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ABSTRACT
Nullifying the noise and redundancy in the breast thermogram is still a critical challenge. In this
paper, a framework is designed for the purpose of classification of noisy RGB thermal breast images.
The proposed framework includes enhancement in frequency domain, advanced mixed denoising
and color correction for thermal images. The enhancement of thermogram uses curvelet transform
that is applied to the V component of the HSV derived from RGB thermogram. Gain-controlled bihis-
togram equalization operation is performed to the detailed component of V to enhance the image
quality. The advancedmixed denoising algorithm is also presented using a combination of Gaussian
and bilateral filter for denoising the enhanced thermogram. Spatially varying color correction (SVCC)
technique is applied, which is based on an optimum linear color correction matrix that is calculated
from the local blocks of enhanced image. The classification outcome of this proposed framework is
more encouraging comparedwith the results of the existingmethods for thermogram classification.
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1. INTRODUCTION

Breast thermography, or breast thermal imaging, is a
noninvasive and painless test. The physicians may refer
the thermal breast images for early detection of malig-
nancy. It works by identifying increases in temperature
of the breast. Thermography does not involve any harm-
ful radiation during image acquisition. Because of using
a high-resolution thermal camera to map heat changes
of the breast into images, the quality of thermogram is
ensured more in the field of medical imaging. This ther-
mal image has to be analyzed to identify breast abnormal-
ity by the temperature variation of the breast, it helps in
early detection of breast cancer.When a tumor cell devel-
ops in an area, the human body will increase the blood
flow of the area to rejuvenate the part which makes this
area to become warmer. A tumor can be easily identified
from the hot spot of the thermogram. The early detec-
tion of breast tumor increases the survival probability of
the patient.

Thermogram has the limitation of low contrast, lim-
ited dynamic range, and poor visibility of the target
from the background. Because of these types of limita-
tions, it is difficult to retrieve the hidden information
and edge identification of the dark region. Normally
noises are robust and zero mean so that single opera-
tion such as image enhancement or color correction or

image denoising is not enough to improve the image
fidelity. Hence it requires a platform to eradicate these
limitations.

In the early literature, many algorithms have been pro-
posed for color image enhancement and color correction,
which include fuzzy nonlinear enhancement algorithm
based on curvelet [1], nonlinear enhancement algorithm
based on contourlet [2], fuzzy wavelet [3], ridgelet trans-
form [4] and the neural network with a simple reflection
model [5]. Even though these algorithms enhance the
image quality, they also increase the noise. Hence the
literature survey concentrated on denoising and image
color correction algorithms. Color Correction is imple-
mented by Root polynomial [6]. Rudin and Osher [7]
examined a total variation minimization technique, but
they have not considered the edges in their work. Simi-
larly, Smith and Brady [8] described the smallest unval-
ued segment assimilating nucleus (SUSAN) filter for edge
preservation, corner preservation and structure preser-
vation with reduced noise. Lim and Silverstein [9] pro-
posed spatially varying color correction (SVCC) that
divided the image into 8 by 8 non-overlapping local
blocks and calculated the correlation matrix for each
channel and noise. The color correction matrix is com-
puted directly from correlationmatrix with the consider-
ation of noise effect. While these algorithms control the

© 2021 IETE
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noise amplification, it could not remove the noise to the
negligible amount. So, it needs a framework that is a com-
bination of these processes such as denoising and color
correction etc.

In this paper, an advanced framework for effective
denoising of the enhanced thermal breast image is pro-
posed. This work is an integration of three components.
The first one is a color image enhancement approach
where curvelet transform is applied to the V compo-
nent of HSV raw image, which subdivides the image
into base and detailed components. A bihistogram equal-
ization approach is performed in detailed components
to enhance the image quality and then the modified
detailed components or coefficients are used to get an
enhanced image after inverse curvelet transform. The
second component of the framework is an advanced
denoising technique for the enhanced thermal image
where the combination of Gaussian and bilateral filters
[10] is applied. The Gaussian filter extracts the reference
image from the enhanced thermogram. Then the refer-
ence image and the enhanced images are given as the
input of bilateral filter which gives an effective denois-
ing in the resulted thermogram. The third one is image
color correction which uses spatially varying color cor-
rection (SVCC) [9]. In the SVCC approach, the denoised
image is decomposed into 8 by 8 local blocks to calculate
the optimum linear color correction matrix. This color
correction matrix is applied to the enhanced image for

color correction by applying optimum linear color cor-
rectionmatrix whichwas calculated from the local blocks
of enhanced denoised thermogram.

The rest of this paper is composed as follows: Materials
and method is described in section 2. Image enhance-
ment using curvelet and gain-controlled bihistogram
equalization method is explained in section 3. The
advanced denoising algorithm is presented in section
4. Color correction with SVCC matrix is presented in
section 5. The result and discussion of the proposed
approach with the existing methods are presented in
section 6. Finally, the conclusion ismade for the proposed
framework.

2. MATERIALS ANDMETHODS

Thermal images, collected from the Indira Gandhi Cen-
tre for Atomic Research (IGCAR) database, are subjected
to undergo pre-processing in order to make the image
more suitable for further image processing. In this work
pre-processing is done to crop out the rest of the breast
portion from the thermal image and also the images are
resized into fixed size. Color image enhancement plays a
vital role to get a reliable result at the final stage of this
work.

The proposed approach, shown in Figure 1, initially con-
verts theRGB thermal image intoHSV image.HSVColor

Figure 1: Block diagram of proposed workflow
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Model has three components, which are Hue, Saturation
and Value. Hue represents color of an object, it is also
called tint.

Saturation indicates the purity of color, ranges from 0
to 100 percent. If the saturation is reduced toward zero,
it increases gray level and pale the image quality. Value
is also called as luminance: it defines the brightness or
intensity of the each color, in the range of zero to 255.
Zero stands forminimumbrightness (black), while 255 is
for the maximum brightness. Value is measured in can-
delas per square meter. In these three components, value
component plays the vital role to maintain the image
quality. Hence, in this approach the V components are
only processed during the enhancement. Curvelet trans-
form conserves edges and curves originalitiesmuchmore
efficiently than traditional Fourier and wavelet trans-
forms. Applying curvelet transform, base and detailed
layers are obtained from the given V component. The
base layer has the low-frequency approximation compo-
nents and the detailed layer has the high-frequency coef-
ficients. Hence the proposed approach employed gain-
controlled bihistogram equalization algorithm to modify
the values of the coefficients in the detailed sub-bands.
After this process the base and detailed layers are used
for reconstruction using inverse curvelet transform to
get enhanced image. Furthermore, this enhanced HSV
image is denoised using an advanced mixed denoising
algorithm. The advanced mixed denoising algorithm is
the combination of Gaussian and bilateral filter opera-
tions. In the mixed denoising filter, the Gaussian filter
smoothens all the regions in the image with the same
probability and bilateral filter is used to preserve the
edges.

Then this processed V component is combined with H
and S components to get an enhanced HSV image which
is converted back to RGB image. The final color cor-
rection process is an important color image processing
operation that converts a camera-dependent RGB color
model into a standard color model. The thermal image
color correction is performed by multiplying processed
RGB values of the denoised thermogram by a color cor-
rection matrix which is calculated from the image. It
[11] is learned from the literature that even though the
color correctionmethod improves the color quality of the
image, it also amplifies the image noise. In order to over-
come this challenge, [9] SVCC approach has been used
in this work for achieving better color correction.

Finally, the above processed thermograms are classified
into normal and abnormal images by extracting seven

statistical parameters, namely; Entropy, PSNR, Mean,
Variance, Standard deviation, Energy and Correlation.

3. IMAGE ENHANCEMENT

Image enhancement stage tries to improve the visible
appearance of a thermal image or to convert the ther-
mogram to a form which would be more appropriate
for analysis by a machine or human [12]. In the pro-
posed approach the RGB thermal image in the database
is converted into the HSV image. In the HSV color image
enhancement, Hue (H) and Saturation (S) components
should not be altered because H and S components are
responsible for color maintenance [13,14]. If H and S of
the images are changed, they affect the original color of
the image and lead to false diagnosis in the later stage.
Therefore, this proposed method concentrates on the
manipulation of Value (V) component. The V compo-
nent of the thermogram is undergone curvelet transform
and gain-controlled bihistogram equalization approach
for the manipulation of coefficients.

3.1 Curvelet Transform

Curvelet transform is the better option to overcome the
poor directivity of traditional wavelet and Fourier trans-
forms. Its multi-scale geometry property preserves the
edges and curves singularitiesmuchmore efficiently than
the latter ones.

General form of discrete curvelet transform is repre-
sented as

C(k, θ , k1, k2) =
∑

0 ≤ i ≤ M
0 ≤ j ≤ N

I(i, j)�j,θ ,k1k2 [i, j] (1)

where k is the scale which indicates the number of
levels, θ is the Orientation, k1, k2 are the Spatial loca-
tions of curvelet function, � [i, j] is the curvelet func-
tion, I (x, y) is the input image having dimension M,
N and �k,θ ,k1,k2[i, j] is the curvelet function, it is the
extension of the ridgelet transform to multiple scale
analysis [15].

Curvelet Transform uses orientation scales to sepa-
rate high-frequency domain sub-bands. In scale 2 it
separates 16 orientations detailed sub-bands, in scale
3 it is divided into 32 sub-bands and these sub-
band divisions continues like this. This sub-band coef-
ficient preserves edges within an image more effec-
tively. Equation (1) represents curvelet transform and it
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can also be implemented in an alternative approach as
follows.

Curvelet transform

= InnFFT{FFT([∅[i, j]]) × FFT(I(i, j))} (2)

Trapezoidal shape wedge frequency response of Curvelet
transform cannot applied in the frequency spectrum
directly to obtain inverse FFT. So this wedge needs to be
wrapped into a rectangular response periodically. Then
these rectangular responses are applied into the thermo-
gram frequency spectrum directly and the rectangular
coefficient areas under this origin are collected. Because
of this wedgewrapping process, curvelet transform is also
known as the wrapping-based curvelet transform.

3.2 Gain-Controlled Bihistogram Equalization

A detailed layer is enhanced using adaptive gain control
weighting functionW(i, j)

W(i, j) = 1
|w|

∑
(m,n)∈Wi,j

(
(I(i, j) − μm,n)

2

σm,n2 + εl

)
(3)

whereW(i, j) – kernel function of adaptive gain control,
w – number of pixel in the kernel window W(i, j), I(i,
j) – Sub-band image, µm,n – Mean of sub-band Image
I(i, j), σ 2

m,n – Variance of sub-band image I(i, j), εl –
parameter need to be modified for enhancement, IG(i,j) –
Gain-controlled sub-band image

For a completely low-frequency region, the value ofW(i,
j) is near 0. It increases with the frequent changes of the
pixel. From the available research literature, it is learned
that most of the values inW(i, j) should be equal to 1 and
maximum value ofW(i, j) is assigned to 1.2 in such a way
the value of εl is selected.

IG(i,j) = I(i,j) ∗ w(i, j) (4)

Then the gain-controlled image IG(i,j) is undergone bihis-
togram equalization process, it divides the image IG(i,j)
into two sub-images based on the mean of the image.
These subdivided images are histogram equalized sepa-
rately and joined together to improve the thermal image
visibility which leads better results for further process.

IGL(i,j) and IGU(i,j) are subdivided images. IGM(i,j) is the
rounded mean intensity of the image. IGL(i,j) IGU(i,j) are
sub-images whose intensity is less than and greater than

the mean intensity IGM(i,j) , respectively

IG(i,j) = IGL(i,j) ∪ IGU(i,j) (5)

The probability density function of sub-images is

P(IGL(i,j)) = nK/nL (6)

where k=0,1,2,..IGM(i,j)

P(IGU(i,j)) = nk/nu (7)

where k = IGM(i,j) + 1, IGM(i,j) + 2, . . . . . . L − 1

The cumulative density function of sub-images is

C(IGL(i,j)) =
IGM(i,j)∑
J=0

PJ (IGL(i,j)) (8)

and

C(IGU(i,j)) =
L−1∑

J=IGM(i,j)+1
PJ (IGU(i,j)) (9)

F(IG(i,j)) is the transform function of gain-controlled
enhanced bihistogram thermal image. It rebuilds the
enhanced thermogram based on cumulative distribu-
tion functions and output thermogram of the histogram
equalization.

3.3 Gain-Controlled Bihistogram Equalization
Algorithm

Step 1: Base and detailed layers of thermal images are
separated using curvelet transform.

Step 2: Adaptive gain control weight function W(i, j) is
calculated.

Step 3:W(i, j) is applied on the detailed layer to obtain IG.

Step 4: Threshold (IGM) is identified from the histogram
of IG.

Step 5: IG grouped into two as follows:

IGUJ: pixel intensity > IGM .

IGL: pixel intensity ≤ IGM .

Step 6: Probability Density Function (PDF) is calculated
separately for IGU and IGL.

Step 7: Cumulative Density Function (CDF) is calculated
separately for IGU and IGL.
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Step 8: Transform function F(IG) is calculated from CDF
and histogram thermal image.

Step 9: Enhanced detailed layer of thermogram is rebuilt
using transfer function F(IG).

Step 10: Base layer and detailed layers are recombined
using inverse curvelet transform.

4. ADVANCEDMIXED DENOISING ALGORITHM

The Gaussian filter can’t preserve the edges because of
its linear operation; and also its standard deviation man-
ages the degree of smoothening.During the smoothening
operation, it handles the entire image region with equal
priority, including edges or details and also it blurs the
image [16]. The bilateral filter is just opposite of this;
it’s a non-linear filter [10]. It avoids averaging across
image edges while averaging within smooth regions of
the image; thus, it preserves edges. But the bilateral filters
have the drawbacks of non-iterative and staircase effect
creation. To overcome the above issues, an advanced
mixed image de-noising algorithm is used based on
Gaussian filter and bilateral filtering. It removes the noise
while retaining the important image features like edges,
details as much as possible. It behaves linearly in the
smooth region of the image and nonlinearly in the edges.

In the Gaussian filter, the kernel has a strong central
pixel weight and gradually decreases toward the edge. Its
function is defined as in equation (10)

Gσ (x, y) = 1
2πσ 2 e

−(x2+y2)

2σ2 (10)

The Gaussian filters smoothen the image spatial varia-
tions, control the noise and preserves image features by
the mean value of local neighborhood pixels. This oper-
ation is working well in the low frequencies, but it misses
the high-frequency edges.

Bilateral filter overcomes Gaussian drawbacks by
smoothening the images while preserving edges. Bilat-
eral filter function at a pixel location l is defined as in the
following equation.

IB(l) = 1
W

∑
m∈S

Gσs(‖ l − m ‖)Gσr(|X(l) − I(m)|)I(m)

(11)

where Gσs(‖ l − m ‖) = e
− l−m2

2σ 2
s is the geometric close-

ness function, Gσr(|I(l) − I(m)|) = e
−|I(l)−I(m)2|

2σ 2
s is the

gray level similarity function,W = ∑
m∈S Gσs(‖ l − m ‖)

Gσr(|X(l) − I(m)|) is the normalized constant, ‖ l − m ‖
is the Euclidean distance between l and m and S is the
spatial neighborhood ofm.

The two parameters σ s and σ r define the function of the
bilateral filter.

The advanced mixed image de-noising algorithm is the
combination of Gaussian and bilateral filters. First, the
Gaussian filter is applied to the enhanced V component
of the HSV image which is treated as a reference image
for the bilateral filter. Next, the kernel function is taken
from the reference image, the kernel function and image
to be enhanced is given as the input of the bilateral fil-
ter. The low-frequency and high-frequency components
can be provided by reference and image to be denoised,
respectively.

X(t+1)(l) = 1
W

∑
m∈S

Gσs(‖ l − m ‖)

Gσr(|Xt(l) − I(m)|)I(m) (12)

IIF(l) =
∑
m∈S

Gσs(‖ l − m ‖)Gσr(|Xt(l) − I(m)|) (13)

In Equations (12) and (13) Gσ s(·) represents a spatial ker-
nel function, Gσ r(·) represents a range kernel function,
and σ s and σ r determine the expansion degree of spatial
kernel function and range kernel function, respectively.

The bilateral filter function is represented in Equation
(11) and used to solve the non-iterative and staircase
effect problem, it can be converted into a mixed denoise
equation, represented by the Equations (12) and (13) .
Here it takes the values of t=0–255. In order to imple-
ment Equation (13) the initial value of Xp (1) is con-
sidered as Xp (1)= Ip, then the iterative computation is
performed only once.

5. COLOR CORRECTION

In this paper, Color correction matrix is used to repro-
duce the optimum image from the high dynamic range
camera (processed) image. The dynamic range of ther-
mal images received from the camera differs from the
dynamic range of the human visual system. This process
maintains the color fidelity and makes the image more
suitable than the results without color correction. In this
work, a Spatially Varying Color Correction (SVCC) with
linear 3× 3 color correction matrix [9] is presented.
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Generally, the color images are represented as R×C× 3
(R rows, C columns, and 3 color components). For sim-
plicity during mathematical representation, the color
image is considered as K× 3 arrays, where K = R×C.
The image before color correction (UI) can be repre-
sented as

UI =

⎡
⎢⎢⎢⎣

UIR1 UIG1 UIB1
UIR2
...

UIG2
...

UIB2
...

UIRK UIGK UIBK

⎤
⎥⎥⎥⎦ (14)

where

[UIRi, UIGi, UIBi] is the normalized R, G, and B values of
ith row, respectively. The transformed (color corrected)
array is called CI, which is achieved by matrix multipli-
cation with C andM (3× 3), the color-corrected image is
represented as

CI = UI ∗ CM (15)

where UI: uncorrected image; CI: color corrected image;
CM: color correction matrix.

Color correction matrix CM is obtained by solving the
sum-of-square difference between ideal and color cor-
rected spectral sensitivity function [17]. In a practical
situation, the uncorrected image may contain noise, so
the CM mapping often amplifies [18] the noise also.
This noise can be eliminated by an optimal linear map-
ping [11,19] by focusing the color corrected image, color
accuracy, and the noise.

The optimal linear mapping matrix is estimated as

OLM = arg min
CMn

E�‖ CMUI − CMnUIn ‖	 (16)

where OLM is the optimum Linear Matrix, UIn = [rn,
gn, bn]T is the noisy RGB vector, E[.] is the expectation
operation.

In some cases the noises are non-zero Gaussian noise.
This is independent of RGB signals and independent of
each other, so the optimal linear matrix is modified as
follows

OLM = CM(C − Cn)T(C−1)T (17)

where C and Cn are the correlation matrix of the noisy
RGB vector and correction matrix of noise, respectively.

C =
⎡
⎣ E[rn2] E[rngn] E[rngbn]
E[rngn] E[gn2] E[bngn]
E[rnbn] E[gnbn] E[bn2]

⎤
⎦ (18)

Cn = diag([σ 2
r , σ

2
g , σ

2
b ]) (19)

where [σ 2
r , σ 2

g , σ 2
b ] are the noise variances of the RGB

channel.

In SVCC the noise image is divided into 8× 8 blocks.
Then the correlation matrix is computed for each block
separately, next color correctionmatrix is calculated from
the correlation matrix. This color correction matrix is
applied to all pixels of the noisy image. From the exper-
imental analysis, it is understood that the SVCC can
control the noise amplificationwith excellent image qual-
ity.

6. RESULT ANDDISCUSSION

The V component of raw HSV thermal breast image is
given as the input of curvelet transform with scale 3. In
scale 2 it divides the image into one approximation com-
ponent and 16 detailed components in 16 different orien-
tations. In scale 3 it divides into 32 detailed components.
The following is one of the examples of approximation
and detailed components for scale 3.

Figure 2(a) shows left breast thermogram of abnormal
case name Alamelu. In this proposed work Curvelet
transform is applied in the V component of this ther-
mogram in scale 3. It separates the V component into
one approximation coefficient and 32 detailed coeffi-
cients which are shown in Figure 2(b) and Figure 3,
respectively.

Figure 4 shows the stage by stage result of the proposed
framework for three abnormal cases named Alamelu,
Andal andDhanalakshmi. Figure 5 shows staged by stage
result of the proposed framework for four normal cases
named Amutha, Banu, Banumathi and Candra.

6.1 Quantative Analysis

Quantitative analysis is carried out for comparison of
different stages of the proposed work. For this analysis

Figure 2: Thermogram of left breast and corresponding V com-
ponent approximation curvelet coefficient in scale 3 of abnormal
case name Alamelu. (a) Thermogram (b) Approximation coeffi-
cient
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Figure 3: 32 different detailed subband curvelet coefficient for scale

following seven [20] statistical features are extracted
based on GLCM, PCA. The statistical features are
entropy, PSNR, mean variance, standard deviation, cor-
relation and energy.

6.2 Experimental Analysis

In Figure 6(a–d) the energy and correlation features
of normal and abnormal cases are compared and it
is understood that the proposed work output of the
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Figure 4: Stage by stage result of the proposed framework for three abnormal cases

normal case is more consistent than the abnormal.
Figure 7(a,b) give a comparison of the standard devi-
ation feature for abnormal and normal case, respec-
tively, were also the normal case feature is consistent
for various persons. From Figure 7(c,d) it is observed
that the variance feature for the abnormal case is more
consistent than the normal case. From Figure 8(a–d),
Figure 9(a,b) shows the Entropy, PSNR and Mean
comparison here both the normal and abnormal case
are consistent but in two different levels (Tables 1
and 2).

From the above discussion, it is witnessed that the above
said 7 consistent features can be used as the training fea-
tures for SVM classifies; it will help the classifier to fix
the hyperplane exactly. The considerable gap between the
consistent and inconsistent features guides the classifier
to fix the exact location of the hyper plane.

6.3 EvaluationMetrics

For classification performance evaluation, the available
thermograms of IGCAR dataset have been used. A total
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Figure 5: Stage by stage result of the proposed framework for four normal cases

of 80 thermography images of the breast including 48
normal and 32 malignant are analyzed. The ten sta-
tistical features are extracted based on GLCM, PCA
and seven features are found to be statistically signifi-
cant for fixing the hyperplane by SVM classifier. Every

statistical feature value is calculated as the average of
values obtained from the four GLCM matrices with
one distance d = 1 pixel. The classifiers employed in
this research are support Vector Machine which is
trained by a feature vector and tested from the IGCAR
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Figure 6: Stage by stage energy and correlation features comparison chart for both normal and abnormal cases. (a) Abnormal case
energy (b) Normal case energy (c) Abnormal case correlation (d) Normal case correlation

Figure 7: Stage by stage standard deviation and Variance features comparison chart for both normal and abnormal cases. (a) Abnormal
case standard deviation (b) Normal case standard deviation (c) Abnormal case variance (d) Normal case variance

Figure 8: Stage by stage entropy and PSNR features comparison chart for both normal and abnormal cases. (a) Abnormal case entropy
(b) Normal case entropy (c) Abnormal case PSNR (d) Normal case PSNR
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Figure 9: Stage by stageMean features comparison chart for both normal and abnormal cases. (a) Abnormal caseMean (b) Normal case
Mean

Table 1: Statistical features extracted from three Stages of proposed work for abnormal cases
Abnormal Case

Name Entropy PSNR MEAN VARIANCE STD. DIVIATION ENERGY CORRELATION

Alamelu Lt
Enhancement 7.48 20.15 141.17 978.4384 31.28 423.52 0.87
Denoise 7.5 19.3 142 1011.24 31.8 426 0.8
Color correction 7.5 19.2 127.6 1162.81 34.1 382.7 0.9
Alamelu Rt
Enhancement 7.4 24.8 150.3 1444 38 450.8 1
Denoise 7.5 19.5 152.1 1576.09 39.7 456.2 0.8
Color correction 7.5 19.3 134.4 992.25 31.5 403.2 0.9
Andal Lt
Enhancement 7.4 18.1 141.4 1521 39 424.3 0.7
Denoise 7.5 17.9 141.5 1528.81 39.1 424.5 0.7
Color correction 7.5 19.3 120 1239.04 35.2 359.9 0.9
Andal Rt
Enhancement 7.8 24.3 115.5 1049.76 32.4 343.5 0.9
Denoise 7.6 27.84 114.19 989.1025 31.45 342.5 0.9
Color correction 7.5 19.1 116.3 1043.29 32.3 294.8 0.7
Dhanalaksmi Lt
Enhancement 7.5 19.4 114.6 1361.61 36.9 343.7 0.8
Denoise 7.6 20.2 114.4 1303.21 36.1 343.1 0.8
Color correction 7.4 18.9 118.9 1049.76 32.4 284.8 0.8
Dhanalaksmi Rt
Enhancement 7.6 19.38 141.65 1492.277 38.63 424.96 0.8
Denoise 7.6 17.3 144.1 1664.64 40.8 432.4 0.8
Color correction 7.5 17.9 124.5 936.36 30.6 273.6 0.9

data base. Using this technique, 30 images are used
for training and remaining for testing [21,22]. This is
then repeated for different enhancement stages in this
work.

The classification performance is assessed by the metrics
such as Sensitivity, Accuracy, Specificity, FPR (False Pos-
itive Rate) and TPR (True Positive Rate) and it is defined
as in equation (20–24).

6.3.1 Sensitivity
Measures the proportion of positive cases which are cor-
rectly identified as positive

Sensitivity = TP
TP + FN

(20)

6.3.2 Accuracy
Percentage of correct classification

Accuracy = TP + TN
TP + TN + FP + FN

(21)
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Table 2: Statistical features extracted from three Stages of proposed work for abnormal cases
Normal Case

Name Entropy PSNR MEAN VARIANCE STD. DIVIATION ENERGY CORRELATION

Amutha Lt
Enhancement 7.63 25.29 115.8705 1090.796 33.0272 347.6115 0.94
Denoise 7.68 19.68 118.71 1431.866 37.84 356.14 0.79
Color correction 7.6 14.8 98 1705.69 41.3 294 0.8
Amutha Rt
Enhancement 7.5532 21.1732 120.1084 1121.232 33.4848 360.3251 0.8228
Denoise 7.5904 21.2596 119.9218 1087.535 32.9778 359.7654 0.8224
Color correction 7.6 15.8 100 1755.61 41.9 295 0.8
Banu Lt
Enhancement 7.8837 25.26 122.63 586.1241 24.21 367.9054 0.87
Denoise 7.8834 23.463 123.3053 684.9265 26.1711 369.9158 0.8391
Color correction 7.8 15.7 105.9 1521 39 298.9 0.8
Banu Rt
Enhancement 7.8122 18.5848 134.7 1347.727 36.7114 386.9298 0.7122
Denoise 7.8224 21.7952 126.2041 937.8416 30.6242 378.6124 0.8095
Color correction 7.7606 15.8429 104.2021 1563.372 39.5395 312.6064 0.81
Banumathi Lt
Enhancement 7.4288 18.5378 137.7322 1027.645 32.0569 413.1967 0.7499
Denoise 7.4679 18.3101 138.2311 1054.074 32.4665 414.6934 0.7751
Color correction 7.7921 16.4271 105.1889 1700.012 41.2312 304.55 0.82
Banumathi Rt
Enhancement 7.8 9.7 129 1346.89 36.7 386.9 0.4
Denoise 7.2701 19.2967 148.4685 1306.222 36.1417 445.4054 0.8748
Color correction 7.7518 15.786 102.5292 1644.521 40.5527 307.5875 0.8211
Chandra Lt
Enhancement 7.7059 19.4605 119.9943 1243.098 35.2576 359.9828 0.6626
Denoise 7.7009 21.1743 118.4262 972.3545 31.1826 355.2787 0.7128
Color correction 7.8 15.3 100 1274.49 35.7 296.69 0.8
Chandra Rt
Enhancement 7.7875 27.9308 118.5037 601.1421 24.5182 355.511 0.9264
Denoise 7.7808 21.002 120.7093 989.6687 31.459 362.1279 0.7253
Color correction 7.7 15.6 101.7 1459.24 38.2 305 0.8

Table 3: Performance comparison of breast cancer detection approaches employing thermograms
Authors Accu Sens Spec
(Year) Database Features Classifier (%) (%) (%)

Madhavi and Thomas [23] DMR database
(32-normal and 31-abnormal)

GLCM, GLRLM, GLSZM and
NGTDM texture features

LSSVM 96 100 92

Abdel-Nassera, et al. [24] DMR- IR database
(37 - normal and 19-abnormal)

GLCM texture features MLP 95.8 97.1 94.6

Ramya Devi and Anandhamala
[25]

DMR database
(35-normal and 25-abnormal)

GLCM texture features SVM-RBF 95 97.05 92.3

Josephine Jeyanathan et al.
[26]

DMR database
(405including normal and
abnormal)

GLCM, WTB,2D-DDTWT, GWT,
CT based texture features

GDA, KNN, NB, LR 91 87 90

Proposed method
(Without Color Correction)

IGCAR
(48-normal and 32-abnormal)

GLCM SVM 91.6 90 87

Proposed method
(With Color Correction)

IGCAR
(48-normal and 32-abnormal)

GLCM SVM 95.3 96.2 94.7

6.3.3 Specificity
Specificity is the estimation of negative cases which are
properly recognized as negative

Specificity = TN
TN + FP

(22)

6.3.4 False-Positive Rate (FPR)
The false-positive rate is also called miss rate, which can
be calculated by

FPR = FP
FP + TN

(23)

6.3.5 True-Positive Rate (TPR)
The true-positive rate is also called sensitivity, which is
calculated as

TPR = TP
TP + FN

(24)

whereTP is True Positive,TN is TrueNegative,FP is False
Positive and FN is False Negative (Table 3).

7. CONCLUSION

In this work, in order to improve the classification
accuracy of the thermograms, a new framework is
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presented. Two approaches are introduced in this work;
at first gain-controlled bihistogram threshold operator-
based curvelet transform enhancement is implemented.
The threshold on curvelet transform detailed sub-band
coefficients has improved significant enhancement on
thermograms which made more discriminable feature
extraction suitable for classification. Second one is the
advance mixed denoising approach to remove the noise
in the enhanced thermogram. The novelty of this noise
removal process is to preserve both low-frequency and
high-frequency components during denoising. Finally,
the demonised image is applied to the spatially vary-
ing color correction matrix to enrich the color of the
image. Based on the performance analysis of the pro-
cessed image about seven features are considered to be
suitable for expected response from the classifier. So these
seven features are considered as the training parame-
ters for the classifier that support for the early detection
of breast cancer. Experimental results of the proposed
framework achieve encouraging improvements in accu-
racy about 95.3% compared to the existing classification
methods.
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