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II. ABSTRACT 

  

In the last decades, a substantial amount of research has been carried out on identification of 

nonlinear processes. Dynamical systems can be better represented by nonlinear models, which 

illustrate the global behavior of the nonlinear process reactor over the entire range. CSTR is highly 

nonlinear chemical reactor. A compact and resourceful model which approximates both linear and 

nonlinear component of the process is of highly demand. Process modeling is an essential 

constituent in the growth of sophisticated model-based process control systems. Driven by the 

contemporary economical needs, developments in process design point out that deliberate operation 

requires better models. The neural network predictive controller is very efficient to identify 

complex nonlinear systems with no complete model information. Closed loop method is preferred 

because it is sensitive to disturbances, no need identify the transfer function model of an unstable 

system. In this paper identification nonlinearities for a nonlinear process reactor CSTR is 

approached using neural network predictive controller. 

 

 

III. INTRODUCTION 

 

Several information exists for explaining the nonlinear performance of processes such as CSTRs, 

distillation columns, evaporators and biotechnological processes. Nonlinearity behavior in the 

process control reactor occurs from various parameters such as temperature dependence of reaction 

rates
 [1]

. It may also result from process limitations such as valve limits, leading to input saturation 

(i.e., flow rate manipulation) or from physical constraints on output variables (e.g., mole fractions 

of chemical species)
 [2], [3]

. Optimization and control of process systems usually requires a precise 

process model 
[4]

. Essential first principles models can be difficult to build up if the original process 

is not well understood 
[5]

. The resulting fundamental models have numerous unknown parameters 

and severe complexity
[7]

. As existing nonlinear chemical processes are persistently faced with the 

requirements of becoming safer, more consistent, and more economical in operation, the need for a 

rigorous, yet practical, approach for the design of effective chemical process control systems that 

can meet these demands becomes increasingly evident 
[8]

. However, the control design problem is 

highly non insignificant because most chemical processes are essentially Multi-Input Multi-Output 

(MIMO) and nonlinear, and the use of controllers only designed on the basis of the approximate 

linearized process can direct to traditional, besides reduced, control performances
[6]

. In addition, the 

unavoidable presences of physical constraints on the process variables and in the capacity of control 

actuators not only limit the nominal performance of the controlled system, but also can influence 

the stability of the overall system 
[10]

. Process nonlinearity is the most dominant issue in system 
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identification problems which will be used to identify the  model for a system from measured 

input/output data, without having the basic knowledge about the physical laws governing the 

controlling the system 
[9]

,
[11]

.  

 

IV. CSTR SYSTEM DESCRIPTION 

 

The Continuous stirred Tank Reactor (CSTR) having a wide application in process control 

industries.  The detailed diagram of CSTR is presented in the Fig.1. The nonlinear process control 

reactor (Continuous Stirred Tank Reactor) is taken for NN predictive controlled based nonlinearity 

identification problem. 

 

 
 

Fig.1 Schematic Diagram of the CSTR 

 

In order to reduce the heat created in the CSTR, a cooling jacket has been used which will be 

carrying out the Vander Vusse reaction scheme described by the following reactions: 

 

        (1) 

        (2) 

Here B is the required product,  

C and D are the undesired byproducts 

k1, k2 and k3 are considered as the reaction rate constants. 

 

In this reactor, a product A is to be transformed to the desired product B by an exothermic reaction 

in CSTR, but the product B is again degraded to product C. In addition to this successive reaction, a 

high order parallel reaction occurs and A is converted to by product D. The mathematical modeling 

of this non linear process control reactor is explained as the four set of Ordinary Differential 

Equations (ODE) is derived from material and heat balances inside the reactor. 

   

        (3) 

        (4) 

                                           (5) 

         (6) 

Where CA ≥ 0, CB ≥ 0 
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In the differential equations, t denotes time, c denotes concentrations, T denotes temperatures, cp  

represents the specific heat capacities, q represents the volumetric flow rate, Qc represents the heat 

removal, V represents the volumes, ρ represents the densities, Ar is the heat exchange surface and U 

represents the heat transfer coefficient. Indexes (.)A and (.)B represents the compounds A and B, (.)r 

given for the reactant mixture, (.)c denotes the cooling liquid and (.)0 denotes the feed (inlet) values. 

The mathematical modeling of the nonlinear process control reactor has been derives by 

considering the four states namely concentrations of the product A (CA) and the concentration of the 

product B (CB), temperature of the reactor T and the temperature of the coolant Tc. 

The model of the reactor describes the nonlinear process control reactor.  Nonlinearity calculated in 

reaction rates (kj) which are described via Arrhenius law: 

        (7) 

Where k0 denotes the pre-exponential factors and E denotes the activation energies. 

The reaction heat (hr) in the equation (2) is expressed as: 

         (8) 

Where hj means reaction enthalpies. 

 

This reaction describes the nonlinear chemical reaction, under ultimate environment, of an inflow of 

substance A to a product B. a heat exchanger with coolant flow has been used for controlling the 

heat created inside the reactor due to chemical reaction. In order to make easier the problem, some 

of the assumptions has been considered:  

• The mixing of the liquid has been carried out ideally. 

• The density and the physical properties are assumed to be constant. 

• The tank liquid level h is assumed as constant and water flows in the input and output are 

considered as equal: Q1 = Q2. 

 The first order reaction with a temperature relation was carried out based on the Arrhenius law. 

• The work in the shaft was neglected. 

• The temperature increase in the coolant on the coil was neglected. 

In the CSTR, it is considered that the reaction has been carried out in the two chemicals to produce 

a product compound A with the concentration CA(t), with the reactor temperature T(t). The heat 

created by the exothermic reaction slows down the reaction. A coolant is used with coolant flow-

rate Qc(t), the temperature is to be reduced which will control the concentration of the product. CA 

denotes the concentration of the inlet feed, Q denotes the process flow-rate, T represented the 

temperature of the inlet feed and TC denotes the temperature of the coolant, all of which are 

understood as constant at nominal values.  
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V. SYSTEM IDENTIFICATION 

 
Fig.2 System Identification Block diagram 

 

System identification block diagram is given in Fig. 2. The System identification algorithm is 

mainly applied for identification of nonlinearities in all engineering fields. The identification 

algorithm is to be divided into two type’s namely non-parametric type model identification and 

parametric type model identification or online identification and offline method of identification. 

The three principles of identification algorithm are least square method, the gradient correction 

procedure and maximum likelihood method. The least square offline parametric identification 

method was implemented for identification of given nonlinear process control reactor Continuous 

Stirred Tank Reactor. The real modeling from the data acquisition data for model establishment is 

quite complex due to the drawback like complexity and diversity of the nonlinear system and its 

calculation is quite complicated. The System Identification Toolbox in the MATLAB programming 

can able to make the process easy and simplifies the computation process and increases the 

identification efficiency.  

The first procedure step of the forward dynamics is the training of the neural network, and the 

future values can be predicted by analyzing the previous input and output of the system. The model 

structure of the neural network model is specified in the following Fig.3. The training of the 

network can be carried out in offline (batch mode), with the data collected in the working of the 

plant. System identification based on MATLAB is highly resourceful. Primarily The computation 

process is very straightforward and the identification system is direct-viewing and easy to adapt. 

 

 
 

Fig.3 Structure of Neural Network Plant model 

 

The neural network based nonlinear predictive control algorithm having two components, first one 

is the nonlinear model to identify the behavior of the system, and the second one is the optimization 

algorithm to generate the control signal in order to minimize the performance function (which is 

having high influence of the current and predicted errors). In the neuro-predictive control, 

Levenberg-Marquardt algorithm is used to attain a superior performance which is the second-order 

derivative-based optimization methods. Using such optimization methods, rather than steepest 

descent (first order ones), leads to better performance of control system, but the drawback is that it 

requires much more computation steps in comparison to first-order methods. 
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VI. NEURAL NETWORK PREDICTIVE CONTROL 
 

Neural networks have been functioning very effectively in the identification and control of dynamic 

systems. The performance of the nonlinear process control reactor plant model is predicted with the 

implementation of the neural network predictive controller. In the next step, the controller will 

calculate the control input which will optimize performance of the plant over a specified time. The 

identification of the neural network plant model (system identification) is the first step of the 

predictive controller design. In feedback control, as the most common type of control, the control 

command is generated using the error which has already occurred, whereas, in predictive control the 

predicted error is utilized to generate control command to avoid the error before appearing to do so 

a model (for predict the system’s response) and a control algorithm (to generate the control 

command) are needed. 

 

VII. SIMULATION RESULT 

 

The Proposed neural network predictive controller based nonlinearity identification on the 

Nonlinear Chemical Reactor CSTR was carried out. The experimental results shows that the NN 

identification is the appropriate approach for successful nonlinearity identification of CSTRs, 

because obtained model has best suited to predict the step response of the process. In the 

architecture of the NN Plant model hidden layers have been constructed. 8000 training samples with 

the sampling interval of 0.2 was carried in the NN Training stage with control weighting factor ρ as 

0.05 and Search Parameter α as 0.001 

  The Simulation results of Plant Input and Plant Output of CSTR are given in the Fig. 4 and 5, 

Validation performance result of NN identifier is given in Fig. 6, Training State Result of NN 

identifier is given in Fig. 7, Training data for NN Predictive Control is given in Fig. 8, Validation 

data for NN Predictive Control and system response are given in Fig. 9 and 10 respectively..   

 

Algorithm progressed  

Training Function = Levenberg Marquardt (trainlm) 

Performance = Mean Square Error (mse) 

Data Division Specified (divideind) 

 

Progress: 

No of Epochs : 7 iterations 

Time taken for the Progress: 0:00:00 

Gradient  : 0.000961 

Mu  : 0.000100 

Validation checks: 6 

 

Simulation results of Plant Input and Plant Output of CSTR:  

 

 
 

Fig. 4 CSTR Plant Input 
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Fig. 5 CSTR Plant Output 

 

Validation performance simulation result:  

 

 
 

Fig.6 Validation performance of NN identifier 

Training State Simulation Result: 

 

 
Fig.7 Training state of NN Identifier 

 

Training data for NN Predictive Control 
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Fig.8 Simulation result of Training data of CSTR with NN predictive Control 

 

Validation data of the NN Predictive Control 

 

       
 

       
Fig.9 Simulation result of validation data of CSTR with NN predictive Control 

 

System Response: 

 

 
Fig. 10 Nonlinearity Identification of CSTR with NN Predictive Control 

 

VIII. CONCLUSION 

 

In this proposed approach, the neural network predictive controller design is implemented for 

nonlinear identification of CSTR is presented. It is processed with NN-based system nonlinearity 

identification method and nonlinear model predictive controllers which has an ability to reject the 
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disturbances which is slowly varying and unmeasured in nature. The control of nonlinear 

multivariable processes increases the complexity which creates challenges for researchers. The 

major importance for controller design to have the best performance of the nonlinear process 

control reactor system is the difficulty of identifying the mathematical model of the process. In 

order to solve this issue, the identification approaches have been getting considerable concentration 

in the present research scenario. In this issue, the neural networks predictive controller is an 

excellent method to deal with identification problems due to their functional approximation 

capabilities and the availability of effective learning algorithms. Uses of mathematical models are 

fundamental for analysis of system behavior including various scientific and engineering 

applications. A large class of dynamical systems can be given with good approximation by linear 

models which cannot be reproduced dynamical regimes which will result from system’s nonlinear 

reactions. Nonlinear models will be required to capture these effects and this in turn leads to the 

complex problem associated which is used to identify the accurate nonlinear models from plant 

input data. This paper presents the use of chebyshev neural network models (CNN) with Levenberg 

Marquardt training scheme to identify the process. The performance of the proposed neural network 

predictive controller based identification approaches is demonstrated on a highly nonlinear time-

varying multivariable continuous stirred tank reactor (CSTR) benchmark problem. Simulation 

results express the fine performances of all identification algorithms. 
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