be noted that we can
only compare whether min(row) > min(column) and we cannot
compare whether min(row) < min(column). This constraint is due
to the subtree pruning strategy. Note that the min element of
row vertex set is always present in all the patterns that are
generated in the pruned right subtree. Hence, if we compare
using “<” constraint, we would be missing the symmetric pair
of the pruned patterns. Once the stack becomes empty, the
algorithm terminates.

3.4 Optimizations

The CubeMiner-MBC algorithm generates a ternary tree and
applies a subtree pruning technique which prunes branches that
generate duplicate patterns. The cutter generation and closure
checking are the major operations in the algorithm. The CubeMiner
algorithm performs a closeness check whenever a node is
generated, i.e., for the left son it performs row set closeness check,
for a middle son it performs height set closeness check, and for a
right son it performs both row set closeness and height set closeness
check. The closeness checking is a computationally expensive task
and hence we perform the closeness checking only in the leaf node
(line nos. 30 and 31). Though this technique generates more number
of nodes, our empirical results have shown that this technique has
reduced the overall running time of the algorithm. The next major
operation is the cutter generation since for every node that is
created, a cutter is generated to build its left, right, and middle son.
A simple approach is to generate all cutters, store them, and use
these cutters one by one. However, this approach requires extra
memory. In the CubeMiner-MBC algorithm, we generate cutters on
the fly in an efficient manner using height cutter index and row
cutter index. The height cutter index indicates the height element to
be scanned and the row cutter index indicates the row to be
processed. For the sake of simplicity, we have not shown the
complete usage of the height cutter index and row cutter index in
the algorithm. Our empirical results have shown that this technique
has reduced the running time to a great extent.

3.5 Parallelization

The CubeMiner-MBC algorithm can be easily parallelized since the
nodes can be processed independently and concurrently on several
processors. The only requirement is the availability of the entire

data set in all the processing nodes. Fortunately, distributing the
data set to different processors is computationally negligible when
compared to the mining task. However, there is a major issue to be
addressed regarding load sharing across different processors. Our
own empirical results have shown that the left subtree of the root
node generates more number of patterns and takes more running
time than the middle and right subtree. Hence, allocating nodes as
such to all the processors will lead to poor load sharing among the
processors. An efficient approach would be to generate as much
number of nodes in the master processor in breadth first manner
and assign these nodes to the slave processors. When a slave
processor completes its execution, another node from the master
processor can be allocated to this slave processor for processing. In
this way, the overall running time can be reduced and the load
sharing among different processors can be improved.

4 EXPERIMENTAL RESULTS

We have implemented the CubeMiner and CubeMiner-MBC
algorithms using C language and the code was compiled using
32-bit Microsoft Visual C++ compiler. To our knowledge, we could
not find a similar algorithm in the literature for mining maximal
biclique patterns from 3D symmetric adjacency matrix. Hence, to
make the comparison fair, we have included the optimizations
discussed in Section 3.4 in the implementation of both the
algorithms and the results mainly focus on the subtree pruning
strategy which is the core contribution of this paper. All the
experiments were conducted on Pentium 4 machines with 1 GB of
main memory loaded with Windows XP operating system. We
have created several synthetic graph data sets and the description
of the data sets used in our experiments is given in Table 2. We
have taken two sparse data sets and two comparatively dense data
sets to clearly illustrate the effectiveness of the subtree pruning.
Fig. 1 shows the associated results and we have used four
processors for parallel CubeMiner-MBC. As the values of mini-
mum size constraint are increased, the running time of the
algorithm gets reduced because more nodes are likely to be
pruned as not satisfying the minimum size constraint. If the values
of minimum size constraint are decreased, more nodes are likely to
satisfy the size constraint and hence the running time is increased.
For sparse data sets, more number of nodes is likely to be pruned
than the dense data sets if minimum size constraint values are

1800 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 12, DECEMBER 2010

Fig. 1. Running time versus minimum size constraint for various synthetic data
sets (min_h is assumed as 1). (a) Data set 1. (b) Data set 2. (c) Data set 3.
(d) Data set 4.

TABLE 2
Data Sets Used

increased. Hence, the running time is reduced drastically for

sparse data sets (Figs. 1a and 1b) when compared to the dense data

sets (Figs. 1c and 1d). For sparse data sets, the subtree pruning

strategy prunes less duplicate patterns and hence the difference in

running time is comparatively low. The reason is that the pruned

right son subtree contains less information because more number

of column vertex elements is removed. For dense data sets, the

pruned right son subtree contains more information because less

number of column elements is removed in the right son and hence,

more number of duplicate patterns is pruned. If only one column

element is removed while generating the pruned right son nodes,

then no duplicates will be generated (a result illustrating zero

duplicate patterns is shown in Fig. 2e). The reason is that, for such

cases, the child’s submatrices are transposes of each other and

hence the number of patterns contained in subtree of the child

nodes is same with one set of patterns being duplicates. In other

words, if we produce two submatrices from a symmetric matrix by

removing a particular row and the corresponding column, then the

resultant submatrices are transposes of each other.

To demonstrate the effectiveness of the subtree pruning
technique in terms of total duplicates pruned and total nodes
processed, we have created four small data sets with varying
density as shown in Table 3. We could not get the results in
reasonable time for large dense data sets and hence we created these
small data sets (for a particular dense data set with 500 vertices,
the running time of the algorithm exceeded 24 hours and we
terminated the execution). Table 3 shows the data set characteristics
and the associated results are shown in Fig. 2. As shown in the
results, the number of duplicate patterns generated is inversely
proportional to the data set density, i.e., effectiveness of the pruning
technique is very high for dense data sets. Also, the subtree pruning
technique reduces the total number of nodes that are processed to a
great extent for dense data sets.

Scalability. Both CubeMiner and CubeMiner-MBC algorithms
are highly scalable. Note that, at any time, only a path of a tree and
the data set is stored in the main memory. Hence, as long as the
data set fits into the main memory, the algorithm is guaranteed to
complete its execution. To assess the scalability, we have
conducted several experiments and we present a summarized
result in Fig. 3. The graph shown in Fig. 3 illustrates that the
running time of the algorithm increases minimally as we increase
the number of vertices (keeping the density constant) whereas
the running time increases linearly if both density and the number
of vertices (number of heights in Fig. 3b) are increased. For highly
dense data sets, parallelized execution is the only way to get the
results in reasonable amount of time and the algorithm can
be easily parallelized to any number of processors as discussed in
Section 3.5.

Related algorithm. The following analyzes a very recently
proposed DataPeeler algorithm [3], since DataPeeler can also be
used to mine 3D bicliques. Unlike CubeMiner, which uses ternary
tree enumeration strategy to generate closed 3-sets, the DataPeeler
algorithm uses a binary tree enumeration strategy to generate
closed n-sets. Each node in the binary tree contains two n-sets (U &

V). For the root node, U is set to null whereas V contains the entire
n-sets. For a node, the child nodes are generated by choosing an
element from V . If v is the chosen element, then the left child and
right child are fU [v; V nvg and fU; V nvg, respectively. While
generating child nodes, the algorithm ensures that U [v is
connected. If U [v is not connected, the algorithm chooses another
element from V to continue the enumeration and v is discarded.
Once the V -set is null, the algorithm performs closure checking of
U-set using the elements that are removed from the set of right
child nodes in its path. If the U-set is found to be closed, the
algorithm outputs U as a closed n-set. The algorithm also uses
several optimizations to speed up the running time. In a nutshell,
the algorithm tries to grow the connected n-set (note that a
maximal connected n-set is a closed n-set). For complete details,
readers may refer [3].

If DataPeeler algorithm is applied as such on a 3D adjacency
matrix to generate maximal bicliques, all the biclique patterns will
be generated twice. Hence, to prune duplicate patterns, specialized

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 12, DECEMBER 2010 1801

Fig. 2. Effectiveness of the subtree pruning strategy in terms of reduction in the
total number of duplicate patterns generated and total number of nodes
processed. (a) Data set 5. (b) Data set 5. (c) Data set 6. (d) Data set 6.
(e) Data set 7. (f) Data set 7.

TABLE 3
Data Sets to Analyze the Effectiveness of Subtree Pruning

Fig. 3. Results on algorithm’s scalability.

pruning techniques need to be developed for DataPeeler algorithm.

We have not compared CubeMiner-MBC with DataPeeler because

our experimental results mainly focus on the subtree pruning

strategy and hence, it is unfair to compare these two algorithms. In

our future work, we plan to develop pruning techniques for

DataPeeler algorithm to prune duplicate patterns.

5 CONCLUSION

We have investigated the problem of mining maximal bicliques
from 3D symmetric adjacency matrix and we have proposed a
subtree pruning strategy which prunes certain nodes that generate
only duplicate patterns. For dense data sets, our subtree pruning
strategy reduces the total number of duplicate patterns to a great
extent and for certain cases the CubeMiner-MBC algorithm
generates all the 3D maximal biclique patterns with no duplicates.
Our efficient implementation along with the subtree pruning and
other optimizations, have reduced the overall running time of the
algorithm. The algorithm is also highly memory-efficient since
none of the results are stored in the main memory and requires
only the data set and a path of the tree to be stored in the main
memory. Though our algorithm generates the 3D maximal
bicliques in an efficient manner, some research questions are still
open. First, our subtree pruning strategy prunes only the right son
subtree of the root node and some right son nodes in the left
subtree of the root node. The research could be extended further to
develop more pruning techniques in the middle son subtree by
exploiting the symmetry property of the data set. Second, the
algorithm could be extended to work on more than three
dimensions and more subtree pruning techniques can be devel-
oped for high-dimensional data sets. Finally, massive parallel
system infrastructure is required to get the results in reasonable
time for large dense data sets.

ACKNOWLEDGMENTS

The authors wish to thank the anonymous reviewers for their

comments which helped them to enhance the paper. They also

thank the authors of CubeMiner, D-Miner, and DataPeeler

algorithms for responding to their queries.

REFERENCES

[1] J. Li, G. Liu, H. Li, and L. Wong, “Maximal Biclique Subgraphs and Closed
Pattern Pairs of the Adjacency Matrix: A One-to-One Correspondence and
Mining Algorithms,” IEEE Trans. Knowledge and Data Eng., vol. 19, no. 12,
pp. 1625-1637, Dec. 2007.

[2] J. Liping, K.L. Tan, and A.K.H. Tung, “Mining Frequent Closed Cubes in
3D Data Sets,” Proc. 32nd Int’l Conf. Very Large Data Bases, 2006.

[3] L. Cerf, J. Besson, C. Robardet, and J.-F. Boulicaut, “Closed Patterns
Meet n-ary Relations,” ACM Trans. Knowledge Discovery from Data, vol. 3,
no. 1, pp. 1-36, 2009.

[4] L. Ji, K.-L. Tan, and K.H. Tung, “Compressed Hierarchical Mining of
Frequent Closed Patterns from Dense Data Sets,” IEEE Trans. Knowledge and
Data Eng., vol. 19, no. 9, pp. 1175-1187, Sept. 2007.

[5] J. Besson, C. Robardet, J.F. Boulicaut, and S. Rome, “Constraint Based
Concept Mining and Its Application to Microarray Data Analysis,”
Intelligent Data Analysis, vol. 9, pp. 59-82, 2005.

[6] J. Liping, “Mining Localized Co-Expressed Gene Patterns from Microarray
Data,” PhD dissertation, School of Computing, Nat’l Univ. of Singapore,
June 2006.

[7] G. Alexe, S. Alexe, Y. Crama, S. Foldes, P.L. Hammer, and B. Simeone,
“Consensus Algorithms for the Generation of all Maximal Bicliques,”
Discrete Applied Math., vol. 145, no. 1, pp.11-21, 2004.

[8] R. Peeters, “The Maximum Edge Biclique Problem is NP-complete,”
Discrete Applied Math., vol. 131, no. 3, pp. 651-654, 2003.

[9] V.M. Dias, C.M. de Figueiredo, and J.L. Szwarcfiter, “Generating Bicliques
of a Graph in Lexicographic Order,” J. Theoretical Computer Science, vol. 337,
pp. 240-248, 2005.

[10] K. Makino and T. Uno, “New Algorithms for Enumerating all Maximal
Cliques,” Proc. Ninth Scandinavian Workshop Algorithm Theory (SWAT ’04),
pp. 260-272, 2004.

[11] D. Eppstein, “Arboricity and Bipartite Subgraph Listing Algorithms,”
Information Processing Letters, vol. 51, pp. 207-211, 1994.

[12] T. Uno, M. Kiyomi, and H. Arimura, “LCM ver.2: Efficient Mining
Algorithms for Frequent/Closed/Maximal Itemsets,” Proc. Fourth IEEE
Int’l Conf. Data Mining (ICDM ’04) Workshop Frequent Itemset Mining
Implementations (FIMI ’04), 2004.

[13] J. Han, J. Pei, Y. Yin, and R. Mao, “Mining Frequent Pattern without
Candidate Generation: A Frequent Pattern Tree Approach,” Data Mining
and Knowledge Discovery, vol. 8, pp. 53-87, 2004.

[14] M. Song and S. Rajasekaran, “A Transaction Mapping Algorithm for
Frequent Itemsets Mining,” IEEE Trans. Knowledge and Data Eng., vol. 18,
no. 4, pp. 472-481, Apr. 2006.

[15] G. Grahne and J. Zhu, “Fast Algorithms for Frequent Itemset Mining Using
FP-Trees,” IEEE Trans. Knowledge and Data Eng., vol. 17, no. 10, pp. 1347-
1362, Oct. 2005.

[16] C. Lucchese, S. Orlando, and R. Perego, “Fast and Memory Efficient Mining
of Frequent Closed Itemsets,” IEEE Trans. Knowledge and Data Eng., vol. 18,
no. 1, pp. 21-36, Jan. 2006.

[17] R. Jaschke, A. Hotho, C. Schmitz, B. Ganter, and G. Stumme, “TRIAS: An
Algorithm for Mining Iceberg Tri-Lattices,” Proc. Sixth IEEE Int’l Conf. Data
Mining (ICDM ’06), pp. 907-911, 2006.

[18] R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association
Rules,” Proc. Int’l Conf. Very Large Data Bases, pp. 487-499, Sept. 1994.

[19] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, “Discovering Frequent
Closed Itemsets for Association Rules,” Proc. Seventh Int’l Conf. Database
Theory (ICDT ’99), pp. 398-416, Jan. 1999.

[20] M.J. Zaki and C.J. Hsiao, “Efficient Algorithms for Mining Closed Itemsets
and Their Lattice Structure,” IEEE Trans. Knowledge and Data Eng., vol. 17,
no. 4, pp. 462-478, Apr. 2005.

. For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/publications/dlib.

1802 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 12, DECEMBER 2010

