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Abstract 

Efficient usage of a Cognitive Radio depends upon the fundamental aspect of Spectrum utilization. The 

Dynamic spectrum access belongs to spectrum holes estimation to utilize the natural resource in an 

effective way. Former works on spectrum approximation that predicted a perfect knowledge of the Signal to 

Noise Ratio of the received signal from the licensed users or primary users. In this paper we propose a open 

situation where the SNR of the primary user's signal is unknown to both Cognitive User terminals as well 

as the Fusion Center. A Kalman Filter based Adaptive Bayesian system is well-thought-out to make the 

global spectrum sensing decision based on the observed energies from the Cognitive Users. With the 

availability of the regulating system parameters, the fusion center can make a global sensing resolution 

reliably without any additional requirement of channel state information, prior information and prior 

prospects of the primary user's signal. Numerical result shows that the sensing performance of the proposed 

Bayesian system scheme outperforms the performance of the adaptive Takagi and Sugeno’s fuzzy system 

model. 
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1. Introduction 

Cognitive radio (CR) has been identified as a new design technique which wishes to enhance the efficient 

utilization of scarce electromagnetic radio spectrum by enabling dynamic spectrum access (DSA) for the 

next-generation wireless Communication. The inspiration for the design of CR communication systems 

comes from the fact that voluminous portions of the licensed spectrum are underutilized by the primary 

users or licensed users. As per Federal communications Committee (FCC) around 15-85 % of the spectrum 

is estimated as underutilized [1]. This lays the foundation for a secondary user or unlicensed user or CR 

user (CU) permitted to admittance a spectrum band unoccupied by the primary user at a specific time and 

or geographic location [2]. The spectrum hole or white space is the frequency band that has been allocated 

to a PU who is not using at the allotted time [3]. Opportunistic spectrum access (OSA) by CU depends on 

how efficiently and reliably the spectrum is sensed. Furthermore, periodic spectrum sensing is the basic 

requirement of CU data transmission, to overcome the interference with the PU [4]. 

The optimal number of CU’s involved in spectrum sensing under cooperative sensing. An energy efficient 

setup defined for minimizing the number of CU’s subject to a constraint on the global probability of false 

alarm (Pfa) and detection (Pd). Data throughput optimization scenario in which the throughput of the CU’s 

network is maximized subject to a constraint on the global probability of detection (Pd) in order to 

determine the optimal number of CU’s are dealt in [5]. To avoid interference to the licensed user by the CU, 
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spectrum sensing process or algorithms must be more accurate and should be highly reliable. Various 

techniques are used for spectrum sensing, generally energy detection, Cyclostationary feature detection and 

Hidden Markov Model (HMM) are used to detect the presence of the PU signal in the channel considered. 

Of the listed technique Energy Detection has more advantage over other techniques as the primary user 

signal is estimated without any prior knowledge of the PU since it has very low operation cost and 

creditable sensing performance [6][7][8]. Reliable identification of PU and the spectrum hole are more 

tedious task in the faded environment [9]. To evade this disadvantage, cooperative spectrum sensing has 

been proposed [10][11][12].  

Cooperation between CUs established to sense the PU’s presence or absence, fusion center (FC) is used to 

take the overall resolution about the PU’s. Here the sensing precision of the PU’s is improved by the spatial 

diversity gain. An analytical framework for the analysis and design of cooperative spectrum sensing method 

over correlated shadow–fading environment, when each cooperative user is equipped with a simple 

energy–based detector was derived in [13]. In [14], Quan et al., proposed an optimal linear cooperation 

framework for spectrum sensing in order to accurately detect the weak primary user signal in the spectrum 

band or sub band considered. However, the drawback of algorithm implementation in [14] is the overall 

knowledge of signal to noise ratio (SNR) and the noise variance of the PU signal should be known at the 

FC. In [15] a fuzzy inference system was proposed by Kieu-Xuan et al., assuming the SNR of the PU is 

known to the CU which provides an advantage of local soft spectrum sensing decision made at CUs 

terminal. Results in [15] shows that the sensing performance of the proposed scheme is comparable with 

the sensing performance of the maximal-ratio combination (MRC) based scheme which does not require 

SNR of the PU signal from CUs to the FC. 

In practice it is very difficult for a CU to accurately estimate SNR of the PU signal in a given spectrum 

band or sub band since there is no cooperation between the CU and the PU. It is observed that most of the 

existing cooperative spectrum sensing schemes makes an assumption that the SNR of the PU signal at the 

CU is perfectly known. Furthermore, even though the CUs can estimate these parameters well, it is very 

difficult to communicate them along with local observations to the FC. In [16] Thuc Kieu-Xuan et al. 

assumed each CU in the CR network estimated the energy of the received signal in the given band or sub 

band of interest and then transmitted the observed parameters to the FC. Data fusion at the FC is 

accomplished by using an adaptive Takagi and Sugeno’s fuzzy system where fuzzification parameters are 

adapted from received data through a Kalman filter. In this paper we first estimated the energy of each CU 

in the CR network and then it is transmitted along with the parameters of the received signal in the given 

band or sub band of interest to the FC. Data fusion is performed at the FC by an adaptive Bayesian system 

where SNR are adapted from received data through a Kalman filter. It means that the detection problem and 

the estimation problem are solved at the FC concurrently and cooperatively. Therefore, the FC can make a 

global decision based on local observed energies without the knowledge of the SNR of the PU signal at 

CUs. 

This paper is organized as follows: Section 2 describes the system model for adaptive cooperative spectrum 

sensing problem. An energy detection overview is given in Section 3. Section 4 derives the Kalman filter 

for estimating the mean under hypothesis of the observed energy from the local observation. 

An adaptive data synthesis algorithm using Kalman filter and adaptive Bayesian system are dealt in Section 

5. Numerical analysis and its results are presented in Section 6. Finally Section 7 concludes the paper. 

2. System Model  

The spectrum sensing problem can be formulated based upon the presence or absence of PU in the 

concerned band or sub band based on binary hypothesis testing model [17] as  
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Considering N number of CUs scattered across a given CR network with a single FC. The received signal at 

each CU based on the presence or absence of PU is given by 

 

2.2 

 

Where the received signal at the thi CU is represented by
iy (t) and the channel gain of the channel between 

the PU and the 
thi CU represented by

ih (t) . The signal transmitted by the PU represented by 
ix (t) and the 

additive white gaussian noise (AWGN) at the thi CU represented by
in (t) . In addition to above 

considerations we assume that the channels corresponding to different CUs are assumed to be identically 

independent, and the CUs and the PU share a common spectrum of concerned band or sub band. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Cooperative Spectrum Sensing Environment 

Figure. 1 show the spectrum sensing process considered in a cooperative environment to identify the 

occupancy of concerned band or sub band by PU. For a given sequence of sensing, the CU estimates the 

energy of its received signal in the concerned spectrum band or sub band. The energies observed from the 

1H cognitive users are then communicated to the overall FC through the control channel for final decision. 

Finally, the FC coordinates with the observations of all the CUs and their observed energies to make a final 

decision on the presence or absence of the PU signal by an adaptive data fusion algorithm. 

The main idea of this paper is to design an algorithm for adaptive data fusion at the FC based on the prior 

knowledge of the PU signal, the prior probability of the PU activity, and SNRs of the PU signal at CUs are 

unknown. 

3. Energy Detection Technique  

In cognitive wireless applications, it is of prodigious interest to check the presence or absence of an active 

PU in the communication link when the transmitted signal is unknown. In such situations, one apposite 
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choice is to consider an energy detector which measures the energy of the received signal over an 

observation time of a concerned spectrum band. Figure. 2 shows the energy detection method in the time 

domain. To measure the energy of the received signal in the frequency band or sub band of interest, the 

received signal is passed over a band-pass filter (BPF) first which is then converted into discrete samples 

using an analog-to-digital converter (ADC) [18]. 

 

 

 

 

 

 

 

Figure 2. Energy Detection Technique in time domain 

The confined test statistic of the thi CU using energy detection technique is given by 

 

3.1 

 

Where 
iy ( j)  is the thj sample of the received signal at the thi CU and N is the number of samples, 

dN T W where 
dT the detection time and W is the signal bandwidth. 

Here we assume that the noise at each given sample is an additive white gaussian random noise with unit 

variance and zero mean. If the PU signal is absent,   follows a central chi-square distribution with N  

degree of freedom; otherwise,   follows a non-central chi-square distribution with N degree of freedom 

and a non-centrality parameter 
iN [19] defined as 

 

3.2 

 

Where  

 

3.3 

 

i is the SNR of the PU signal at the thi CU and the parameter 
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Where 
sE is the transmitted energy of the signal over a given sequence of N samples during each detection 

interval. 

When N is comparatively large   can be well approximated as a gaussian random noise based on 

hypothesis 0H  and 1H with a mean of 
i0m and

i1m , and a variance of 
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are given as follows: 
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4. Kalman Filter Technique  

Kalman filter can be characterized as an algorithm for computing the conditional mean and covariance of 

the probability distribution of the linear stochastic system with uncorrelated Gaussian process and 

measurement noise. The conditional mean is the unique unbiased estimate. Assuming the transmission of 

PU signal with noise changing at each CU linearly over a given time period, the mean under the binary 

hypothesis 
1H of the observed energy at the arbitrary thi CU is nearly unchanged between two adjacent 

sensing cycles of assumed time [20]: 

   

4.1 

 

The observed output energy   can be considered as a noisy measurement of the mean 
i1m as  

 

4.2 

 

Where
in is the received noise and it follows a Gaussian distribution with zero mean and 

variance
ii 1R (k) v (k)   

We assume that the initial estimate of mean 
i1m estimated at a given time k. This priori estimation 

represented as
i1m (k)

 

and the estimation error is defined as 
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And the corresponding variance error is given as 
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A posterior estimation
i1m (k) is obtained by linearly combining the noise measurement 

i with the prior 

estimate 
i

1m (k)
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Where 
iK (k)  is the combination factor and

iK (k) 0 . 

The variance error related with this final estimate as 
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Substituting 4.5 in 4.6 and shortening we get  
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To minimize the mean-square estimation error, differentiate 
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       4.8 

 

From equation 4.8 we get the Kalman gain by equating the derivate to zero  

 

            4.9 

 

Now substituting the Kalman Gain in equation 4.7 we get  

 

           4.10  

 

The updated estimate of 
i1m is anticipated based on the equation 4.1. Thus, we have 
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The prior error variance related with the prior estimate as 

 

            4.12 

 

The above equations derived to obtain the Kalman filter recursive function for estimating the mean under 

the hypothesis 
1H  of the observed energy at each CU. 

5. Adaptive Bayesian System at Fusion Centre 

The global comprehensive decision making spectrum sensing choice based on a Kalman filter, adaptive 

Bayesian system are made by local observations received by the Fusion Centre and the final decision is 

based on the results of the cognitive users. Figure. 3 show the proposed system for Comprehensive 

Decision Making at the FC.   

 

 

 

 

 

 

 

 

 

 

 

Figure. 3. Comprehensive Decision Making at the FC 
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K classes. The probability 
kP( ) of a class 

k  is called the prior probability, represents the knowledge 

about the channel before the measurement. Since the number of possible classes is K we have: 

 

          5.1 

 

Here we assume the channel estimation problem as a classification problem with two possible classes i.e., 

K 2 . In this case, the Bayes decision rule can be made into a simple assuming a uniform cost function 

and the maximum a posteriori (MAP) classifier expressed as 
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We test if the test fails, it is identified as
2 otherwise

1 symbolically we write this as  
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By rearranging the above equation we get 
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The conditional probability density function 
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k . Therefore, 

the Likelihood ratio arrived as 
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The types of errors involved in the channel detection system are two. Suppose that 
^

(z) is the result of a 

decision based on the measurement z . The true value of an object is either
1 or

2 . Then based on 

above analysis four states may occur as shown in table. 1 
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Probability of false alarm
^

fa 2 1P P( | )   indicating that the channel is vacant while the channel is in use 

and (ii) Probability miss detection
^

1md 2P P( | )   indicating channel in use while it is vacant and these 

errors depends on the performance measures of the detector.  The probabilities and false alarm 
faP  and 

miss detection 
mdP as a function of the threshold T are obtained as 
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The posterior distribution of system (z) is fully specified by its conditional expectations and its variance, 

as (z) varies with linearly with 
faP and the expected value obtained as  
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And the corresponding variance obtained as 
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With that the signal to noise ratio (SNR) obtained as 
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The required SNR for the probability of detection 
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probability of false alarm 
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schemes used for simulation is BPSK. In this simulation, we assume that all CUs suffer independent and 

identically distribution Rayleigh/Log-normal shadow fading channel with mean SNRs of PU signal at CUs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure.4 Detection Threshold versus probability of false alarm   

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure.5 Probability of False Alarm (Pfa) versus signal to noise ratio  

Figure.5 shows the graph between probability of false alarm versus the SNR with required SNR of 

probability of detection assumed at 0.9 to detect the presence of the primary user in the noisy environment. 
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The comparison graph shows the SNR reduces in the proposed model of Bayesian system model compared 

to the adaptive fuzzy based system model with required SNR of probability of detection at 0.9 for number 

of CUs assumed to be 10.  

7. Conclusions 

To detect spectrum holes reliably and efficiently, in this paper we proposed an adaptive Bayesian system 

based data fusion algorithm for cooperative spectrum sensing in CR networks. The advantage of the 

proposed scheme comes from the fact that it can work without any requirements about the knowledge of the 

PU signal, the prior probability of the PU activity, and SNRs of the PU signal at cognitive radio terminals. 

Simulation results showed that the sensing performance of the proposed scheme outperforms the 

performance of equal gain combination based scheme, and matches the performance of fuzzy based 

adaptive system. 
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