

International Review on Computers and Software (I.RE.CO.S.), Vol. 8, N. 5

 ISSN 1828-6003 May 2013

Manuscript received and revised April 2013, accepted May 2013 Copyright © 2013 Praise Worthy Prize S.r.l. - All rights reserved

1097

An Efficient Iterative Modulo Scheduling Approach for Improved
Resource Allocation for Effective Multimedia Communication

on Grid Computing Environment

G. Saravanan1, V. Gopalakrishnan2

Abstract – This paper discusses Iterative modulo scheduling techniques on heterogeneous
resource for multimedia services to deal with the demands of next-generation multimedia
applications on grid computing environment. The proposed scheduling algorithm has the
subsequent features, which can be make use of on grid computing background. Initially the
algorithm assistance with the resource practice constrained scheduling. The grid mainly consists
of the resources that are possessed by decentralized society. Second, the algorithm performs the
optimization-based scheduling. It gives an optimal solution to the grid resource allocation
problem. Third, the algorithm takes for granted that a set of resources is dispersed geographically
and varied in natural world. Fourth, the scheduling method dynamically adjusts to the grid status.
It tracks the present workload of the various resources. The proposed algorithm performance is
estimated with a set of predefined metrics. In addition to that the simulation results show the
outperformance of the Iterative modulo scheduling algorithm. Copyright © 2013 Praise Worthy
Prize S.r.l. - All rights reserved.

Keywords: Resource Allocation, Scheduling, Grid Computing, Mixed Ancestral Graph

I. Introduction
In science and commerce they are proposed two

methods to resolve the major risk. They are
Computational Grids and peer-to-peer (P2P) computing
systems [1], [2]. It allows establishing of virtual
enterprises (VEs) for allocation and combination of
resources [3] to spread around the companies and
organizational domains. These networks include
numerous resources like workstations, clusters and
supercomputers, fabric managing systems and
applications like scientific, engineering, commerce and
profitable with many essentials. The producers and
consumers have many aims, methodology and supply-
and-demand designs. To deal with some critical
situations established methods to resource management
that effort to enhance system-wide performance measure
cannot be engaged. Established methods to use
centralized policies to want fulfilled state report and a
popular fabric management policy, or a reorganized
consensus-based policy. Because of the difficult in
developing successful Grid situations, it is not possible to
derive a suitable system-wide performance matrix and
common fabric management policy [4]. In most of the
interconnected work in Grid computing Committed to
resource management and scheduling problems to
implement a conventional style where a scheduling factor
determines which jobs are to be executed at which site
created certain cost functions (Legion [5], Condor [6],
AppLeS [7], Netsolve [8], Punch [9]).

Some cost functions are always driven by system-
centric parameters that develop system quantity and
utilization rather than increasing the utility of application
processing. All resources are treating as the same cost
and all the results of all applications are the same value.

But it is not possible in the reality. The consumer does
not need to pay the highest price, but they need to pay a
particular price based on the demand, value, priority and
available budget.

At the different times, the different applications
contain different values. In an economics method, the
scheduling decision is not done constantly by a single
scheduling entity but directed to the end user’s
obligation.

The conventional cost model frequently deals with
software and hardware costs for running applications,
more often than not, the economic model charges the
consumer for services that they consume based on the
value they derive from it. Driver in the ready for action,
economic market model provides the Pricing based on
the demand of users and the supply of resources. Thus,
users have a struggle with other users and a resource
owner with other resource owners.

The active and different nature of the grid coupled
with critical resource usage policy issues poses exiting
challenges to connect the resources in an effective
manner. In this paper, the novel optimization scheduling
techniques and their performance on open science grid
(OSG), a worldwide consortium of university resources
consisting of 2000+ CPUs. The recreation results show

G. Saravanan, V. Gopalakrishnan

Copyright © 2013 Praise Worthy Prize S.r.l. - All rights reserved International Review on Computers and Software, Vol. 8, N. 5

1098

that the proposed algorithm can effectively:
1) To assign grid resources to a set of applications

beneath the constraints offered with resource usage
policies;

2) To carry out optimized scheduling on heterogeneous
resource by means of iterative approach and binary
integer programming (BIP);

3) Increase the completion time of workflows in
integration with job execution tracking modules of
GRIDWAY scheduling middleware [10].

Verboven et al. [11] provides a Grid Information
Prediction System (GIPSy) structure which creates sweep
prediction based on previous runtime data and there are
various parameters used to organize every job. They are
providing the prediction based grid scheduling technique
which is shared with GIPSy to acquire a real-world grid
execution. Because of huge problems of job scheduling
and resource management in different systems in grid
computing environment, not many established scheduling
methods through the heterogeneous processors
environment.

Consequently, Hsu and Chen [12] intended
performance-oriented and economization-oriented
scheduling techniques for handling applications with
quality of service (QoS) demands in grid and
optimization algorithms which are based on QoS min-
min algorithm. Hsu et al. [13] established a two-level
scheduling method separates local messages from inter-
processor messages and schedules both kinds of
messages in separated steps to efficiently avoid
synchronization delay.

The intended technique has been developed with the
established scheduling method gives to improve
schedules for different processors environment.

II. Related Work
The related algorithms work as better than the

traditional high performance-computing environment;
they do not achieve the acceptable manner with the
features of grid discussed in the last section.

A. Iterative List Scheduling [14]

An iterative list-scheduling algorithm, it constructs
with scheduling on different computing systems. From
the previous results, to enhance the excellence of the
schedule in the iterative manner is the main concept of
the iterative scheduling algorithm. Whereas the algorithm
can possibly give the shorter length it does not support
the resource usage policies. It is a constant scheduling
algorithm, which simulates the static or stable computing
situations. In the non-static and policy constrained grid
environment the algorithm may not executed the similar
results are shown in this paper.

B. Dynamic Critical Path Scheduling [15]

In this the author tells a static scheduling algorithm for
allocating task graphs to fully linked multiprocessors. It
reduces the make-span subject to priority constraint,

which describes by the significant path of the task graph.
The similar CPU-based scheduling algorithm

undertakes that the scheduler could manage the
scheduling priority of jobs in a processor. In the grid
environment it is not true that the resources have
reorganized ownership and different local scheduling
policies reliant on their VO.

C. Reliability Cost Driven Scheduling [16]

A two-phase scheme is used here to describe the
priority constraints of scheduling of tasks that provides a
reliability measure is one of the goals in a real-time and
different distributed system. To obtain the exploit
reliability from the static algorithm schedules real-time
tasks. In the algorithm the utility function get with the
initial time of jobs in an application. The algorithm may
not be capable to get the suitable resource allocation to
the application in the existence of the policy
environment.

D. Heterogeneous Earliest Finish Time Scheduling [17]

The main aim of the algorithm is to choose the weight
for the nodes and edges of a directed acyclic graph
(DAG), and it tests with a number of different methods
for computing these weights. The established system uses
the mean value approach to get the length of the iterative
method to the different resources. The test results
evaluate the two schemes. The offline and priority-based
scheduling may not be possible to the grid-computing
environment

E. Dynamic Level Scheduling [18]

To get a pair of job and a processor in an complete
way from the scheduling algorithm. In DAG, the job is
on the serious path and it begins on the processor in the
initial time. The algorithm is used in the mean value
method on the different CPU resource environment. In a
policy-based grid computing, the static and mean value-
based scheduling does not provide a better scheduling
result.

F. Optimal Assignment with Sequential Search [19]

Based on the A* technique the author introduces two
more algorithms, they are:
 sequential algorithm,
 assignment algorithm.

The sequential algorithm decreases the search space.
The assignment algorithm offers a lower time
complexity, by running the assignment algorithm in
parallel and attains considerable speedup.

The modified algorithm generates random solution
and shortens the tree, when the exhaustive and sequential
search for the optimal assignment is not possible to a
large tree search space.

The recommended algorithm executes the optimal
assignment in a heterogeneous method.

On the other hand, we use a sub tree and iterative
methods for whole tree and various resources.

G. Saravanan, V. Gopalakrishnan

Copyright © 2013 Praise Worthy Prize S.r.l. - All rights reserved International Review on Computers and Software, Vol. 8, N. 5

1099

III. Proposed Iterative Scheduling
Algorithm

Optimal scheduling algorithm is used in the dynamic
programming to improve the utility function of the entire
system. The proposed algorithm is iteratively get
improved task agents and resource agent’s effectiveness
functions as sub-problems of the Qos for grid resource
scheduling optimization. To satisfy the user requests, the
created grid QoS scheduling algorithm gets a multiple
quality of service solution optimal for grid users. When
the task agent in each cycle evaluates separately, to
change its optimal payment for grid resource agents
regulate its computation resource demand and network
resources demand and notifies the grid. The grid prices
are updated and converse the new prices to the grid task,
when the new computation resource and network
resource demand are observed by the computation
resource agent and network resource agent respectively
and the same cycle is repeated.

A. Iterative Modulo Scheduling and GridWay

To get a good DAG completion time and to improve a
resource allocation decision, the iterative modulo
scheduling method is used in the algorithm.

To examine a number of iterative algorithms and
priority functions, the near-best in schedule quality and
near-best in computational complexity are verified in the
extensions of the acyclic list scheduling algorithm and
the commonly used height-based priority function.

The iterative algorithm and the intuition underlying
the choice in heuristics are required and it is explained in
[20]. Two pseudo-operations are implicit. In dependence
graph, the START and STOP are added. All the other
operations in the graph, START and STOP are done to
be the predecessor and successor, correspondingly.

Iterative schedule calls in the Procedure Modulo
Schedule which in turn larger values of II, to initiate with
an earlier value is equal to the MII up to the loop has
been scheduled.

Iterative Schedule appears the most conservative
acyclic list scheduling algorithm. The various points are
shown as below:

The detailed operation can be unplanned the schedule
and again plan the schedule, operation scheduling, quite
than instruction scheduling, is utilized. An operation is
going to start, when the acyclic list scheduling notion and
it is scheduled only after its predecessors is scheduled,
the minimum value in iterative modulo scheduling
whereas it is probable for a predecessor operation to be
unscheduled after its successor has been scheduled:
 The function Highest Priority Operation returns the

unscheduled operation is the highest priority in
agreement with the priority system in use. It may
return the same operation multiple times if that
operation has been unscheduled in temporarily. It is
not occur in the acyclic list scheduling.

 The calculation of Estart, the earliest start time for an
operation is restricted by its dependences on its

predecessors and it is affected when the operations
can be unscheduled. In one or more of the
predecessors is no longer scheduled, when an
operation is selected and scheduled next. Likewise,
when scheduling the first operation in a SCC, at least
one of its predecessors is should not schedule.

 Observance of the modulo constraint is assisted by
the use of a special version of the schedule
reservation table [21]. To schedule an operation in a
particular time occupies the use of resource R at time
T, and then the location ((ܶ ݉ܫܫ ݀),ܴ) of the table
is used to record it. As a result, the schedule
reservation table require only be as long as the II.
Consequently, in a reservation table, a modulo
reservation table (MRT) [22] is named.

 While resource reservations are made on a MRT,
differences in time T indicate the difference at all
times ܶ ± ݇ ∗ So, it is enough to think about an .ܫܫ
adjacent set of candidate times that duration in an
interval of II time slots. Then the MaxTime is
considered as the largest time slot, is set in to
+ ݁݉݅ܶ݊݅ܯ – ܫܫ 1, whereas in acyclic list
scheduling is effectively set to infinity.

 The currently listed operation is selected by the
FindTimeSlot. Suppose the MaxTime is vast, it will
be an acyclic scheduling, the functioning of
FindTimeSlot is as list scheduling; the while-loop
always exits to found a legal. Conflict-free time slot,
as the MRT is used with modulo scheduling, the
MaxTime is as (݁݉݅ܶ݊݅ܯ + − ܫܫ 1). It is reason
for the while-loop to end without found any conflict-
free time slot. Lacking in unscheduling which leads to
one or more operations is not feasible to schedule the
current operation.

B. The function of Iterative Modulo Scheduling

Function Iterative Schedule (II, Budget: integer):
boolean;

{Budget is the maximum number of operations
scheduled}

{before giving up and trying a larger initiation
}

{interval. II is the current value of the initiation
}

{interval for which modulo scheduling is being
}

{attempted.
}

var
Operation, Estart: integer;
MinTime,MaxTime ,TimeSlot: integer;
Begin
{compute height-based priorities }
HeightR;
{schedule START operation at time 0 }
Schedule(START, 0);
Budget: = Budget-1;
{Mark all other operations as }

G. Saravanan, V. Gopalakrishnan

Copyright © 2013 Praise Worthy Prize S.r.l. - All rights reserved International Review on Computers and Software, Vol. 8, N. 5

1100

{having never been scheduled }
For operation:= 2 to NumberOfOperations do
Neverscheduled[Operation]:= true;
{ continue iterative scheduling until either all }
{ operation have been scheduled, or the budget is }
{ exhausted. }
While(the list of unscheduled operations is not empty)
And (Budget >0) do
Begin
{ Pick the highest priority operation }
{ from the prioritized list }
Operation : = HighestPriorityOperation();
{ Estart is the earliest start time for }
{ Operation as constrained by currently }
{ scheduled predecessors }
Estart: = CalculateEarlyStart (Operation);
MinTime := Estart;
MaxTime :=MinTime + II -1;
{ Select time at which Operation }
{ is to be scheduled }
TimeSlot : = FindTimeSlot

(Operation,MinTime,MaxTime);
 { The procedure Schedule schedules Operation

at }
 { time TimeSlot. In so doing, it displaces all

}
 { previously scheduled nodes that conflict

with }
 { it either due to resource conflicts or

}
 { dependence constraints. It also sets

}
 { NeverScheduled[Operation] equal to false.

}
Scheduled(Operation,TimeSlot);
Budget := Budget – 1;
End; { while}
IterativeSchedule := (the list of unscheduled

operations is empty);
End;{ IterativeSchedule }

III.1. Computation of the Scheduling Priority

In acyclic list scheduling, there are a boundless
number of priority tasks are developed for modulo
scheduling.

Mostly used one is getting the priority, in a single or
many way, the operations are return to the circuit over
that are not [23], [22], [24]. It is reflecting to schedule
such operations are more difficult, while the first one
scheduled in a SCC is subject to a deadline.
Alternatively, a priority function is used to a direct
conservatory of the height-based priority [25], [26] that is
popular in acyclic list scheduling [27].

For expanding the height-based priority function is
used in iterative modulo scheduling needs to take into
account interiteration dependences. To consider a

successor Q of operation P with a dependence edge from
P to Q having a distance of D. Imagine the operation Q
that is in the same iteration as P has a height based
priority of H. Then the P's successor Q is actually D
iterations later, and the STOP pseudo-operation D
iterations later is II*D cycles later than the STOP
pseudo-operation is in the same iteration.

The priority function used in iterative modulo
scheduling, HeightR (), is attained by resolving the
system of implicit equations in Fig. 5(a).

HeightR (P) is directly available as
.ܲ]ݐݏ݅ܦ݊݅ܯ ܱܵܶܲ], when the MinDist matrix to
complete dependence graph is evaluated. The above
implicit set of equations for HeightR () is iteratively
solve by using a less costly procedure. For identifying the
SCCS of a graph during a depth-first traversal of the
graph [28] is utilized based on the algorithm. HeightR ()
has a couple of good properties are described in this
algorithm somewhere [33]. In their structure, a large
fraction of the loops are rather simple. By using the
topological sort order, HeightR () is ensures whether the
operations are scheduling in one pass. This is a better
chance for some loops. Second, HeightR() provides
higher priority to operations in some SCCs which have
less slack.

The Function FindTimeSlot:
Function FindTimeSlot (Operation. MinTime,

MaxTime : integer): integer;
 var
 CurrTime,SchedSlot : integer;
 Begin
 CurrTime : = MinTime;
 SchedSlot := null;
 While (SchedSlot = null) and (CurrTime <=

MaxTime) do
 If ResourceConflict (Operation,CurrTime)

then
 { There is a resource conflict at }
 { CurrTime. Try the next time slot. }
 CurrTime : = CurrTime + 1;
 Else
 { There is no resource conflict at CurrTime }
 { Select this time slot. Note that dependence }
 { conflicts with successor operations are }
 { ignored. Dependence constraints due to }
 { predecessor operations were honored in }
 { the computation of MinTime. }
 SchedSlot :=CurrTime;
 { If a legal slot was not found, then pick (in }
 { decreasing order of priority) the first available }
 { option from the following : }
 { }
 { -MinTime,either if this is the first time that }
 { operation is being scheduled, or if MinTime is }
 { greater than PrevScheduleTime[Operation],

(where}
 { PrevScheduleTime[Operation] is the time at which

G. Saravanan, V. Gopalakrishnan

Copyright © 2013 Praise Worthy Prize S.r.l. - All rights reserved International Review on Computers and Software, Vol. 8, N. 5

1101

}
 {operation was last scheduled)

}
 {-PrevScheduleTime[operation]+1

}
 If SchedSlot = null then
 If (neverScheduled [operation] or
 (MinTime > PrevScheduleTime[Operation]

then
 SchedSlot := MinTime
Else
 SchedSlot := PrevScheduleTime[operation]+1;
FindTimeSlot:=SchedSlot;
End;{ FindTimeSlot}

III.2. Calculation of the Range
of Candidate Time Slots

The MRT requires accurate schedules from a source
usage viewpoint. Suitably, from the viewpoint of
dependence constraints are required by antecedents, is
taken by computing and using Estart, the most early time
the operation is scheduled, if respect the dependences on
its predecessors. In this context of reappearance and
iterative modulo scheduling, it is not possible to assure
that all of an operations, predecessors have been
scheduled, and remaining are scheduled, when the time
comes to schedule the operation in question. The Estart is
calculated, when consider these immediate predecessors
are presently scheduled. The early start time for
operation P is provide the equation where Pred(P) is to
set the immediate predecessors of P and SchedTime(Q) is
the time to Q is scheduled.

An operation is not scheduled by its Estart are
privileged to dependences with predecessor operations.
Dependences with successors operations are credited by
virtue of the fact, when an operation is scheduled; all
operations are conflict with it, either because of resource
usage or due to dependence conflicts, are unscheduled.
Consequently the operations are scheduled, the Estart is
computed by them, and the dependence restraint is
monitored. In any time, the incomplete schedule for the
presently scheduled operations entirely credits all the
constraints between the scheduled operations.

Considering more than II adjacent time slots are
starting with Estart, is meaningless and unwanted.
Because of resource conflicts, a legal time slot is not
found in this range, it is also not found in outside of the
range. Therefore, MaxTime is set equal to Estart +II – l.

III.3. Selection of Operations to be Unscheduled

Consider the time slot is created among MinTime and
MaXTime, it does not result in a resource variance with
any currently scheduled operation [29]. The operations
which are unscheduled, those direct successors with
whom there is a dependence conflict. The operations are
not unscheduled, because of a resource conflict.

At the same time, in every time slot for MinTime to
MaxTime results in a resource is conflict. The two
decisions are formed which is given below
1. Should select a time slot in which to schedule the

current operation.
2. Should select in which currently scheduled operations

are replace from the schedule.
The first decision is made to make sure that the

forward growth by this event the current operation is
previously scheduled; it can’t be rescheduled at the same
time. It prevents an environment where two operations to
keep continuously replace each other from the schedule.

The operation is scheduled, when the Estart is less
than the previous schedule time. If Estart is greater than
the previous schedule time, it is scheduled one cycle later
than it was scheduled previously.

Inspite of, to schedule the operation in the particular
time slot, one or more operations are unscheduled for the
reason of resource conflicts. When the multiple
alternatives for scheduling an operation, the choice of
alternative decides to which operations are unscheduled.

Periodically, we choose an alternative which replaces
the lowest priority operations. In place of attempting to
make this examination straightly, all the operations are
unscheduled which conflict with the use of any
alternatives.

By using one of the alternatives the current operation
is scheduled. Rescheduled the replaced operations, at the
same time, may be the priority function order is
specified.

To resolve the scheduling problem modeled in BIP,
the proposed algorithm prepares an optimal scheduling
decision. The proposed algorithm is used to the mean
value method to make an initial scheduling decision on
different. The implementation time of a job is modified
with a specific value on a decided processor as the
iterative modulo scheduling continues. When there is no
enhancement in dag completion time, the iteration is
finished. The above mentioned algorithm is described as
detailed. The algorithm develops an iterative modulo
scheduling scheme to treat with different resources. By
solving the policy-based scheduling problem, that is
modeled in BIP is also executes an optimized scheduling.

GridWay
GridWay is one of the open source meta-scheduling

knowledge that provides large-scale, protected, reliable
and well-organized sharing of computing resources
(clusters, computing farms, servers, supercomputers...),
managed by dissimilar Distributed Resource
Management Systems (DRMS), such as SGE, Condor,
PBS or LSF, within a single organization or scattered
across several administrative domains. At this end,
GridWay maintains several Grid middleware.

IV. Notation and Variable Definition
The proposed scheduling algorithm the notations and

variables that are referred to be defined are shown in this

G. Saravanan, V. Gopalakrishnan

Copyright © 2013 Praise Worthy Prize S.r.l. - All rights reserved International Review on Computers and Software, Vol. 8, N. 5

1102

section.
In different resource situation, the computation or

execution time of a job on a processor (ܿ݉) is not
equal along with a set of processors. The algorithm puts
an initial execution time of a job with the mean value of
the different time on a set of accessible processors. Based
on the total workflow completion time, the algorithm
modifies the scheduling decision; the time is renewed
with an execution time on a specific processor. Between
any two processors, the data transfer or communication
time are also various in the environment:

 ݆ : computation time of job ݅ on processor݉ܿ
:݉݉ܿ communication time from processor to ݆

An application or workflow is in the format of DAG.
Each job ݅ has a set of precedent (ܿ݁ݎ) and

succeeding (ܿ݉݉) jobs in a DAG. The dependency is
represented by the input/output file relationship:

:ܿ݁ݎ a set of the precedent jobs of job ݅

:ܿܿݑݏ a set of the succeeding jobs of job ݅

To execute a job maintains track of the availability of

a processor (݈݅ܽݒܣij) by this algorithm. Before a new job
gets started, a processing model in a way that all the jobs
in a processor queue should be completed are considered.
consider a nonpreemptive model.

GridWay attains the information from a grid
monitoring system such as MonALISA or GEMS, in the
grid scheduling middleware. the earliest start time of a
job on each processor (ܶܵܧij) is work outs by this
algorithm. A job can establish its execution on a
processor only after assuring the two conditions; first one
is a processor must be obtainable (݈݅ܽݒܣij) to execute the
job. Second, all the precedent jobs be finished:

ܨܧ∈൛ݔܽܯ) ܶ + {ൟ݉݉ܿ

On the same processor or the others. The earliest start

time (ܶܵܧij) and the job completion or execution time on
the processor (݆ܿ݅݉) is defined by the earliest finish
time of a job on a processor (EFTij). The workflow
completion time from a job to the end of a DAG
 is defined recursively from the bottom to (݅݊݁ܮ݉ܿ)
the job i. The significant path in the workflow is decided
by value. To make width of the significant path is used as
a reason to finish the algorithm. The algorithm ends the
scheduling when there is not a series of enhancement in
the DAG completion time:

:݈݅ܽݒܣ the available time of processor ݆ for job ݅

ܵܧ ܶ: earliest start time of job ݅ on processor ݆

ܵܧ ܶ = ݈݅ܽݒܣ} ܺܣܯ ܨܧ∈൛ݔܽܯ, ܶ + {ൟ݉݉ܿ

ܨܧ ܶ: earliest ϐinish time of job ݅ on processor ݆

ܨܧ ܶ = ܵܧ ܶ + ݉ܿ

 ݅ :workϐlow completion length from job݊݁ܮ݉ܿ

݊݁ܮ݉ܿ = ݉ܿ + ∈௦௨ݔܽܯ ൬
ೖ݉݉ܿ +
݊݁ܮ݉ܿ+

൰

V. Optimization Model
In the proposed algorithm, to find an optimal solution

to the scheduling problem must create a BIP model.
Here, we describe a scheduling profit function, which

uses the workflow completion time and the initial end
time of a job on an each different processor. Then discuss
about the optimization model for the scheduling problem.

Scheduling profit ൫൯: the profit when job (݅) is
assigned to processor (݆):

 =
݊݁ܮ݉ܿ
ܨܧ ܶ

, where ܨܧ ܶ > 0

when a job on a considerable path is scheduled with
another job on a non considerable path, the profit
function to be described to generate higher profit. The
job ends soon than the other processor, the profit value is
also higher with a processor for a job i. A scheduling
algorithm providing the function tries to give a higher
priority to the job whose completion time is longer than
the others’ completion time. Which job has been
completed earlier than others the algorithm allocates the
job with higher priority to the processor.

Fig. 1 is based on the scheduling function (ܲ), Table
I shows the example that gives a procedure to prioritize a
set of jobs on the DAG. Based on the earliest finish time
of a job on a processor(ܨܧ ܶ), also shows the processor
assignment to the jobs. An example of a workflow in
DAG and a process to significant a set of jobs on the
DAG and to allocate the jobs onto a set of processors,
respectively are shown in Fig. 1 and Table I. Considering
two processors, P1 and P2 is shown in Table I, illustrates
the different execution time of the jobs on each of the
processors (execution time). The execution policy of the
jobs are also shown in the table. The processor permits a
job to be executed on a corresponding processor is
indicated by the mark *. On the basis of the average
execution time (avg.exec. time) of the job over the
processors, the workflow completion time from a job to
the end of a DAG (compLen) is calculated [30]. The jobs
are signified and allotted onto the processors.

The main goal of the optimization model uses the
profit function to choose a processor for a job from the
scheduled job list. The scheduling problem in the
optimization model is resolved by the scheduling
algorithm. It tries to allot the jobs in a significant path
onto the processors, which gives the job with the earliest
end time. The task is restricted by a set of constraints.

By using the BIP optimization model gives the higher
profit values to a set of jobs and processors subject to the

G. Saravanan, V. Gopalakrishnan

Copyright © 2013 Praise Worthy Prize S.r.l. - All rights reserved International Review on Computers and Software, Vol. 8, N. 5

1103

several restrictions. The resource usage constraint is
detailed with the two values quota (݆݅ݍ) and necessity
(ܾ݆݅) for a job i and a processor j. The quantitative model
is easily to convey the procedure in different resource
types.

The assignment constraint creates, it sure that a job is
not divided or assigned onto more than two processors.

In every processor, asset of assigned job above the
predefined quota (݆ݐ) should not be loaded. Now the
load is defined with the number of assigned jobs. By
using the available BIP solvers, the BIP model (݆݅ݔ =
 is implemented. We use the GNU linear (1 ݎ 0
programming kit in the implementation:

ݔܽܯ . ݔ

s.t.
≥ ݆݅ݔ݆ܾ݅ for each job ݅ and processor ݆ (policy) ݆݅ݍ
∑ ݔ = 1 for each job ݅ (assignment)
∑ ݔ ≤ ݐ for each processor ݆ (load)
= ݆݅ݔ (binary) 1 ݎ 0

where:
ܾ݆݅ ∶ resource usage requirement of job ݅ on processor ݆;
݆݅ݍ ∶ resource usage quota of job ݅ on processor ݆;
݆ݐ ∶ the limit of assigned jobs on processor ݆.

Fig. 1. Example workflow in DAG

TABLE I
EXAMPLE FOR JOB PRIORITIZATION AND PROCESSOR ASSIGNMENT

JOB# J1 J2 J3 J4 J5 J6 J7 J8
Execution
time
P1 62 60 75 84 25 60 19 90
P2 80 45 90 20 80 82 15 30
policy
P1 ∗ ∗ ∗ ∗ ∗
P2 ∗ ∗ ∗ ∗ ∗
Avg.Exec
Time

71 52.5 82.5 52 52.5 71 17 60

compLen 500 317 325 315 180 185 170 60
Prioritization 1 3 2 4 6 5 7 8
Assignment P1 P2 P1 P1 P1 P2 P1 P1

VI. Experiment and Simulation Results
The performance is calculate with the simulation

results by using the projected iterative modulo
scheduling algorithm and the test application is executed
on the OSG.

Here we discussed about the simulated and
experimental performance to evaluate the algorithm with
the list scheduling which uses the mean value method to
the different resource atmosphere.

A. Network Configuration and Test Application

The scientific computing support OSG is a grid-
computing infrastructure. It consists of more than 25
sites, and together provides more than 2000 CPUs. Seven
different scientific applications, including three high
energy physics simulations and four data analyses in
high-energy physics, biochemistry, astrophysics, and
astronomy are used by the resources.

Consequently, the performances of the algorithms are
compared, to generate a set of test workflows in a DAG
format. The Workflow reproduces a simple application
that gets input files, and generates an output file. In each
job the size of the output file is differed and by default, in
the execution site the file is placed. DAG structure is as
the depth and width is set with different values are
arranging to the experiment and simulation parameters,
are discussed in the following sections.

a. List Scheduling with the Mean Value Approach

By the performance of DAG completion time, the list-
scheduling algorithm with the iterative modulo
scheduling algorithm and policy scheduling algorithm is
compared in this experiment. To decide the execution
time of a job on different resources the list scheduling
uses the mean value approach.

A set of jobs in a workflow is sorted by the list-
scheduling algorithm by using the non descending order
of the workflow completion time. For each job, up to the
end of the workflow, the workflow completion time is
calculated. On the same time, the workflow completion
time is affected in a significant manner, when the
algorithm gives the high scheduling priority to the job.

One by one the job is sorted by using the algorithm
and allots a job onto the processor on which the job can
conclude as soon as feasible. The assignments are hold
back by the resource usage policies.

Sometimes, the mean value for the job execution time
is not reflect the actual job execution on the different
resources. It shows the result in a non-optimal scheduling
for a workflow in the list-scheduling method.

An unreasonable scheduling decision, the policy
constraint might drive the resource assignment in the list
scheduling. The main reason is to schedule the jobs in the
sorted list one by one, it does not have a chance to think
about the policy constraints between multiple jobs. The
method shows the result in a long DAG completion time
to allocate a job to a false processor in terms of the
earliest finish time of a job (݆݅ܶܨܧ).

Copyright © 2013 Praise Worthy Prize S.r.l.

b.

different, the
algorithms in terms of DAG completion time and
scheduling improvement.

is changed
graph, the iterative modulo
scheduling by 68% to 82%
of a job in the DAG gives the best DAG completion time.
The scheduling
scheduling time reduction from the initial scheduling
time.

ቆ

the performances of the algorithms are evaluated by the
next simulation
available proc

Copyright © 2013 Praise Worthy Prize S.r.l.

 Simulated Performance Evaluation
When the ratio of the processors to the jobs is

different, the
algorithms in terms of DAG completion time and
scheduling improvement.

In graph
is changed
graph, the iterative modulo
scheduling by 68% to 82%
of a job in the DAG gives the best DAG completion time.
The scheduling
scheduling time reduction from the initial scheduling
time.

It is defined with

ቆ
ݐ݅݊ܫ)

When
the performances of the algorithms are evaluated by the
next simulation
available proc

F

Im
pr

ov
em

en
t (

%
)

Copyright © 2013 Praise Worthy Prize S.r.l.

Simulated Performance Evaluation
When the ratio of the processors to the jobs is

different, the
algorithms in terms of DAG completion time and
scheduling improvement.

graph
is changed
graph, the iterative modulo
scheduling by 68% to 82%
of a job in the DAG gives the best DAG completion time.
The scheduling
scheduling time reduction from the initial scheduling

t is defined with

ቆ
ܿܵିݐ݅݊ܫ)

hen
the performances of the algorithms are evaluated by the
next simulation
available proc

Figs.

10

20

30

40

Im
pr

ov
em

en
t (

%
)

Copyright © 2013 Praise Worthy Prize S.r.l.

Simulated Performance Evaluation
When the ratio of the processors to the jobs is

different, the
algorithms in terms of DAG completion time and
scheduling improvement.

graph Fig
is changed from 0.25 to 2.5 increased by 0.25.
graph, the iterative modulo
scheduling by 68% to 82%
of a job in the DAG gives the best DAG completion time.
The scheduling
scheduling time reduction from the initial scheduling

t is defined with

(ܵܿℎ

hen the iterative algorithm constraint is different,
the performances of the algorithms are evaluated by the
next simulation
available proc

igs. 2. DAG completion tim

0

10

20

30

40

Copyright © 2013 Praise Worthy Prize S.r.l.

Simulated Performance Evaluation
When the ratio of the processors to the jobs is

different, the first model provides the performance of the
algorithms in terms of DAG completion time and
scheduling improvement.

Figs
from 0.25 to 2.5 increased by 0.25.

graph, the iterative modulo
scheduling by 68% to 82%
of a job in the DAG gives the best DAG completion time.
The scheduling
scheduling time reduction from the initial scheduling

t is defined with

ℎ݁݀ି

the iterative algorithm constraint is different,
the performances of the algorithms are evaluated by the
next simulation.
available processors to the total processors.

2. DAG completion tim

0.
25

#of sites to#of jobs rate

Copyright © 2013 Praise Worthy Prize S.r.l.

Simulated Performance Evaluation
When the ratio of the processors to the jobs is

first model provides the performance of the
algorithms in terms of DAG completion time and
scheduling improvement.

s. 2 show the performances when the ratio
from 0.25 to 2.5 increased by 0.25.

graph, the iterative modulo
scheduling by 68% to 82%
of a job in the DAG gives the best DAG completion time.
The scheduling improvement signifies
scheduling time reduction from the initial scheduling

t is defined with

ିܶ݅݉݁
ݐ݅݊ܫ

the iterative algorithm constraint is different,
the performances of the algorithms are evaluated by the

. The constraint
essors to the total processors.

2. DAG completion tim

0.
25

0.
75

#of sites to#of jobs rate

MAG Completion Time

Copyright © 2013 Praise Worthy Prize S.r.l.

Simulated Performance Evaluation
When the ratio of the processors to the jobs is

first model provides the performance of the
algorithms in terms of DAG completion time and
scheduling improvement.

. 2 show the performances when the ratio
from 0.25 to 2.5 increased by 0.25.

graph, the iterative modulo
scheduling by 68% to 82%
of a job in the DAG gives the best DAG completion time.

improvement signifies
scheduling time reduction from the initial scheduling

t is defined with:

ܶ݅݉݁
ܿܵିݐ݅݊ܫ

the iterative algorithm constraint is different,
the performances of the algorithms are evaluated by the

The constraint
essors to the total processors.

2. DAG completion tim
to job is different

0.
75

1.
25

#of sites to#of jobs rate

MAG Completion Time

Copyright © 2013 Praise Worthy Prize S.r.l.

Simulated Performance Evaluation
When the ratio of the processors to the jobs is

first model provides the performance of the
algorithms in terms of DAG completion time and
scheduling improvement.

. 2 show the performances when the ratio
from 0.25 to 2.5 increased by 0.25.

graph, the iterative modulo
scheduling by 68% to 82%
of a job in the DAG gives the best DAG completion time.

improvement signifies
scheduling time reduction from the initial scheduling

ܶ݅݉݁ −
ܵܿℎ݁݀

the iterative algorithm constraint is different,
the performances of the algorithms are evaluated by the

The constraint
essors to the total processors.

2. DAG completion tim
to job is different

1.
25

#of sites to#of jobs rate

MAG Completion Time

Copyright © 2013 Praise Worthy Prize S.r.l.

Simulated Performance Evaluation
When the ratio of the processors to the jobs is

first model provides the performance of the
algorithms in terms of DAG completion time and

. 2 show the performances when the ratio

from 0.25 to 2.5 increased by 0.25.
graph, the iterative modulo scheduling gives the bes
scheduling by 68% to 82% the longest completion time
of a job in the DAG gives the best DAG completion time.

improvement signifies
scheduling time reduction from the initial scheduling

ݐݏ݁ܤ
݁݀ି

the iterative algorithm constraint is different,
the performances of the algorithms are evaluated by the

The constraint
essors to the total processors.

(a)

(b)

2. DAG completion time when the rate of processors
to job is different

1.
75

#of sites to#of jobs rate

MAG Completion Time

Copyright © 2013 Praise Worthy Prize S.r.l.

Simulated Performance Evaluation
When the ratio of the processors to the jobs is

first model provides the performance of the
algorithms in terms of DAG completion time and

. 2 show the performances when the ratio
from 0.25 to 2.5 increased by 0.25.

scheduling gives the bes
the longest completion time

of a job in the DAG gives the best DAG completion time.
improvement signifies

scheduling time reduction from the initial scheduling

ିݐݏ݁ܤ
݁݉݅ݐ

the iterative algorithm constraint is different,
the performances of the algorithms are evaluated by the

The constraint describes
essors to the total processors.

(a)

(b)

e when the rate of processors

to job is different

1.
75

2.
25

#of sites to#of jobs rate

MAG Completion Time

Copyright © 2013 Praise Worthy Prize S.r.l.

Simulated Performance Evaluation
When the ratio of the processors to the jobs is

first model provides the performance of the
algorithms in terms of DAG completion time and

. 2 show the performances when the ratio
from 0.25 to 2.5 increased by 0.25.

scheduling gives the bes
the longest completion time

of a job in the DAG gives the best DAG completion time.
improvement signifies

scheduling time reduction from the initial scheduling

ିܵܿℎ
݁݉݅ݐ

the iterative algorithm constraint is different,
the performances of the algorithms are evaluated by the

describes
essors to the total processors.

e when the rate of processors
to job is different

2.
25

#of sites to#of jobs rate

MAG Completion Time

Copyright © 2013 Praise Worthy Prize S.r.l. - All rights reserved

Simulated Performance Evaluation
When the ratio of the processors to the jobs is

first model provides the performance of the
algorithms in terms of DAG completion time and

. 2 show the performances when the ratio
from 0.25 to 2.5 increased by 0.25.

scheduling gives the bes
the longest completion time

of a job in the DAG gives the best DAG completion time.
improvement signifies

scheduling time reduction from the initial scheduling

ℎ݁݀

the iterative algorithm constraint is different,
the performances of the algorithms are evaluated by the

describes
essors to the total processors.

e when the rate of processors

#of sites to#of jobs rate

MAG Completion Time

All rights reserved

When the ratio of the processors to the jobs is

first model provides the performance of the
algorithms in terms of DAG completion time and

. 2 show the performances when the ratio
from 0.25 to 2.5 increased by 0.25.

scheduling gives the bes
the longest completion time

of a job in the DAG gives the best DAG completion time.
improvement signifies the ratio of the

scheduling time reduction from the initial scheduling

݁݉݅ݐି݀݁

the iterative algorithm constraint is different,
the performances of the algorithms are evaluated by the

describes the ratios of the
essors to the total processors.

e when the rate of processors

#of sites to#of jobs rate

MAG Completion Time

Policy
Based
Scheduling
(cluster =3)
iterative
modulo
scheduling
(cluster=3)

G. Saravanan, V. Gopalakrishnan

All rights reserved

When the ratio of the processors to the jobs is
first model provides the performance of the

algorithms in terms of DAG completion time and

. 2 show the performances when the ratio
from 0.25 to 2.5 increased by 0.25.

scheduling gives the bes
the longest completion time

of a job in the DAG gives the best DAG completion time.
the ratio of the

scheduling time reduction from the initial scheduling

݁݉݅ݐ

the iterative algorithm constraint is different,
the performances of the algorithms are evaluated by the

the ratios of the
essors to the total processors.

e when the rate of processors

Policy
Based
Scheduling
(cluster =3)
iterative
modulo
scheduling
(cluster=3)

G. Saravanan, V. Gopalakrishnan

All rights reserved

When the ratio of the processors to the jobs is
first model provides the performance of the

algorithms in terms of DAG completion time and

. 2 show the performances when the ratio
from 0.25 to 2.5 increased by 0.25. In the first

scheduling gives the bes
the longest completion time

of a job in the DAG gives the best DAG completion time.
the ratio of the

scheduling time reduction from the initial scheduling

(݁݉݅ݐ
ቇ

the iterative algorithm constraint is different,
the performances of the algorithms are evaluated by the

the ratios of the

e when the rate of processors

Policy
Based
Scheduling
(cluster =3)
iterative
modulo
scheduling
(cluster=3)

G. Saravanan, V. Gopalakrishnan

All rights reserved

When the ratio of the processors to the jobs is
first model provides the performance of the

algorithms in terms of DAG completion time and

. 2 show the performances when the ratio
In the first

scheduling gives the bes
the longest completion time

of a job in the DAG gives the best DAG completion time.
the ratio of the

scheduling time reduction from the initial scheduling

)
ቇ × 100

the iterative algorithm constraint is different,
the performances of the algorithms are evaluated by the

the ratios of the

e when the rate of processors

Scheduling
(cluster =3)
iterative
modulo
scheduling
(cluster=3)

G. Saravanan, V. Gopalakrishnan

All rights reserved

When the ratio of the processors to the jobs is
first model provides the performance of the

algorithms in terms of DAG completion time and

. 2 show the performances when the ratio
In the first

scheduling gives the best list
the longest completion time

of a job in the DAG gives the best DAG completion time.
the ratio of the

scheduling time reduction from the initial scheduling

ቇ 100

the iterative algorithm constraint is different,
the performances of the algorithms are evaluated by the

the ratios of the

Scheduling
(cluster =3)

scheduling
(cluster=3)

G. Saravanan, V. Gopalakrishnan

All rights reserved

1104

When the ratio of the processors to the jobs is
first model provides the performance of the

algorithms in terms of DAG completion time and

. 2 show the performances when the ratio
In the first

t list
the longest completion time

of a job in the DAG gives the best DAG completion time.
the ratio of the

scheduling time reduction from the initial scheduling

100

the iterative algorithm constraint is different,
the performances of the algorithms are evaluated by the

the ratios of the

G. Saravanan, V. Gopalakrishnan

All rights reserved

1104

is only available on the set of
completion time is shown in the Fig
when the policy constraint modifies from 100% to 10%
decreased by 10%.

available resource indicates as 100%, whereas the 10%
of processors are available to run a job means it indicates
as 10%. The policy
illustrates the good

scheduling algorithm compared than policy
scheduling. When the available processor ratio from
100% to 60

Fig
optimization scheduling, the number of jobs are
scheduled together is called t
performance with the different size of the cluster is
shown by the policy
when it is compared
algorithm the scheduling presents the constant
performance.
done by its size. It means, in the optimization procedure,
the scheduling not able to make use of the policy

G. Saravanan, V. Gopalakrishnan

All rights reserved

The maximum job execution in the iterative constraint
is only available on the set of
completion time is shown in the Fig
when the policy constraint modifies from 100% to 10%
decreased by 10%.

A job is able to run on all

available resource indicates as 100%, whereas the 10%
of processors are available to run a job means it indicates
as 10%. The policy
illustrates the good

The better constra
scheduling algorithm compared than policy
scheduling. When the available processor ratio from
100% to 60

The
Figs
optimization scheduling, the number of jobs are
scheduled together is called t
performance with the different size of the cluster is
shown by the policy
when it is compared
algorithm the scheduling presents the constant
performance.
done by its size. It means, in the optimization procedure,
the scheduling not able to make use of the policy

M
ag

 c
om

pl
et

io
n

tim
e

G. Saravanan, V. Gopalakrishnan

All rights reserved International Review on Computers and Software, Vol. 8, N. 5

The maximum job execution in the iterative constraint
is only available on the set of
completion time is shown in the Fig
when the policy constraint modifies from 100% to 10%
decreased by 10%.

Figs. 3. Constraint and clustering effect DAG completion time

A job is able to run on all

available resource indicates as 100%, whereas the 10%
of processors are available to run a job means it indicates
as 10%. The policy
illustrates the good

The better constra
scheduling algorithm compared than policy
scheduling. When the available processor ratio from
100% to 60

The
s. 3 when the c

optimization scheduling, the number of jobs are
scheduled together is called t
performance with the different size of the cluster is
shown by the policy
when it is compared
algorithm the scheduling presents the constant
performance.
done by its size. It means, in the optimization procedure,
the scheduling not able to make use of the policy

500

1000

1500

2000

2500

M
ag

 c
om

pl
et

io
n

tim
e

G. Saravanan, V. Gopalakrishnan

International Review on Computers and Software, Vol. 8, N. 5

The maximum job execution in the iterative constraint
is only available on the set of
completion time is shown in the Fig
when the policy constraint modifies from 100% to 10%
decreased by 10%.

Figs. 3. Constraint and clustering effect DAG completion time

A job is able to run on all
available resource indicates as 100%, whereas the 10%
of processors are available to run a job means it indicates
as 10%. The policy
illustrates the good

The better constra
scheduling algorithm compared than policy
scheduling. When the available processor ratio from
100% to 60

The scheduling time is shown in the second graph in
. 3 when the c

optimization scheduling, the number of jobs are
scheduled together is called t
performance with the different size of the cluster is
shown by the policy
when it is compared
algorithm the scheduling presents the constant
performance.
done by its size. It means, in the optimization procedure,
the scheduling not able to make use of the policy

0

500

1000

1500

2000

2500

10
0

0
50

100
150
200
250
300
350
400

G. Saravanan, V. Gopalakrishnan

International Review on Computers and Software, Vol. 8, N. 5

The maximum job execution in the iterative constraint
is only available on the set of
completion time is shown in the Fig
when the policy constraint modifies from 100% to 10%
decreased by 10%.

Figs. 3. Constraint and clustering effect DAG completion time

A job is able to run on all
available resource indicates as 100%, whereas the 10%
of processors are available to run a job means it indicates
as 10%. The policy
illustrates the good

The better constra
scheduling algorithm compared than policy
scheduling. When the available processor ratio from
100% to 60%,

scheduling time is shown in the second graph in
. 3 when the c

optimization scheduling, the number of jobs are
scheduled together is called t
performance with the different size of the cluster is
shown by the policy
when it is compared
algorithm the scheduling presents the constant
performance.
done by its size. It means, in the optimization procedure,
the scheduling not able to make use of the policy

10
0 90

1

G. Saravanan, V. Gopalakrishnan

International Review on Computers and Software, Vol. 8, N. 5

The maximum job execution in the iterative constraint
is only available on the set of
completion time is shown in the Fig
when the policy constraint modifies from 100% to 10%
decreased by 10%.

Figs. 3. Constraint and clustering effect DAG completion time

A job is able to run on all
available resource indicates as 100%, whereas the 10%
of processors are available to run a job means it indicates
as 10%. The policy
illustrates the good

The better constra
scheduling algorithm compared than policy
scheduling. When the available processor ratio from

%, the DAG completion time is stable.
scheduling time is shown in the second graph in

. 3 when the c
optimization scheduling, the number of jobs are
scheduled together is called t
performance with the different size of the cluster is
shown by the policy
when it is compared
algorithm the scheduling presents the constant

 The scheduling is performed per job is
done by its size. It means, in the optimization procedure,
the scheduling not able to make use of the policy

90 80

% of Availbale resource

1 2

International Review on Computers and Software, Vol. 8, N. 5

The maximum job execution in the iterative constraint
is only available on the set of
completion time is shown in the Fig
when the policy constraint modifies from 100% to 10%
decreased by 10%.

Figs. 3. Constraint and clustering effect DAG completion time

A job is able to run on all
available resource indicates as 100%, whereas the 10%
of processors are available to run a job means it indicates
as 10%. The policy
illustrates the good acceptance to the constraints.

The better constra
scheduling algorithm compared than policy
scheduling. When the available processor ratio from

the DAG completion time is stable.
scheduling time is shown in the second graph in

. 3 when the c
optimization scheduling, the number of jobs are
scheduled together is called t
performance with the different size of the cluster is
shown by the policy
when it is compared
algorithm the scheduling presents the constant

The scheduling is performed per job is
done by its size. It means, in the optimization procedure,
the scheduling not able to make use of the policy

80 70

% of Availbale resource

Constraint effect

2 3
cluster size (# of jobs)

Cluster size effect

International Review on Computers and Software, Vol. 8, N. 5

The maximum job execution in the iterative constraint
is only available on the set of
completion time is shown in the Fig
when the policy constraint modifies from 100% to 10%

Figs. 3. Constraint and clustering effect DAG completion time

A job is able to run on all
available resource indicates as 100%, whereas the 10%
of processors are available to run a job means it indicates
as 10%. The policy

acceptance to the constraints.
The better constraint performance

scheduling algorithm compared than policy
scheduling. When the available processor ratio from

the DAG completion time is stable.
scheduling time is shown in the second graph in

. 3 when the cluster size is
optimization scheduling, the number of jobs are
scheduled together is called t
performance with the different size of the cluster is
shown by the policy-based scheduling algorithm but
when it is compared
algorithm the scheduling presents the constant

The scheduling is performed per job is
done by its size. It means, in the optimization procedure,
the scheduling not able to make use of the policy

70 60

% of Availbale resource

Constraint effect

4
cluster size (# of jobs)

Cluster size effect

International Review on Computers and Software, Vol. 8, N. 5

The maximum job execution in the iterative constraint
is only available on the set of
completion time is shown in the Fig
when the policy constraint modifies from 100% to 10%

Figs. 3. Constraint and clustering effect DAG completion time

A job is able to run on all
available resource indicates as 100%, whereas the 10%
of processors are available to run a job means it indicates
as 10%. The policy-based scheduling algorithm

acceptance to the constraints.
int performance

scheduling algorithm compared than policy
scheduling. When the available processor ratio from

the DAG completion time is stable.
scheduling time is shown in the second graph in

luster size is
optimization scheduling, the number of jobs are
scheduled together is called t
performance with the different size of the cluster is

based scheduling algorithm but
 with the iterative scheduling

algorithm the scheduling presents the constant
The scheduling is performed per job is

done by its size. It means, in the optimization procedure,
the scheduling not able to make use of the policy

60 50

% of Availbale resource

Constraint effect

5
cluster size (# of jobs)

Cluster size effect

International Review on Computers and Software, Vol. 8, N. 5

The maximum job execution in the iterative constraint
is only available on the set of
completion time is shown in the Fig
when the policy constraint modifies from 100% to 10%

(a)

(b)

Figs. 3. Constraint and clustering effect DAG completion time

A job is able to run on all
available resource indicates as 100%, whereas the 10%
of processors are available to run a job means it indicates

based scheduling algorithm
acceptance to the constraints.

int performance
scheduling algorithm compared than policy
scheduling. When the available processor ratio from

the DAG completion time is stable.
scheduling time is shown in the second graph in

luster size is
optimization scheduling, the number of jobs are
scheduled together is called t
performance with the different size of the cluster is

based scheduling algorithm but
with the iterative scheduling

algorithm the scheduling presents the constant
The scheduling is performed per job is

done by its size. It means, in the optimization procedure,
the scheduling not able to make use of the policy

50 40

% of Availbale resource

Constraint effect

6
cluster size (# of jobs)

Cluster size effect

International Review on Computers and Software, Vol. 8, N. 5

The maximum job execution in the iterative constraint
is only available on the set of
completion time is shown in the Fig
when the policy constraint modifies from 100% to 10%

Figs. 3. Constraint and clustering effect DAG completion time

A job is able to run on all the processors, when the
available resource indicates as 100%, whereas the 10%
of processors are available to run a job means it indicates

based scheduling algorithm
acceptance to the constraints.

int performance
scheduling algorithm compared than policy
scheduling. When the available processor ratio from

the DAG completion time is stable.
scheduling time is shown in the second graph in

luster size is
optimization scheduling, the number of jobs are
scheduled together is called t
performance with the different size of the cluster is

based scheduling algorithm but
with the iterative scheduling

algorithm the scheduling presents the constant
The scheduling is performed per job is

done by its size. It means, in the optimization procedure,
the scheduling not able to make use of the policy

40 30

% of Availbale resource

Constraint effect

7
cluster size (# of jobs)

Cluster size effect

International Review on Computers and Software, Vol. 8, N. 5

The maximum job execution in the iterative constraint
is only available on the set of processors. The DAG
completion time is shown in the Figs. 3 in the first graph,
when the policy constraint modifies from 100% to 10%

Figs. 3. Constraint and clustering effect DAG completion time

the processors, when the
available resource indicates as 100%, whereas the 10%
of processors are available to run a job means it indicates

based scheduling algorithm
acceptance to the constraints.

int performance
scheduling algorithm compared than policy
scheduling. When the available processor ratio from

the DAG completion time is stable.
scheduling time is shown in the second graph in

luster size is
optimization scheduling, the number of jobs are
scheduled together is called the cluster
performance with the different size of the cluster is

based scheduling algorithm but
with the iterative scheduling

algorithm the scheduling presents the constant
The scheduling is performed per job is

done by its size. It means, in the optimization procedure,
the scheduling not able to make use of the policy

20 10

% of Availbale resource

Constraint effect

8
cluster size (# of jobs)

Cluster size effect

International Review on Computers and Software, Vol. 8, N. 5

The maximum job execution in the iterative constraint
processors. The DAG

. 3 in the first graph,
when the policy constraint modifies from 100% to 10%

Figs. 3. Constraint and clustering effect DAG completion time

the processors, when the
available resource indicates as 100%, whereas the 10%
of processors are available to run a job means it indicates

based scheduling algorithm
acceptance to the constraints.

int performance is given by iterative
scheduling algorithm compared than policy
scheduling. When the available processor ratio from

the DAG completion time is stable.
scheduling time is shown in the second graph in

luster size is different. In
optimization scheduling, the number of jobs are

he cluster
performance with the different size of the cluster is

based scheduling algorithm but
with the iterative scheduling

algorithm the scheduling presents the constant
The scheduling is performed per job is

done by its size. It means, in the optimization procedure,
the scheduling not able to make use of the policy

10

Constraint effect

9

Cluster size effect

International Review on Computers and Software, Vol. 8, N. 5

The maximum job execution in the iterative constraint
processors. The DAG

. 3 in the first graph,
when the policy constraint modifies from 100% to 10%

Figs. 3. Constraint and clustering effect DAG completion time

the processors, when the
available resource indicates as 100%, whereas the 10%
of processors are available to run a job means it indicates

based scheduling algorithm
acceptance to the constraints.

is given by iterative
scheduling algorithm compared than policy
scheduling. When the available processor ratio from

the DAG completion time is stable.
scheduling time is shown in the second graph in

different. In
optimization scheduling, the number of jobs are

he cluster
performance with the different size of the cluster is

based scheduling algorithm but
with the iterative scheduling

algorithm the scheduling presents the constant
The scheduling is performed per job is

done by its size. It means, in the optimization procedure,
the scheduling not able to make use of the policy

10

International Review on Computers and Software, Vol. 8, N. 5

The maximum job execution in the iterative constraint
processors. The DAG

. 3 in the first graph,
when the policy constraint modifies from 100% to 10%

Figs. 3. Constraint and clustering effect DAG completion time

the processors, when the
available resource indicates as 100%, whereas the 10%
of processors are available to run a job means it indicates

based scheduling algorithm
acceptance to the constraints.

is given by iterative
scheduling algorithm compared than policy
scheduling. When the available processor ratio from

the DAG completion time is stable.
scheduling time is shown in the second graph in

different. In
optimization scheduling, the number of jobs are

he cluster size.
performance with the different size of the cluster is

based scheduling algorithm but
with the iterative scheduling

algorithm the scheduling presents the constant
The scheduling is performed per job is

done by its size. It means, in the optimization procedure,
the scheduling not able to make use of the policy

List
scheduling

Policy based
scheduling

International Review on Computers and Software, Vol. 8, N. 5

The maximum job execution in the iterative constraint
processors. The DAG

. 3 in the first graph,
when the policy constraint modifies from 100% to 10%

Figs. 3. Constraint and clustering effect DAG completion time

the processors, when the
available resource indicates as 100%, whereas the 10%
of processors are available to run a job means it indicates

based scheduling algorithm
acceptance to the constraints.

is given by iterative
scheduling algorithm compared than policy
scheduling. When the available processor ratio from

the DAG completion time is stable.
scheduling time is shown in the second graph in

different. In
optimization scheduling, the number of jobs are

size.
performance with the different size of the cluster is

based scheduling algorithm but
with the iterative scheduling

algorithm the scheduling presents the constant
The scheduling is performed per job is

done by its size. It means, in the optimization procedure,
the scheduling not able to make use of the policy

List
scheduling

Policy based
scheduling

20 sites

30 sites

40 sites

International Review on Computers and Software, Vol. 8, N. 5

The maximum job execution in the iterative constraint
processors. The DAG

. 3 in the first graph,
when the policy constraint modifies from 100% to 10%

Figs. 3. Constraint and clustering effect DAG completion time

the processors, when the
available resource indicates as 100%, whereas the 10%
of processors are available to run a job means it indicates

based scheduling algorithm

is given by iterative
scheduling algorithm compared than policy-based
scheduling. When the available processor ratio from

scheduling time is shown in the second graph in

different. In
optimization scheduling, the number of jobs are

size. The
performance with the different size of the cluster is

based scheduling algorithm but
with the iterative scheduling

algorithm the scheduling presents the constant
The scheduling is performed per job is

done by its size. It means, in the optimization procedure,
the scheduling not able to make use of the policy

scheduling

Policy based
scheduling

20 sites

30 sites

40 sites

International Review on Computers and Software, Vol. 8, N. 5

The maximum job execution in the iterative constraint
processors. The DAG

. 3 in the first graph,
when the policy constraint modifies from 100% to 10%

the processors, when the
available resource indicates as 100%, whereas the 10%
of processors are available to run a job means it indicates

based scheduling algorithm

is given by iterative
based

scheduling. When the available processor ratio from

scheduling time is shown in the second graph in
 the

optimization scheduling, the number of jobs are
The

performance with the different size of the cluster is
based scheduling algorithm but

with the iterative scheduling
algorithm the scheduling presents the constant

The scheduling is performed per job is
done by its size. It means, in the optimization procedure,
the scheduling not able to make use of the policy

scheduling

Policy based
scheduling

20 sites

30 sites

40 sites

The maximum job execution in the iterative constraint
processors. The DAG

. 3 in the first graph,
when the policy constraint modifies from 100% to 10%

the processors, when the
available resource indicates as 100%, whereas the 10%
of processors are available to run a job means it indicates

based scheduling algorithm

is given by iterative
based

scheduling. When the available processor ratio from

scheduling time is shown in the second graph in
the

optimization scheduling, the number of jobs are
The

performance with the different size of the cluster is
based scheduling algorithm but

with the iterative scheduling
algorithm the scheduling presents the constant

The scheduling is performed per job is
done by its size. It means, in the optimization procedure,
the scheduling not able to make use of the policy

G. Saravanan, V. Gopalakrishnan

Copyright © 2013 Praise Worthy Prize S.r.l. - All rights reserved International Review on Computers and Software, Vol. 8, N. 5

1105

constraints of multiple jobs. The scheduling algorithm
considers the constraints of multiple jobs, when the
cluster size is more than two and low DAG completion
time is provided by the better scheduling decision. The
simulation illustrates the performance of the algorithms
with different types of workflows. The workflow types
are described with two features. One is the
communication to computation rate (CCR). By using the
CCR the communication time is described by:

݁݉݅ܶ ݊݅ݐܽܿ݅݊ݑ݉݉ܥ =

=
× ݁݉݅ܶ ݊݅ݐܽݐݑ݉ܥ) (ܴܥܥ

݁ݐܴܽ ݊݅ݐܽܿ݅݊ݑ݉݉ܥ

By using this experiment, the computation time and

communication rate are selected randomly with the
subsequent range. Communication rate is 1, 2, 3 and 4
and the computation time is from 10 to 100 increased by
10. The constant performance with different cluster size
is described in the iterative modulo scheduling.

That means, in different the different types of
workflows such as the communication oriented and the
computation-oriented, the performance of the scheduling
algorithm is constant. When the link density between
jobs is different, the performances of the algorithms are
shown in the second graph in Figs. 4.

(a)

(b)

Figs. 4. Algorithm sensitivity: CCR effect and link density effect

The link density is defined by the number of inputs of
each job. The number of outputs is set to one in this
experiment. The DAG completion time is increased,
because of the number of inputs increases. The main
reason is the job gets larger time to be ready to run on a
processor with multiple inputs than with a small number
of inputs.

c. Performance Evaluation on OSG

The performance evaluation on OSG is performed by
the performance simulation method. The performance of
iterative modulo scheduling algorithm, policy-based
scheduling algorithm, and it compares with the list-
scheduling algorithm is shows in this experiment. Also, a
resource stands for a grid site on OSG. Especially, the
experiment is used to the CPU resource to run a set of
workflow.

As a result, a resource shows the CPU resource in a
grid site in this section. DAG completion time when the
ratio of available resources to the total resources in OSG
is different is shown in the first graph in Figs. 5. In the
proposed algorithm the resource usage policy is used to
choose the scheduling based on the accessibility of the
resource.

A job is allowed to run the policy constraint to
identify a set of available processors and the available set
of processors maximizes the job execution. The list
scheduling by 40% to 47% is executed by the iterative
modulo scheduling. There are two ways of the out-
performance.

The iterative scheduling which approximates the
impact of the current decision to the DAG completion is
explained in the first one and to modify the scheduling to
improve the completion time.

The list scheduling is not working in this way, it also
creates the scheduling decision of each execution is ready
job in only one time and the target resource is present.

The optimization with a cluster of jobs is shown in the
second reason. As an alternative, to make the scheduling
decision of execution-ready jobs in one by one fashion
(list scheduling), schedule by clustering the jobs are
executed in the proposed algorithm and the scheduling
problem is solved in BIP format.

When the size of DAG is different with 10, 20, and 40
jobs, the performance of the algorithms are illustrated in
the second graph in Figs. 5. By this experiment, the
policy constraint in the resource availability is 60%.

The list scheduling algorithm and policy based
scheduling algorithm is compared with iterative modulo
scheduling algorithm. According to the number of jobs
scheduled in a DAG varies 35 % to 70% is executed in
the proposed algorithm. When the resource availability is
different, the average job execution time is shown in Fig.
6. The availability is getting low and the execution time
is increased, because of the limited amount of resources
is able to execute jobs. Compared with the policy
scheduling algorithm and list scheduling algorithm, the
proposed iterative modulo scheduling algorithm gives the
better because the limited amount of resources is able to

0
50

100
150
200
250
300
350
400
450
500

1 2 3 4 5 6 7 8 9 10

M
A

G
 c

om
pl

et
io

n
tim

e

the number of inputs

Link density effect
Policy
scheduling
(cluster=1)

Poilcy based
scheduling(clus
ter=3)

Iterative
modulo
scheduling
(cluster=1)
iterative
modulo
scheduling
(cluster=3)

0
500

1000
1500
2000
2500
3000
3500
4000
4500

0,1 0,25 0,5 0,75 1 2,5 5 7,5 10

M
A

G
 c

om
pl

et
io

n
ti

m
e

Communication to computation rate

Communication to computation rate effect

Policy scheduling
(cluster=1)

Poilcy based
scheduling(cluster=3)

Iterative modulo
scheduling (cluster=1)

iterative modulo
scheduling (cluster=3)

G. Saravanan, V. Gopalakrishnan

Copyright © 2013 Praise Worthy Prize S.r.l. - All rights reserved International Review on Computers and Software, Vol. 8, N. 5

1106

execute jobs, as the availability is getting low the
execution time is increased.

(a)

(b)

Figs. 5. Test DAG completion time on OSG with various constraints

and DAG size

Fig. 6. Average job execution time on OSG
with different policy constraints

VII. Conclusion
In this paper a novel Iterative modulo scheduling

algorithm is proposed. By using the resource usage
policies under the constraints are presented, grid
resources are allocated to an application. By using
iterative method and BIP, it executes optimized
scheduling on different resource. The completion time of
an application is integrated with job execution tracking

and history modules of GRIDWAY scheduling
middleware are developed in this algorithm.

Now able to make resource allocation satisfying QoS
from multiple jobs are expand in this algorithm, an
optimal scheduling decision subject to the policy
constraint and QOS is developed in this algorithm. It
possible to schedule jobs onto OSG according to the
constraints are made by GRIDWAY is implemented in
the algorithm. A set of practical application from high-
energy physics experiments such as CMS based on the
scheduling decision is scheduled, and to study the
performance execution.

References
[1] Abramson D, Giddy J, Kotler L. High performance parametric

modeling with Nimrod/G: Killer application for the Global Grid?
Proceedings International Parallel and Distributed Processing
Symposium (IPDPS 2000), Cancun, Mexico, 1–5 May 2000.
IEEE Computer Society Press: Los Alamitos, CA, 2000.

[2] Buyya R, Abramson D, Giddy J. A case for economy Grid
architecture for service-oriented Grid computing. Proceedings of
the International Parallel and Distributed Processing Symposium:
10th IEEE International Heterogeneous Computing Workshop
(HCW 2001), 23 April 2001, San Francisco, CA. IEEE Computer
Society Press: Los Alamitos, CA, 2001.

[3] Fanxin Kong, Hongyan Hao, Jianmin Zuo, Classification and
Dynamic Fuzzy Clustering of Mold Resources Based on Mold
Manufacturing Grid Platform, (2012) International Review on
Computers and Software (IRECOS), 7 (5), pp. 2447-2452.

[4] Ferguson D, Nikolaou C, Sairamesh J, Yemini Y. Economic
models for allocating resources in computer systems. Market-
Based Control: A Paradigm for Distributed Resource Allocation.
World Scientific Press: Singapore, 1996.

[5] Chapin S, Karpovich J, Grimshaw A. The Legion resource
management system. Proceedings of the 5th Workshop on Job
Scheduling Strategies for Parallel Processing, San Juan, Puerto
Rico, 16 April 1999. Springer: Berlin, 1999.

[6] Litzkow M, Livny M, Mutka M. Condor—a hunter of idle
workstations. Proceedings 8th International Conference of
Distributed Computing Systems (ICDCS 1988), San Jose, CA,
January 1988. IEEE Computer Society Press: Los Alamitos, CA,
1988.

[7] Berman F, Wolski R. The AppLeS Project: A status report.
Proceedings of the 8th NEC Research Symposium,
Berlin,Germany, May 1997.

[8] Casanova H, Dongarra J. NetSolve: A network server for solving
computational science problems. International Journal of
Supercomputing Applications and High Performance Computing
1997; 11(3):212–223.

[9] Kapadia N, Fortes J. PUNCH: An architecture for Web-enabled
wide-area network-computing. Cluster Computing:

[10] The Journal of Networks, Software Tools and Applications 1999;
2(2):153–164.

[11] S. Verboven, P. Hellinckx, F. Arickx, and J. Broeckhove,
“Runtime prediction based grid scheduling of parameter sweep
jobs,” J. Internet Technol., vol. 11, no. 1, pp. 47–53, 2010.

[12] C.-H. Hsu and S.-C. Chen, “A two-level scheduling strategy for
optimizing communications of data parallel programs in clusters,”
Int. J. Ad Hoc Ubiquitous Comput., vol. 6, no. 4, pp. 263–269,
2010.

[13] C.-H. Hsu and T.-L. Chen, “Performance and economization-
oriented scheduling techniques for managing applications with
QoS demands in grids,” Int. J. Ad Hoc Ubiquitous Comput., vol.
5, no. 4, pp. 219–226, 2010.

[14] G. Q. Liu, K. L. Poh, and M. Xie, “Iterative list scheduling for
heterogeneous computing,” J. Parallel Distrib. Comput., vol. 65,
no. 5, pp. 654–665, 2005.

[15] Y. K. Kwok and I. Ahmad, “Dynamic critical-path scheduling: An
effective technique for allocating task graphs to multiprocessors,”

0
50

100
150
200
250
300
350
400
450
500

10 20 40

M
ag

 c
om

pl
et

io
n

tim
e

MAG size

Scheduling performance

list scheduling

Poilcy based
scheduling

iterative modulo

0

50

100

150

200

100 70 50 30 10M
A

G
 c

om
pl

et
io

n
tim

e

Resource availability(%)

Scheduling performance -constraint
effect

cluster
size=1

cluster
size=3

0
50

100
150
200

100 70 50 30 10E
xe

cu
tio

n
tim

e
(S

.)

Resource availability(%)

Average job execution time

cluster
size=1

cluster
size=3

G. Saravanan, V. Gopalakrishnan

Copyright © 2013 Praise Worthy Prize S.r.l. - All rights reserved International Review on Computers and Software, Vol. 8, N. 5

1107

IEEE Trans. Parallel Distrib. Syst., vol. 7, no. 5, pp. 506–521,
May 1996.

[16] X. Qin and H. Jiang, “Reliability-driven scheduling for real-time
tasks with precedence constraints in heterogeneous distributed
systems,” in Proc. Parallel Distrib. Comput. Syst. Conf., Nov.
2000, pp. 617–623.

[17] H. Zhao and R. Sakellariou, “An experimental investigation into
the rank function of the heterogeneous earliest finish time
scheduling algorithm,” in Proc. Int. Conf. Euro-Par, LNCS 2790.
2003, pp. 189–194.

[18] G. C. Sih and E. A. Lee, “Dynamic-level scheduling for
heterogeneous processor networks,” in Proc. IEEE Int. Conf.
Parallel Distrib. Syst.Process., Dec. 1990, pp. 42–49.

[19] M. Kafil and I. Ahmad, “Optimal task assignment in
heterogeneous distributed computing systems,” IEEE
Concurrency, vol. 6, no. 3, pp. 42–50, Jul.–Sep. 1998.

[20] Rau,B.R. Iterative Modulo scheduling HPL technical report
Hewlett-Packard Laboratories,1994.

[21] Rau B R and Glaeser C D some scheduling techniques and an
easily schedulable horizontal architecture for high performance
scientific computing. In proc Fourteenth annual workshop on
microprogramming,(October 1981) 183-198.

[22] Lam.M Software pipelining : an effective scheduling technique
for VLIW machines. In proc ACM SIGPLAN ’91 conference on
programming language design and implementation (june 1991)
219-228.

[23] Hsu P.Y.T Highly concurrent scalar processing PhD thesis
university of Illinois Urbana-Champaign 1986

[24] Dehnert, J.C., and Towle,R.A Compiling for the Cydra 5. The
Journal of Supercomputing 7,1/2(May 1993),181-228.

[25] Hu.T.C Parallel sequencing and assembly line problems.
Operations Research 9, 6 (1961), 841-848.

[26] Ramamoorythy,C.V., Chandy,K.M and Gonzalez, M.J Optimal
scheduling strategies in a multiprocessor system. IEEE
transactions on computers C-21.2 (February 1972), 137-146.

[27] B.Ramakrishna Rao, “iterative modulo scheduling: an algorithm
for software pipelining loops” Hewlett-Packard Laboratories,
1501 Page Mill Road, Bldg.3L, Palo Alto, CA 94304.

[28] Adam,T.L., Chandy,K.M and Dickson J.R A comparison of list
schedules for parallel processing systems . Communication of the
ACM 17, 12(December 1974) 685-690.

[29] T. Guesmi, S. Hasnaoui, H. Rezig, Network Priority Mapping
Using Dynamic RT-CORBA Scheduling Service, (2006)
International Review on Computers and Software (IRECOS), 1
(2), pp. 124-131.

[30] E. Ilavarasan, P. Thambidurai, Genetic Algorithm for Task
Scheduling on Distributed Heterogeneous Computing System,
(2006) International Review on Computers and Software
(IRECOS), 1 (3), pp. 233-242.

Authors’ information
1Assistant Professor, P. A. College of Engineering and Technology.
E-mail: pacet.saravanan@gmail.com

2Associate Professor, Government College of Technology
E-mail: gopalgct@hotmail.com

G. Saravanan received his M.E. degree in
Computer Science and Engineering from
Government College of Technology,
Coimbatore, in 2008. Currently he is working as
an Assistant Professor in P. A. College of
Engineering and Technology, Coimbatore. His
research areas are on Grid Computing system,
Scheduling algorithms and simulation model.

Dr. V. Gopalakrishanan received his Ph.D
degree in Computer Science and Engineering
from Anna University Chennai at 2009.
Currently he is working as an Associate
professor in Government College of
Technology, Coimbatore. His research areas are
on Networking and power systems.

	Contents
	An Efficient Iterative Modulo Scheduling Approach for Improved Resource Allocation for Effective Multimedia Communication on Grid Computing Environment

