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Abstract. For large data, data mining methods were used on a Hadoop-based distributed infrastructure, using map reduction
paradigm approaches for rapid data processing. Though data mining approaches are established methodologies, the Apriori
algorithm provides a specific strategy for increasing data processing performance in big data analytics by applying map
reduction. Apriori property is used to increase the efficiency of level-wise creation of frequent itemsets by minimizing the
search area. A frequent itemset’s subsets must also be frequent (Apriori property). If an itemset is rarely, then all of its
supersets are infrequent as well. We refined the apriori approach by varying the degree of order in locating frequent item sets
in large clusters using map reduction programming. Fixed Pass Combined Counting (FPC) and Dynamic Pass Combined
Counting (DPC) is a classical algorithm which are used for data processing from the huge datasets but their accuracy is not up
to the mark. In this article, updated Apriori algorithms such as multiplied-fixed-pass combined counting (MFPC) and average
time-based dynamic combined counting (ATDFC) are used to successfully achieve data processing speed. The proposed
approaches are based on traditional Apriori core notions in data mining and will be used in the map-reduce multi-pass phase
by ignoring pruning in some passes. The optimized-MFPC and optimized-ATDFC map-reduce framework model algorithms
were also presented. The results of the experiments reveal that MFPC and ATDFC are more efficient in terms of execution time
than previously outmoded approaches such as Fixed Pass Combined Counting (FPC) and Dynamic Pass Combined Counting
(DPC). In a Hadoop multi-node cluster, this paradigm accelerates data processing on big data sets. Previous techniques were
stated in terms of reducing execution time by 60–80% through the use of several passes. Because of the omitted trimming
operation in data pre-processing, our proposed new approaches will save up to 84–90% of that time.
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1. Introduction

Data processing from huge repositories of big data
analytics is a typical approach to extract accurate
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information in today’s digital environment. Multi-
node clusters are used to manage large amounts of
data and improve performance on large datasets. Tra-
ditional approaches are used to extract information
from bigger datasets; however, the accuracy and con-
sumption time have beyond the norm. The apriori
approach is well known in data mining techniques
and is used to construct common item collections
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from large datasets [1] via candidate generation.
This approach is employed as part of the Associa-
tion Rule Mining (ARM) methodology. This is the
most successful technique for pre-processing large
datasets that adheres to data mining research con-
cepts [2]. Data was collected in a variety of ways
before being stored in a data warehouse for process-
ing. Unwanted data must be removed or routinely
utilized data sets extracted during various phases,
depending on their quality. In big data analytics,
data is represented not only by volume but also by
format diversity and velocity via speed [3]. Algo-
rithms in datasets must manage or collect data using
a variety of ideas and approaches. Because of the
administration of huge data sets in data mining from
data warehousing, the Apriori approach deals with
frequent item set extraction by utilizing single or
multiple passes in handling big data. When dealing
with massive amounts of big data, however, scala-
bility is weak. Hadoop is a framework that enables
parallel data processing on enormous data volumes.
Despite this, data mining techniques must be rede-
fined, modified, or optimized when mining datasets
using the Map-Reduce architecture [5]. Apriori is
used to increase the efficiency of level-wise creation
of frequent itemsets by minimizing the search area.
A frequent itemset’s subsets must also be frequent
(Apriori property). If an itemset is rarely, then all
of its supersets are infrequent as well. Following the
generation of a candidate (k + 1)-itemset, it is degen-
erated to its k-itemset subsets. If any of these subsets
is not big, i.e., is not a member of Lk, the candidate is
dismissed and considered small or uncommon; oth-
erwise, the applicant must pass the second test. In
the second pruning process, the support of the candi-
date itemset supplied by the first pruning is tallied.
If this support is more than the minimal support,
minsup, the candidate will be considered a frequent
itemset.

Hadoop uses the Map Reduce programming
paradigm to process enormous amounts of data stored
in a distributed file system (DFS). Hadoop Distributed
File Systems (HDFS) may now access numerous
datasets as user input for a number of purposes. To
construct this work, two unique functions, mapper
and reducer, were executed on separate computers as
equal job execution [6]. When all jobs are finished,
they are saved as reducer tasks in HDFS. When the
recursive approach is employed, several tasks may
be broadcast and processed in parallel across multiple
nodes, with the final result stored in HDFS. The func-

tions map and reduce were used to divide the input
datasets into a number of divisions in order to develop
the a priori method in Map Reduce. The apriori tech-
nique is used to produce candidate item sets for
frequent item set generation and iterative operations
on map-reduce. The mapper and reduction functions
were in control of these tasks, with the mapper dealing
with local candidates and the reducer merging mapper
output counts to produce the outcome of frequent item
sets.

The Apriori algorithm relies on the Map Reduce
Framework, and its foundation is scheduling and
waiting time in a queue. Because the new job must
wait for the previous job to finish, numerous passes
can be entered as input into the map-reduce model,
i.e., the same tasks are conducted in several itera-
tions. As a consequence, a default queue has been
constructed, and jobs are handled one at a time with
different iterations. As a result, completing all of the
chores takes a long time. Single Pass Counting (SPC),
Fixed Pass Combined Counting, and Dynamic Pass
Combined Counting are three enhanced methodolo-
gies for data mining algorithms [7].

These data mining algorithms rely heavily on iter-
ative Map Reduce with fixed values. SPC is utilized
for single-pass operations, whereas FPC and DPC
are used for initiatives with several passes that incor-
porate integrated candidate creation and counting.
In comparison to SPC, the FPC approach reduces
the number of requests by combining a set num-
ber of subsequent phases. To balance workloads
across phases, DPC dynamically incorporates can-
didates from multiple successive stages. When we
combine candidate generations in a multi-pass tech-
nique, the candidate item sets are generated from the
prior sets in three successive passes. If the candi-
date item sets are created independently, the results
of the frequent item set will be incorrect. As a
result, it is generated using prior candidate sets.
Because FPC has a limited number of passes, false-
positive candidates always yield inaccurate results.
DPC overcomes this problem by employing con-
nected, dynamic, consecutive passes. The challenge
with DPC in the map-reduce phase is recognizing the
number of passes to combine in a dynamic way. As
a result, execution time varies among cluster nodes,
as does capacity for large datasets. When working
with large data sets, these data mining methodologies
raise challenges with the map-reduce methodology
in terms of execution time and scheduling modifi-
cations. These unique approaches to the problem are
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described and evaluated on various clusters by imple-
menting the time necessary to finish many jobs in
several runs.

Apriori is a relational database mining and associa-
tion rule learning algorithm. It then goes on to find the
most often occurring individual items in the database
and expands them to bigger and larger item sets as
long as those item sets appear frequently enough in
the database. The concepts shown here are utilized in
a map-reduce architecture to lower the time it takes to
complete a single operation. In addition to the tradi-
tional FPC and DPC algorithms, they include MFPC,
ATDFC, optimized-SFPC, and optimized-ATDFC.
To address the issue of FPC, DPC created additional
algorithms such as variable-size FPC (VFPC) and
elapsed-time DPC (ETDPC). It was attempting to
reduce the execution and waiting times for individ-
ual jobs. However, at various stages of execution, the
passes begin with 1, 2, 4, 8, 16,... When it comes
to a multi-node cluster, the time required has not
dropped significantly. Our unique MFPC algorithm
employs the approach of executing numerous passes
after combining, where n = 1, 2, 3,... This approach
accelerates the development of the number of passes,
easily mixes the phases, and provides a low execution
and waiting time. ATDPC also leverages the approach
of feeding a pre-processed dataset item into Map
Reduce and maintaining it constant throughout the
operation. because it minimizes the average execu-
tion time when several iterations are performed. The
optimized versions of MFPC and ATDPC are similar,
with the difference being the number of passes as an
input for combined phases. The unique approaches
are relevant to Hadoop multinode cluster real-time
operations on big data collections on Hadoop multi-
node clusters. In comparison to earlier strategies, this
will provide a novel method for extracting data from
datasets with varying processing capacities. It will
also be suitable for the real-time generation of big
data sets with access in different places and a mini-
mum of waiting time. The apriori feature is used to
increase the efficiency of level-wise creation of fre-
quent item sets by minimizing the search area. All
frequent item set non-empty subsets must be frequent.
The Apriori algorithm’s core premise is its anti-
monotonicity of support measures. Finding frequent
item sets from incoming data sets and appropriately
arranging them using algorithms on a Hadoop multi-
node cluster provides accuracy and high latency. The
authors’ primary work is provided here, in which
they compare the proposed algorithms to standard
algorithms and differentiate their advances.

• In terms of execution time, the efficient algo-
rithms FPC and DPC improve and generalize
MFPC and ATDPC.

• These novel strategies increase apriori algorithm
features including speed, size, and throughput.

• FPC and DPC are neither interoperable or flexi-
ble, while MFPC and ATDPC are.

• Optimized-MFPC and Optimized-ATDPC are
upgraded versions of MFPC and ATDPC that
outperform MFPC and ATDPC, respectively.

• The improved versions are particularly effective
at mining large-size frequent item sets.

• All of the solutions mentioned have improved
scalability and demonstrated good performance
among cluster nodes.

• There is no need to wait for a lengthy amount of
time due to the number of times candidates with
multiplier (2n) values are formed. Limited values
have been evaluated for enhanced performance.

• Data pre-processing is unnecessary for numer-
ical datasets due to the frequent item sets in
multiple passes.

Section 2 discusses the Apriori method and the
Hadoop map-reduce concepts. Section 3 discusses
the literature study and associated work on data
mining concepts. Section 4 discusses the proposed
architecture and algorithm for our novel approach.
Section 5 discusses the results and comments. Finally,
Section 6 discusses our new approach’s findings and
proposed improvements.

2. Literature survey

[1] used a data structure to count the triangular
matrix item sets. They employed candidate gener-
ation instead of a combiner in the mapper step. It
presented an Apriori algorithm-based Hadoop clus-
ter solution for distributing a large volume of datasets
across multiple nodes with homogeneous and het-
erogeneous nodes. With Hadoop clusters, both nodes
are handled as a streaming process via the network.
Every bit of digital data must be assessed as a 0 or
1 bit, and the node specifics are combined with an
IP address to be identified. FPC algorithms have per-
manent passes that influence the incorrect positive
candidate item sets in their initial phases and then
yield just a smaller number of candidates. DPC has
solved a number of the issues associated with this
problem by dynamically mixing passes for load bal-
ancing of effort allotted by each phase. Yet, because
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of the dynamic passes, threshold values cannot be
surpassed. The execution time is determined by the
algorithm devised by the researchers. As a result, for
large datasets, it returns different results on cluster
nodes from various locations.

[2–5] discussed the homogeneous and heteroge-
neous systems environments, as well as the many
parallel and distributed algorithms used to improve
the performance of data mining concepts, particularly
association rule mining concepts. Yet, it is unsatisfied
with aspects of the distributed database environment
such as synchronisation, computation, and data par-
titioning, task scheduling, workload allocation, and
monitoring node failure in the cluster. Scalability dif-
ficulties are addressed by grid computing, but the
execution and waiting times are ineffective when
working with data mining principles. But Google’s
Map Reduce can fix these issues. It is a programming
paradigm created by Google for accessing global
file systems (GFS). It includes metadata for every
network-connected item in the system. Furthermore,
because it never shares anything, this file system
employs a shared-nothing design. Many data min-
ing techniques have been created by researchers to
operate with Map Reduce, but the most common is
based on Apriori.

[6] presented FP-Growth and Éclat, which are sim-
ple Map-Reduce approaches. Earlier methods were
based on the Apriori algorithm’s fundamentals and
implemented on the Map Reduce environment by
combining multiple successive iterations into a single
map-reduce operation. Several tasks are allocated for
map-reduce operations since the input will be pro-
vided in successive iterations. Because the map and
reduce functions are distinct, iterations were used to
successfully perform the mapping and reducing tasks.

[7] presented Map Reduce methods for mining
fuzzy association rules. In a large data collection, it
is difficult to retrieve fuzzy sets. This method iden-
tifies the association rule of data mining ideas and
generates the fuzzy data set using various criteria.
Fuzzy sets were generated from massive data sets
and will be sent to all network nodes for further
processing. [8–10] suggested an algorithm with the
characteristics of map-reduce-based algorithms and
that employs association rule mining techniques on
map-reduce. This type of comparison shed light on
the processing of large data sets in big data using
data mining methods. It is processed a priori using
data pre-processing within cluster nodes. The data
from the node is shared across all of the tasks that are
executing concurrently.

[11, 12, 29, 30] give parallel FP-Growth algorithm
implementations for machine learning fundamen-
tals and data mining libraries. Machine learning
techniques have several packages and libraries for
accessing large data sets in the map-reduce process;
however, data size is a big challenge. When Java
is used as a programming language for map reduc-
tions, the data processing time is quite slow due to
the code built for tiny data sizes. Python may have
been used to retrieve large amounts of data using its
libraries and packages. [13, 14] presented an inde-
pendent data model for Apriori to improve node
scalability and efficiency by minimising some pro-
cesses. The Map-Reduce-based apriori algorithms
are implemented using a hash table tree, which has
been shown to perform better than a hash tree. Utiliz-
ing these approaches, hash values may be produced
and stored in a database as a hash table. When the
metadata extraction process occurs in large data sets,
these data models help boost the scalability and speed
of the data over the network by utilising the apriori
method. It is used in the data warehouse to produce
data set items depending on the preceding data set
item. This procedure iterates indefinitely and creates
data items on a regular basis.

[15, 16] proposed the FiDoop technique on map-
reduce for parallel frequent data collection, and
it incorporates the FIU-tree (frequent items ultra-
metric tree) replaced by the Frequent Pattern (FP)
tree. FiDoop-HD was introduced and considered for
access to multidimensional datasets. Multidimen-
sional data sets are used in high-volume handling
applications and can be found in big data. Using
the FiDoop method and working for parallel data
operations, metrics like speed, latency, and correct-
ness may be measured. For simplicity of access, all
tasks in the map-reduce process are controlled by
multi-dimensional structure arrays or tree representa-
tions. [17, 26–28] proposed the Parallel Randomized
Algorithm (PARMA) method for parallel optimiza-
tion to locate frequent item sets on Map Reduce. This
method generates a tiny sample at random from large
databases. The data set stored in the Hadoop clus-
ter may access different-sized jobs in parallel as data
items. Because map-reduce is used to obtain data
from a large data source in parallel, Data mining
algorithms are used to extract these using multiple
sub-algorithms from the data warehouse.

[18] suggested a method for running a job 100
times faster than Map Reduce. As a result, it neces-
sitates a large amount of memory for calculation;
SPARK is a tool used to carry out the aforementioned
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operation. SPARK is used to access the data engine
and search engine that are both located in the same
block.

Because of the SPARK tool, more tasks in map-
reduce jobs share the same place. It outlines the
enhancement of the CPU using memory analytics.
SPARK makes use of apriori. It is used in real-time
applications for stream computation in parallel. R
is an analytics tool that is used to do data analysis
and cleansing using the SPARK tool. It is powered
by machine learning methods and methodologies.
To efficiently conduct the work on large data sets, a
data mining technique is employed for pre-processing
principles.

[21, 23] suggested an approach that demands
highly rapid access to data. Their primary goal is to
provide platforms that improve processing efficiency
and access to real-world data in order to promote
data streaming. Streaming data in a large data collec-
tion is a common activity in real-world applications.
It employs a streaming protocol to pull information
from data warehouses. Moreover, several data min-
ing methods are used in the big data analytics process
to manage large data volumes. This streaming pro-
tocol idea employs continuous streaming as data is
transferred from one location to another.

[24, 25] the VFPC and ETDPC methods were
used to access Sequential Pattern Mining Framework
(SPMF) datasets and the Frequent Item Set Mining
Dataset Repository Several consecutive tasks have
been formed by combining those methods, and the
elapsed time and average time of data retrieval have
been computed for various minimum suppression lev-
els. The data set obtained from such sources must
be accessible, and variances with different database
sizes are seen. [31–37] suggested a method for iden-
tifying incorrect correlations between dataset item
sets. Apriori algorithms, for example, are used in
data mining to discover relationships between all of
the data available in the network and to preserve that
link for database connectivity. Incorrect relationships
or duplicate data must be deleted using data mining
techniques before it can be accessed by an a priori
algorithm for further categorization.

Literature survey summarizes the overall perfor-
mances of the apriori algorithm features on big data
analytics with map reduce framework. Data mining
algorithms rely heavily on iterative Map Reduce with
fixed values. SPC is utilized for single-pass opera-
tions, whereas FPC and DPC are used for initiatives
with several passes that incorporate integrated can-
didate creation and counting. In comparison to SPC,

the FPC approach reduces the amount of requests by
combining a set number of subsequent phases. To
balance workloads across phases, DPC dynamically
incorporates candidates from multiple successive
stages. When we combine candidate generations in
a multi-pass technique, the candidate item sets are
generated from the prior sets in three successive
passes. If the candidate item sets are created inde-
pendently, the results of the frequent item set will
be incorrect. As a result, it is generated making use
of prior candidate sets. Because FPC has a limited
number of passes, false-positive candidates always
yield inaccurate results. DPC overcomes this prob-
lem by employing connected, dynamic consecutive
passes. The challenge with DPC in the map-reduce
phase is recognizing the amount of passes to com-
bine in a dynamic way. As a result, execution time
varies amongst cluster nodes, as does capacity for
large datasets. When working with large data sets,
these data mining methodologies raise challenges
with the map-reduce methodology in terms of execu-
tion time and scheduling modifications. These unique
approaches to the problem are described and evalu-
ated on various clusters by implementing the time
necessary to finish many jobs in several runs.

3. MFPC and ATDPC algorithms

3.1. Overview

In 1994, Agarwal introduced and acknowledged
Apriori with Srikant. This a priori method is intended
to operate with various datasets. The apriori approach
is well known in data mining techniques and is used
to construct common item collections from large
datasets via candidate generation. This approach is
employed as part of the Association Rule Mining
(ARM) methodology. This is the most success-
ful technique for pre-processing large datasets that
adheres to data mining research concepts. Data was
collected in a variety of ways before being stored in a
data warehouse for processing. Unwanted data must
be removed or routinely utilized data sets extracted
during various phases, depending on their quality. In
big data analytics, data is represented not only by
volume but also by format diversity and velocity via
speed. Algorithms in datasets must manage or collect
data using a variety of ideas and approaches. Because
of the administration of huge data sets in data mining
from data warehousing, the Apriori approach deals
with frequent item set extraction by utilizing sin-
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gle or multiple passes in handling big data. Apriori
property is used to increase the efficiency of level-
wise creation of frequent itemsets by minimizing the
search area. A frequent itemset’s subsets must also
be frequent (Apriori property). If an itemset is rarely,
then all of its supersets are infrequent as well. Fol-
lowing the generation of a candidate (k + 1)-itemset,
it is degenerated to its k-itemset subsets. If any of
these subsets is not big, i.e., is not a member of Lk,
the candidate is dismissed and considered small or
uncommon; otherwise, the applicant must pass the
second test. In the second pruning process, the sup-
port of the candidate itemset supplied by the first
pruning is tallied. If this support is more than the mini-
mal support, minsup, the candidate will be considered
a frequent itemset. If no extensions are provided,
this will end immediately. Because the name of the
algorithm suggests Apriori, the frequent item set
attribute of prior knowledge is employed by itself.
k-frequent item sets may be used to locate k + 1 item
sets using level-wise search. The apriori method dis-
covers all item sets that have supports that are greater
than or equal to the minimal suppression value. Sev-
eral passes are supported by the Apriori algorithm.
Individual items are tallied, and frequent things are
determined based on the minimal suppression value.
A new frequent item set called the candidate item set
is generated from the preceding item set before the
real count begins. At the end, all potential frequent
item sets and next-pass item sets were gathered based
on the initial minimum suppression value. An itera-
tive a priori method is used to switch jobs, such as
by generating frequent item sets as candidates from
earlier data sets and then evaluating the dataset to
support the number of candidates over each iteration.
The candidate item sets are formed from prior sets in
the fifth iteration by combining candidate generations
in a multi-pass as a single phase.

3.2. Handling big dataset

In big data, all large files are kept in the Dis-
tributed File System (DFS). A distributed file system
(DFS) allows enterprises to handle huge data access
over numerous clusters or nodes, allowing them to
read big data efficiently and do multiple concurrent
reads and writes. To manage vast amounts of data, a
new inventive way is developed, which necessitates
the adoption of an architecture that supports Shared
Nothing Architecture (SDA). A framework is a term
used to describe such an approach. As a result, data
may be stored horizontally on multiple nodes of a

cluster and accessible within predefined time frames.
Hadoop Distributed File System is based on Google
File System (GFS) features. Being an open-source
project, it is deployed as commodity hardware at a
minimal cost. It breaks the files into a number of parts
using various blocks.

The default block size of Hadoop’s new file sys-
tem is 128 MB. The replication factor is set to 3 by
default and may be modified depending on the num-
ber of systems in the cluster [8]. Map The Reduce
programming approach is used to provide parallel
and distributed database processing for large-scale
databases in big data. MapReduce is a program-
ming approach for developing programs that can
handle large amounts of data in parallel across sev-
eral nodes. MapReduce allows for the analysis of
massive amounts of complicated data. It distributes
the whole work into a number of independent blocks
based on the input file size among a larger number
of nodes. The Map-Reduce Framework, which con-
sists of the mapper, combiner, and reducer phases,
will be used for large volume dataset extraction opti-
mization. This will run in parallel on all nodes in a
cluster from various places. The input and output of
these functions are denoted as key-value pairs (k, v).
In our implementation work, the input file can be split
into a number of parts based on the size of the input
and given to the mapper phase. This phase contains
a lot of divides across the mapper and makes a lot
of splits using Input Split. Every map split employs
the Record Readers function, which turns the input
text data into key-value pairs (key, value). Follow-
ing the split, these key-value pairs will be sent to
the mapper, which will generate intermediate data as
key-value pairs. The reducer phase took those keys
as input. The input from that and (k2, list (v2)) from
the partitioned file is passed to the combiner class by
the reducer. Lastly, the optimised value (k3, v3) must
be uploaded to HDFS on each node in the cluster.
Because all of the nodes in that cluster are in differ-
ent locations, the replication factor will make a copy
of the written data and distribute it to three distinct
nodes.

Therefore, if a data node fails, the second node
receives the duplicated value and assigns it to the
user-assigned task. For this, fault tolerance and avail-
ability must be maintained, and execution and waiting
times are relatively considerable. Our algorithm is
now working on determining the most common item
sets in the input file and then mapper classes, after
which it will create the generations. The data was sent
from the mapper to the reducer as key-value pairs dur-
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ing the intermediate value. The scheduling procedure
aids in efficiently sending output from the mapper to
the reducer. This method works on scheduling and
selecting frequent item sets from a big data set to
produce the output as written in the HDFS within the
specified execution time and average waiting time.

The concepts are utilized in a map-reduce archi-
tecture to lower the time it takes to complete a single
operation. In addition to the traditional FPC and DPC
algorithms, they include MFPC, ATDFC, optimised-
SFPC, and optimised-ATDFC. To address the issue
of FPC, DPC created additional algorithms such as
variable-size FPC (VFPC) and elapsed-time DPC
(ETDPC). It was attempting to reduce the execution
and waiting times for individual jobs. However, at
various stages of execution, the passes begin with 1,
2, 4, 8, 16,... When it comes to a multinode clus-
ter, the time required has not dropped significantly.
Our unique MFPC algorithm employs the approach
of executing numerous passes after combining, where
n = 1, 2, 3,...This approach accelerates the devel-
opment of the number of passes, easily mixes the
phases, and provides a low execution and waiting
time. ATDPC also leverages the approach of feed-
ing a pre-processed dataset item into map-reduce
and maintaining it constant throughout the opera-
tion. because it minimizes the average execution time
when several iterations are performed. The optimized
versions of MFPC and ATDPC are similar, with the
difference being the number of passes as an input for
combined phases.

The unique approaches are relevant to Hadoop
multinode cluster real-time operations on big data
collections on Hadoop multinode clusters. In com-
parison to earlier strategies, this will give a novel
method for extracting data from datasets with vary-
ing processing capacity. It will also be suitable for
real-time generation of big data sets with access in
different places with a minimum of waiting time.

4. Proposed algorithms

The primary node serves as the master node, while
the remaining nodes serve as data nodes. The master
node will assign the job to the data node while the
incoming input data stream is initially transformed
to hash values. The SHA function is used for this
conversion, and the Mapper function divides the input
data into little chunks based on key-value pairings. A
number of Mappers will be formed to break up the
original data before being reduced to a tiny size in
comparison to the input size. The Mapper output is

gathered as a partition from the Mapper function and
reduced to a small amount of output depending on
the Metadata of the input file size. The number of
Mapper generated during the map () function is not
identical to the number of Mapper created during the
reduce () function. Because the reduce () function is
used to merge all of the Mapper outputs to provide
consolidated output.

Our new method defined two types of Map Reduce
Jobs, Job 1 and Job 2. The first task creates frequent
item set 1, and the second job generates k-item sets
(k > 2n). The first job is generated by several classes,
specifically Apriori Mapper. Job 2 is used to collect
intermediate data from the mapper output and split it
using Apriori Combiner and Apriori Reducer.

Map Reduce based Apriori Algorithms were devel-
oped in Java utilising the Mapper, Pass1, PassK, and
Reducer classes. The mapper class method produces
candidates using a dataset split as input and a local
support count. Reducer counts the sums of all local
counts and creates frequent item sets with a global
count. The combiner is used in these functions to
collect intermediate data from the mapper and to min-
imise the cost between the mapper and the reducer.
Moreover, Pass1 and PassK classes were created to
receive user input and divide it before passing it to
the mapper function for further processing. That will
be repeated for k iterations. Here, k may be computed
using the 2n formula, yielding n of 1,2,4,8........ The
dataset’s content will be separated into the specified
number of splits and turned into key-value pairs (k, v).
The item sets are designated as (item, 1). This item set
is known as Apriori Mapper. The other files are named
Aprioripass1Mapper and Aprioripassk Mapper. The
combiner is used to obtain data from map-reduce for
merging numerous consecutive iterations using the
Apriori Reducer class. Eventually, the reducer class
will obtain the intermediate value from the mapper
and partition it before combining it with the reducer
class named Apriori Reducer.

The Aprioripass1Mapper class represents novel
algorithms, while the Aprioripassk-Mapper class rep-
resents the notions of plain forward Single Pass
Counting (SPC) used in task 2 for calling a new
instance in a single pass or iteration of Apriori. The
Trie data structure is utilised during the implemen-
tation phase to generate candidates and sort them.
The most common k-item sets and potential sets
are highlighted. To minimise time in a single phase,
the preceding techniques were employed to combine
the repeated Map Reduce Apriori phase runs. The
preceding method, FPC, features permanent passes
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that affect the incorrect positive candidate item sets
in their initial phases, resulting in fewer candidates.
DPC has addressed this issue by dynamically com-
bining passes for load balancing of effort allotted
by each phase. Yet, because of the dynamic passes,
threshold values cannot be surpassed. The execution
time is determined by the algorithm devised by the
researchers.

As a result, for large datasets, it returns different
results on cluster nodes from various locations. To
address the aforementioned issue, we have developed
new algorithms such as MFPC, ATDPC, Optimized-
MFPC, and Optimized-ATDPC. Because of the
dynamically integrated multiple passes, MFPC and
ATDPC are the best and most flexible algorithms
for large datasets in clusters with varying processing
resources. Optimized-MFPC and Optimized-ATDPC
are avoidance-pruning-based optimised versions of
MFPC and ATDPC. Due to time constraints and
function optimization, pre-processing can be omitted
during the mapper phase.

4.1. Working of MFPC and ATDPC

MFPC and ATDPC are strategies that use a low
number of passes during the beginning phase and
a large number of passes throughout the remaining
stages. As compared to all other algorithms, the Apri-
ori method has a very small number of frequent or
candidate item sets (k = 1, 2, 3....) at first. If this value
is used as an input to the mapper, the iteration counter
values must be increased and then lowered based on
the mapper and reducer classes. Also, in the initial
and final phase iterations, the mid-value of iterations
is less than the number of candidate/frequent item
sets. The iterations and passes are gradually increased
and decreased with various values due to the K value,
which is item set value. If the k value is varied, such
as k is 1, 2, 4, 6,.... multiples of 2n, the iterations
and passes provide different results at various times.
Identifying the locations where values vary will offer
the notion to adjust the passes and combines dynam-
ically. It checks in two places: starting and finishing.
Only the burden must then be balanced using com-
bined passes. It is built on two novel strategies by
total candidates among waiting time for combining
the passes, which are the fundamentals of MFPC and
ATDPC. MFPC candidates of 2n pass successively
in one phase, such as 1, 2, 4, 8, 16, and so on. Then
it works for k> = 2 passes. Since these passes deter-
mine the amount of iterations throughout execution
time for frequent item set creation.

4.1.1. Pseudo Code for our new algorithm
(Mapper side)

Step 1: Create item sets of size k + 1.
Step 2: Self-join L k
Step 3: Generate the (k + 1)-item set with k-item

sets
Step 4: Generate same item set up to (k-1) items
Step 5: If suppose 2 item set and their length 3

means create (list [0...2]) then [1, 2, 3], [1, 2, 4].
Step 6: Checks the item sets are the same from

index 0 to index 1
Step 7: Generate 4-newItem set.
Step 8: If suppose 2 item set and their length 3

means create (list [0...2]) then [1, 2, 3], [2, 3, 4].
Step 9: Check index 0 and break.
Step 10: No need to generate the next item set.
Step 11: Consider generating (k + 1)-new Item set

only for the same thing upto (k-1) consecutively.
Step 12: If all of the subsets are in L k, then we

add the item set to C (k + 1).
Step 13: Add the item sets in L (k + 1) into the Trie.

In n-Map phase: (n > 1)
Step 14: Read part of transaction file and for each

transaction, call find Item sets ()
Step 15: Emit the above item sets as (item set, 1).

4.1.2. Pseudo Code for Algorithm (Reducer side)
Step 1: Add the numbers up and if it’s above min-

imum suppression.
Step 2: Add the item set into L (k + 1).
The following Fig. 1 and Fig. 2 represents the

working of new algorithms on the example data sets
with

* Number of transactions = 6.
* min sup = 50%.
* min number of item = 2.
ATDPC determines whether the total number of

consecutive passes generated by combined passes is
less than a candidate threshold value. The key advan-
tages of both MFPC and ATDPC are that they provide
dependability and resilience with large datasets on
Hadoop multi clusters at varied degrees of processing
capability.

4.2. Optimized-MFPC and optimized-ATDPC

With this Optimized MFPC and ATDPC, the
combined consecutive calculations avoid the pre-
processing step in some phases. It decreases the
number of candidates during Apriori property pre-
processing. Apriori-gen is a novel mechanism used
by MFPC and ATDPC mappers (). It employs
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Fig. 1. Apriori Mapper working in MFPC.

two methods: connect and prune. Another tech-
nique, no-Apriori-gen (), is used to avoid the
pre-processing stage and comprises of join func-
tions. Both are incorporated into the Optimized
techniques of our new algorithms. The unpruned
candidates were created as a result of this no-apriori-
gen (), which saves money owing to the pruning
procedure.

The multi-pass phase pre-processing skipping
technique is described in Algorithm 5 using Opti-
mized new algorithms Mapper and Combiner class.
It is comparable to the MFPC and ATDPC algorithms,
with the exception of Mappers for job2. During run-
time execution, the apriori-gen () function is utilised
to discover all values.

4.3. Skipped-pruning on multi-pass map reduce
phase analysis

The complexity of Apriori algorithms is affected
by the number of transactions, item sets, average
transaction time, and user threshold value. The prun-
ing, subset, and apriori-gen () modules are sequential
Apriori algorithm principles based on their compo-
nents. Optimized algorithms of our new model work
in sequential stages with the assistance of 2n mul-
tipliers, and their dependencies are modified based

on the computational cost in various modules. These
are Pass k, Pass k + 1, and Pass k + 2. Because of
the non-pruning strategy, the cost of the multiple
pass phases has been lowered, but more non-pruned
candidates have been produced. It is determined by
the datasets, the min suppression parameter, and the
number of transactions. The cost and performance of
non-pruned candidate generation have been lowered
as a result of the subset and self joining technique
adopted. The prefix tree’s size was expanded and
saved for a separate multiple pass phase. It operates
on each transaction and numerous passes using Map-
per map () methods, and the result is saved in a tree.
The candidates are generated using the apriori-gen
() / no-apriori-gen () routines, as well as the subset
() function. Since this subset () verifies a transac-
tion’s subset in each potential transaction. Because
the apriori-gen () technique is used to obtain val-
ues from early item sets rather than transactions, it
is recommended that it be used frequently in the
map () function. During a multi-pass phase, the no-
apriori-gen() technique is used to avoid the repeating
of apriori-gen() function invocations. As a result,
the time required to complete transactions and iter-
ate is lowered, and the average time is determined
accordingly. It operates because of the notions of
self-joining and pruning.
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Fig. 2. Working of Aprioripassk Mapper class.

5. Results and discussions

These research findings the enhanced features of
apriori algorithm to improve the speed of the data
processing in big data by eliminating the duplicate
data sets from the collected frequent item sets is
called pruning. During a multi-pass phase, the no-
apriori-gen() technique is used to avoid the repeating
of apriori-gen() function invocations. As a result,

the time required to complete transactions and iter-
ate is lowered, and the average time is determined
accordingly. It operates because of the notions of
self-joining and pruning.

5.1. Experimental overview

Our proposed study lab used Apache Hadoop
2.10.0. The findings have been compared in terms of
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Table 1
Configuration of Hadoop Cluster

Node Name Type of Nodes No of CPU Cores RAM Size GB Processor Speed

Name Node Physical 4 16 Intel 2.30GHz
Data Node 1 Virtual 8 8 Intel 2.10GHz
Data Node 2 Physical 8 4 Intel 2.15GHz
Data Node 3 Physical 4 8 Intel2.20GHz
Data Node 4 Virtual 8 4 Intel 2.15GHz

Table 2
Experimental results with transactions and average time

Datasets Total Total Width
Transactions Items Average

Mushroom 8124 119 23
Connect 67557 952 184
Retail 88162 1309 253

dataset size, processing time, execution time, average
time, CPU running time, and latency. The clus-
ter consists of four data nodes that are all running
Ubuntu 16.04TLS 64 bit. The name node is physi-
cally setup as a server node, whereas the other data
nodes are configured as virtual and physical, respec-
tively. Java JDK 1.8.242 and the Map Reduce 2.0
(YARN) library were utilised to operate this config-
uration. Hadoop Distributed File System is based on
Google File System (GFS) features. Being an open-
source project, it is deployed as commodity hardware
at a minimal cost. It breaks the files into a number of
parts using various blocks. The default block size of
Hadoop’s new file system is 128 MB. The replica-
tion factor is set to 3 by default and may be modified
depending on the number of systems in the cluster.
Table 1 show that different configuration of Hadoop
cluster.

The datasets namely sample, retail, connect and
mushroom [29, 30] has taken for consideration and
their total number of transactions, total number of
items and average width of the transactions are listed
below in Table 2. Each number are varied according
to the size of the data set and it would be changed
during the data processing.

Table 2 explain the analysis of average time with
different datasets.

5.2. Performance analysis of MFPC and ATDPC

Classical approach and algorithms were tested by
finding the frequent item sets with the combinations
of K, K + 1 . . . . . . . . . .2 N times calculations where
as N = 1,2,3,4. But our new approaches findings the
same with 2 N where N is = 1,2,4,8,16 . . . . . . . . . ..

This method used in larger data sets to find the
frequent item sets quickly and given accurate infor-
mation from the repositories. Pruning is the concept
used in this approach to remove the duplicate items
immediately after the pre processing.

The comparison of various running times of tasks
supplied as item sets may be analysed for all meth-
ods, and the results will be displayed on a graph. It
demonstrates that all of the algorithms are running on
time, but the time to complete the operation varies.
Every execution is based on the minimum suppres-
sion values of all transactions at all levels. Because the
many passes begin with 1, 2, 4, 8, and 16, there is no
need to examine the performance at each pass. It will
provide results with varying timeframes after com-
pleting all passes. The following findings describe
the varied minimum suppression value transaction
execution times of all methods, including the con-
ventional technique. The figures below depict the
variations in various

Figures 3, 4, and 5 show the relevance of using
a traditional algorithm approach to data mining for
obtaining information from large data sets. Since the
execution time of the SPC algorithm is quite short
when compared to all other new and old algorithms.
Our new method runs with 2 N passes, therefore the
result is displayed promptly at each level of the sin-
gle multi pass phases. SPC has greater execution
time value in Fig. 3a, 4a, and 5a when remaining
algorithm is getting extremely near to executing the
transactions. At the convergence point, all of the new
algorithms are concentrated at one single site for
interception, and the number of passes is gradually
increased.

In Fig. 3b, 4b, 5b all the new algorithms are running
simultaneously but when one saturation point comes
it will get converged with different levels of minimum
suppression values. Similar to that the execution of
each data set is varied according to the size and num-
ber of transactions in the datasets. When huge data
sets are executed it must be processed with our new
approach and given the value accurately when satura-
tion point comes. There must be lot of different size of
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Fig. 3. (a) Execution time based on different min sup using old algorithms (b) New algorithm execution time variations.

Fig. 4. (a) Execution time based on different min sup using old algorithms (b) New algorithm execution time variations.

data sets taken for consideration which implies their
results at their min support values.

5.3. Result comparisons

The uniqueness of the suggested method should
be justified via quantitative analysis based on sev-
eral trials. All trials on the test bed were conducted
based on the number of transactions and the mini-
mum suppression values. The Tables 3–5 depicted
that experimental values and demonstrate the varied
outcomes at various min sup levels.

Tables 3–5 show three separate data sets processed
at minimal suppression levels of 0.15, 0.55, and 0.65.
It demonstrates that when the process begins, all
transactions are unchanged, but after two or three
runs, they are slightly altered with different values.
When the size of the data set is grown, the pass out-
put values may change since more passes are required
to create outputs. The many passes begin at 1, 2, 4,
8, 16, 32, and 64. The above Table 3–5 demonstrates
that when compared to the real time and time required
finishing the operation with different passes, the out-
comes for conclusion will vary. Lastly, as the size of
the data collection grows, more passes and time are
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Fig. 5. (a) Execution time based on different min sup using old algorithms (b) New algorithm execution time variations.

required for processing. There are several amounts of
minimum suppression used, however when numer-
ous passes are performed, the results will change. All
yield the same result, with the average execution time
of all passes dependant on the number of transactions
in the overall operation. The time taken for complete
the process with its total time taken and actual time
has compared for the performance analysis.

Table 6 shows how different data sets generate their
frequent item set at varied execution time intervals.
Figures 3–6 shows that outcomes of candidate gen-
eration for several data sets operating on the same
cluster. All of the findings show that at the beginning
of each transaction, the levels are the same. Yet, it has
taken longer execution time to accomplish the work
by the time it reaches the intermediate level, such as
the 8th pass iteration. As comparison to existing algo-
rithms, our novel methods are employed to complete
the work in less time. Table 7 depicted as generation
of candidates at minimum suppression 0.15 on mush-
room. Table 8 show that generation of candidates at
minimum suppression 0.55 on connect. Table 9 shows
that generation of candidates at minimum suppres-
sion 0.65 on retail.

Tables 10–12 described the execution time levels
for each data set at varying minimum suppression
levels. When comparing the actual time taken and
overall time taken to finish the procedure, the data set
size at each pass may vary. As compared to traditional
methods, our technique provides reduced execution
and average time for several runs.

5.4. Speedup and scalability

The test was performed to assess the scalability
and speed of the test bed at various levels of min-
imum suppression values. Two timings have been
taken into account: average execution time and aver-
age time. Both figures must be used to determine the
amount of time necessary to generate frequent data
item sets and candidate sets. The frequent data item
sets, on the other hand, will be formed exclusively
from the preceding item set. As a result, the timing
levels should be updated in a single run each time a
data set is created. When several passes are needed
for an experiment, the average timing is calculated
and compared to the original transaction time. Dif-
ferent minimum suppression levels are examined, and
dataset size varies with each stage. Lastly, because of
the 2n passes considered for execution, our unique
approach provides findings from enormous data sets
in a very short amount of time. Scalability has also
been tested with various size input data sets, and all
function in less time. Figures 6 (a & b) show the
specifics of our new algorithm’s speed and scalability
numbers.

6. Conclusion and future enhancement

Data mining algorithms are the traditional ones
used for mining information from repositories, how-
ever their accuracy and latency are bad in terms
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Table 3
Different average timing levels at minimum suppression of 0.65 on retail data set

Multiple Passes 1 2 4 8 16 32 64esults Total Actual

SPC(16) 23 24 56 225 143 86 24 1360 1480
FPC(8) 22 24 340 582 362 63 25 1423 1523
DPC(12) 23 23 53 430 246 122 22 1237 1301
MFPC(8) 21 52 161 321 464 242 24 1261 1320
ATDPC(14) 21 25 30 56 152 212 23 1188 1238

Table 4
Different average timing levels at minimum suppression of 0.55 on connect data set

Multiple Passes 1 2 4 8 16 32 64 Total Actual

SPC(12) 18 21 24 102 138 24 19 807 894
FPC(6) 21 19 120 130 456 163 27 856 887
DPC(10) 18 24 86 234 264 84 18 736 764
MFPC(7) 21 27 36 157 264 86 20 826 859
ATDPC(12) 20 25 37 163 129 328 21 735 771

Table 5
Different average timing levels at minimum suppression of 0.15 on mushroom data set

Multiple Passes 1 2 4 8 16 32 64 Total Actual

SPC(14) 16 19 32 81 34 18 16 524 693
FPC(8) 17 27 136 262 85 24 24 528 572
DPC(8) 19 35 82 126 42 22 22 500 532
MFPC(9) 19 32 38 170 190 28 23 523 582
ATDPC(13) 20 32 82 165 173 26 21 512 558

Table 6
Generation of frequent item set creation time taken at different min sup

Data base name L1 L2 L4 L8 L16 L32 L64

Mushroom 46 520 6751 16837 1001 31 0
Connect 67 617 7992 21023 1384 19 0
Retail 56 609 7545 5100 417 16 0

(a) (b)

Fig. 6. (a) Speedup. (b) scalability.

of time. Modern ways to data processing are uti-
lized in big data analytics, but the cost management

and procedure are fairly typical when dealing with
such large amounts of data. Despite this, data min-
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Table 7
Generation of candidates at minimum suppression 0.15 on mushroom

Algorithm with no of phases Pass 2 Pass 4 Pass 8 Pass 16 Pass 32 Pass 64

SPC 1118 7754 11536 1001 224 31
MFPC 16524 20424 32873 24358 11205 6
Optimized- MFPC 16524 21484 34728 24328 11225 6
ATDPC 1118 7754 11536 1001 224 2
Optimized-ATDPC 1118 7754 11536 1001 224 2

Table 8
Generation of candidates at minimum suppression 0.55 on connect

Algorithm with no of phases Pass 2 Pass 4 Pass 8 Pass 16 Pass 32 Pass 64

SPC 1703 3602 5320 928 117 2
MFPC 9236 10349 7853 1052 1052 0
Optimized- MFPC 9236 12349 7462 1062 1052 0
ATDPC 1703 3602 5320 928 117 2
Optimized-ATDPC 1703 3602 5320 928 117 2

Table 9
Generation of candidates at minimum suppression 0.65 on retail

Algorithm with Pass 2 Pass 4 Pass 8 Pass 16 Pass 32 Pass 64
no of phases

SPC 2460 6577 20537 1287 253 2
MFPC 12345 14356 22631 2474 267 2
Optimized- MFPC 12765 16732 24835 2673 283 2
ATDPC 2460 6577 20537 1287 253 2
Optimized-ATDPC 2460 6577 20537 1287 253 2

Table 10
Different execution timing levels at minimum suppression of 0.65 on retail data set

Multiple Passes 1 2 4 8 16 32 64 Total Actual

MFPC(8) 20 24 86 234 284 82 21 726 766
Optimized- MFPC(8) 21 23 75 190 86 74 23 567 612
ATDPC(9) 21 25 34 160 86 320 22 725 801
Optimized-ATDPC(9) 20 24 37 160 82 72 23 707 757

Table 11
Different execution timing levels at minimum suppression of 0.55 on connect data set

Multiple Passes 1 2 4 8 16 32 64 Total Actual

MFPC(8) 19 26 96 214 264 92 21 626 666
Optimized- MFPC(8) 20 25 84 160 53 77 23 467 712
ATDPC(9) 20 27 42 140 45 235 22 625 701
Optimized-ATDPC(9) 21 26 39 140 75 75 23 507 557

ing techniques such as improved MFPC, FTPC, and
their optimized supplementary algorithms are uti-
lized to extract information from repositories with
high latency and accuracy. Traditional data mining

apriori methods were inappropriate for managing
huge datasets due to the volume of data given as input
to the HDFS system’s map-reduce system. Although
the apriori approach was utilized to construct frequent

Table 12
Different execution timing levels at minimum suppression of 0.15 on mushroom data set

Multiple Passes 1 2 4 8 16 32 64 Total Actual

MFPC(8) 17 20 56 134 184 72 19 426 566
Optimized- MFPC(8) 18 22 65 130 76 44 20 467 512
ATDPC(9) 18 21 24 130 76 220 20 525 601
Optimized-ATDPC(9) 17 22 27 120 72 62 19 407 457
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item sets and candidate item sets, the latency and
execution time are insufficient for huge data analytics.

Proposed unique algorithms are based on apriori
principles and reduce execution and average time
by increasing pass values while utilizing an appro-
priate number of passes. Data mining concepts are
advantageous for any input value pre-processing sys-
tem, and it may have produced different frequent
item groups for better data management. The enor-
mous input files in HDFS are divided based on the
number of files, and tasks are formed as item sets
utilizing data mining pre-processing methods. Pre-
vious techniques were stated in terms of reducing
execution time by 60–70% through the use of several
passes. Because the trimming phase in data pre-
processing is bypassed, our proposed new approaches
will save up to 84–90% of that time. Machine Learn-
ing approaches will be developed in the future to
boost the speed and scalability of the Hadoop Map
Reduce System on multi-node clusters in HDFS.
Additionally, the Java and Python programming lan-
guages will be used in the same way to optimize the
process of big data analytics across several platforms.
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