—— -

Contents lists available at ScianceDiraect

Microprocessors and Microsystems

journal homepage: www .slsevier.comiosate/micpro

Intelligent fault diagnosis in microprocessor systems for vibration
analysis in roller bearings in whirlpool turbine generators real time
processor applications

L. Mubaraali**, N. Kuppuswamy”, R. Muthukumar®

AResearch Scholar, Faculty of ICE, Anna University, India
b professor and Dean Mechanical Engineering KIT, Coimbatore, 641402, India
¢ Associate professor and Electrical and Electronics Engineering ESEC, Erade, 638057, India

Pl

Check for
updates

ARTICLE INFO

Article history:

Received 13 December 2019
Revised 10 February 2020
Accepted 3 March 2020
Available online 4 March 2020

Keywords:
Microprocessor
Condition monitoring
Fault diagnosis

Feature extraction
Signal denoising
Vibration measurement

ABSTRACT

Large steam turbines used for electrical power generation demand governing systems of very high in-
tegrity (safety) and availability. The latest generation of electronic governors uses microprocessors in a
distributed, two level architecture to achieve the required integrity and availability and in addition pro-
vides greater configuration flexibilities and wider facilities than earlier governors. Rolling element bear-
ings are one of the major machinery components used in industries like power plants, chemical plants
and automotive industries that require precise and efficient performance. Vibration monitoring and anal-
ysis is useful tool in the field of predictive maintenance in small hydro electric power plants. Health of
rolling element bearings can be easily identified using vibration monitoring because vibration signature
reveals important information about the fault development within them. Numbers of vibration analysis
techniques are being used to diagnosis of rolling element bearings faults. This paper proposes a new sig-
nal feature extraction and fault diagnosis method for fault diagnosis of low-speed machinery. Initially,

" the proposed work explores the Continuous Wavelet Transform (CWT) to adaptively remove the exact

noises from vibration analysis and then feature extraction is performed by exploiting the noise removed
pre-processed data. Statistic filter (SF) and Hilbert transform (HT) are combined with moving-peak-hold
method (M-PH) to extract features of a fault signal, and Special bearing diagnostic symptom parameters
(SSPs) in a frequency domain that are sensitive to bearing fault diagnosis are defined to recognize fault
types. The SF is first used to adaptively cancel noises, and then fault detection is performed by exploit-
ing the optimum symptom parameters in a time domain to identify a normal or fault state. For precise
diagnosis, the SSPs are calculated after the signals are processed by M-PH and HT.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

topic. Faults not only include the imbalance of the rotor itself but
also may occur at the bearings, gear boxes and couplings, which

The evolution of microprocessor architecture depends upon the
changing aspects of technology. As die density and speed increase,
memory and program behaviour become increasingly important
in defining architecture tradeoffs. While technology enables in-
creasingly complex processor implementations, there are physical
and program behaviour limits to the usefulness of this complex-
ity. Physical limits include device limits as well as practical limits
on power and cost A Whirlpool turbine generator plays an irre-
placeable role in modern power industry. Over the past decades,
the safety of equipment has received more and more attention and
the fault diagnosis of rotary machinery has become a hot research
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determines the variation and complexity of faults. Hence, how to
describe faults is key to fault diagnosis. Various sources such as
vibration (1], electric current and acoustic signals [2,3] are used
in diagnosis. Generally, vibration signals are important sources of
faults and contain abundant information about running states of
rotary machinery, which are widely used to extracted features in
fault description.

Fault diagnosis and estimation has been done using different
techniques in different domains {4]. Bearing faults have been diag-
nosed mostly using techniques, which diagnose bearing defects by
analyzing different types of signals, such as the vibration acceler-
ation signal of a bearing’s housing measured through accelerome-
ters {5], the stator current of the induction motor [6], the acous-
tic emission (AE) signals {7], and the stray flux spectra {8]. Tech-
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Fig. 1. Proposed block diagram.

niques that analyze the vibration acceleration signal and the motor
stator current are effective in diagnosing bearing defects at high
rotational speeds. However, at low rotational speeds, bearing de-
fects, especially incipient defects, are more effectively diagnosed
using AE-based methods, as they are sensitive to the low energy
acoustic emissions released by a developing crack in the bearing
even if it is sub-surface {9]. Hence, in this paper, AE signals are
used to diagnose incipient bearing defects under variable operat-
ing speeds. The diagnosis of bearing defects under variable operat-

ing speeds is an important problem. Many studies {16} have con-
' ered similar problems in different contexts. For instance, the au-
cthors of [%1] have studied the application of traditional vibration-
based techniques for the diagnosis of various rotor faults in ma-
chines operating at different speeds and with different foundation
supports.

AE-based methods mostly diagnose bearing defects either by
using envelope analysis {12}, or by constructing discriminative
models for features extracted from the bearing fault signals using
discriminative classifiers such as support vector machines (SVM)
{13]. Envelope analysis-based methods diagnose bearing defects
by looking for peaks at characteristic frequencies associated with
each defect type in the power spectrum of the envelope signal.
However, these characteristic defect frequencies (CDFs) are func-
tions of the bearing’s rotational speed, which renders these tech-
niques ineffective under variable operating speeds. Similarly, fea-
ture extraction-based methods are also not effective in diagnosing
bearing defects under variable operating speeds, as variations in
the operating speed result in inconsistent features that yield poor
discriminative models. Hence, these methods have predominantly
been used to diagnose bearing defects under constant operating
speeds. Moreover, since feature extraction-based methods use the

jatistical properties of the time and frequency domain AE signal,

nd the complex envelope signal; the diagnostic performance of
these methods depends upon the quality of the extracted features.
The selection of appropriate features requires both expert domain
knowledge and feature selection algorithms to eliminate redundant
and irrelevant features [13}]. In summary, so far, the literature on
the application of vibration or AE analysis to automatically diag-
nose lowspeed bearing fault has not been found.

This work carries out the automatic diagnosis of low-speed
bearings using vibration analysis, which has widely been used in
production plants at a low cost. The motivation of the work is as
follows.

1) In order to automatically extract the weak fault signal of a low-
speed bearing from the vibration signal contaminated by strong
noises, the self-adaptive signal processing methods based on
M-PH, SF, and HT are proposed [14]. Also before that, a pre-
processing process is carried out using Continuous Wavelet
transform to remove the false signal from the data samples.

2) In order to sensitively reflect the features of the extracted fault
signal, the special bearing diagnostic SPs (SSPs) are newly de-
fined for precision diagnosis |15].

3) In order to precisely and automatically determine the fault type
of low-speed bearings, the construction method for the intelli-
gent diagnostic system is proposed by introducing fuzzy neural
network with the use of the SPs in time and frequency domain.
The design of FNN includes the development of the fuzzy rules
that have IF-THEN form [i5].

The fault states of a bearing can be classified into early stage
(spot flaw), middle stage (multiple localized defects), and final
stage (generalized defects) {17]. This paper emphasizes early fault
diagnosis, which is beneficial in real-world industries, because po-
tential catastrophic failure can be prevented by successful early
fault detection [i8} In condition-based maintenance, early fault
detection can also provide important information to carry out the
state trend control [18]. The focus of this paper is early fault diag-
nosis of the roller bearing at low speeds, but the bearing diagno-
sis method will be tested during the middle and final stages in a
forthcoming study [20}.

2. Proposed methodology

The method proposed in this paper includes a training pro-
cedure and a diagnostic procedure [21]. The overall proposed
methodology flow diagram for low speed bearings is shown in
Fig. 1. In fact, these systems must have a high degree of reliabil-
ity and availability to remain functional in specified operating con-
ditions without needing expensive maintenance works. Especially
for offshore plants, a clear conflict exists between ensuring a high
degree of availability and reducing costly maintenance

The training procedure requires signals from the equipment
while operating in a normal state and each abnormal state {22}
The main purpose of training is to establish the diagnostic rules
by FNN, which includes the rules for the condition survey and the
rules for precise diagnosis. In the diagnostic procedure, SPs of the
diagnostic signal are calculated, and the state of the bearing is de-
termined using the rules obtained in the training step [23]. The
diagnostic procedure also includes the condition survey step and
the precise diagnostic step.

Three typical bearing faults—the inner race flaw, outer race flaw,
and roller flaw—are utilized here to demonstrate the efficacy of
the proposed method. There is no universally accepted definition
of “low-speed rotating machinery,” but the term typically refers to
machines operating at a shaft rotational speed below 600 rpm or
in a range from 0.33 to 10 Hz {24]. In this paper, fault diagnosis ex-
periments for low-speed bearings in a real rotating machine were
conducted to verify the performance of the method with vibration
speed measurements taken from 40 to 200 rpm.

1) Noisecanceling: In our previously published paper, a lot of en-
vironmental noises can be cancelled self-adaptively using SF for
fault diagnosis of middle and high-speed rotating machinery.
Details regarding the basic theory and advantages of SF can
be found in [25]. However, during the operation of low-speed
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equipment, environmental noises are complex and are signifi-
cantly affected by the operating conditions, such as speed and
load. Therefore, it is important to cancel the noises as cleanly
as possible in vibration-based fault diagnosis by multiple fea-
ture extraction method. Peak-hold-down sample (PHDS) and HT
are suitable for processing signals with a low SNR. The tradi-
tional PHDS is an effective down sampling method, but the sig-
nal sampling frequency will decrease after processing by PHDS.
Since this paper combines PHDS with HT to extract features of
bearings rotating at a low-speed, a relatively high sampling fre-
quency of the signal is required. For this reason, an M-PH is
proposed after processing by which the sampling frequency will
not change. In this paper, the HT is combined with M-PH to ex-
tract the fault signal.

Symptom parameters (SPs): In addition, because intelligent di-
agnosis systems based on a computer cannot determine the
fault type like the expert by “observing the spectrum,” it is
necessary to use SPs for automatic diagnosis. When taking the
practicability into consideration, SPs used in the condition sur-
vey are traditional parameters, which have a good effect on
quickly judging if the state of equipment is normal or abnor-
mal. In the precise diagnosis step, in order to effectively reduce
the influence of noises and extract fault features, the special
bearing diagnostic SPs (SSPs) are defined for roller bearing fault
diagnosis of low-speed rotating machines.

N
~

2.1. Pre-processing of using CWT

The CWT is thus a natural tool to be used early in the investiga-
tion of the properties of signals to develop processing algorithms
and concepts. It produces a representation of the time-frequency
features of the signal, with the additional benefit of a so-called
“zooming” effect. This zooming effect modifies the spectral resolu-
tion to be a function of scale—the small-scale structure has higher
resolution (frequency bandwidth) than does large-scale structure.
In other words, the CWT zooms in to display detailed, fine features
(high frequency) and zooms out to display large, coarse trends (low
frequency). Thus, for signals for which spectral characteristics or
statistical properties are likely to change over time, the CWT could
be used to identify those signal features that are potentially ex-
ploitable by signal processing.

In this work, CWT the signals are analyzed using a set of ba-
sis function, which are related to each other by simple scaling and
translation. CWT is a wavelet transform with a continuous mother

‘wavelet, continuous dilation parameter, and a discrete translation
parameter. A wavelet transform is a convolution of the wavelet
function W(t) with the signal x(t). Continuous wavelet transform
(CWT) of a continuous square integrable function x(t) at a scale
a>o0 and b belongs to R is expressed by the following integral.

o t—
xxmm=ﬂNﬁ/ nww<7;>m (1)
—o
where 1/+4/a is the normalization factor and \IJ*(%) is the con-
jugate of the mother wavelet function [26G]. The following pre-
processing steps to remove the noise are

(1) Decomposition: Choose a wavelet, and choose a level
N.Compute the wavelet decomposition at level N.

(2) Thresholding: For each level from 1 to N, select a threshold
and apply soft or hard thresholding to the detailed coeffi-
cients. .

(3) Reconstruction: After decomposition thresholding is applied
to detail coefficients and after that signal is reconstructed by
using original approximate coefficients and modified detail
coefficients.

A noisy signal data collection is taken as an input. From the
input noisy signal “Xnq,”, the standard deviation or the Median
absolute deviation can be calculated by the formula o = std (x,g;sy)
or o = mad(Xn,sy)/0.6745 respectively which gives an approximate
estimation of the noise level of the noisy signal “xnoisy”.In this
paper, Median absolute deviation the is calculated for evaluation
of the threshold the d value. One of the first methods for selection
of threshold was developed by Donoho and Johnstone [27] and it is
called as universal threshold. It is given by Threshold, T = o where
N denotes the no. of data samples of the noisy signal

Thresholding is an important step in removing noise from a
noisy signal. Hard thresholding and Soft thresholding are the two
common and most popular methods. The CWT coefficients, “C" of
the noisy signal is shrunk by the thresholding algorithm [27] given
below.

New Coef ficients = C — sign(C) x T

IFICP>T=0
Otherwise 0

(2)

In this thresholding algorithm, the CWT coefficients, “C” to the
power three which are smaller than the threshold value, “T” is set
to zero otherwise coefficients are shrunk in magnitude according
to the above formula. The CWT coefficients computed are available
in a matrix form. The number of columns in the matrix is equal to
the signal length while the number of rows is 24, since the com-
putation is done for scales from m = 6 to 29. Thus in this work,
the above thresholding algorithm was applied to each element of
the CWT coefficient matrix. Finally, the inverse CWT of the thresh-
olded CWT matrix was computed by convolving with the Morlet
wavelet (as was done for forwarding CWT computation) at same
scales and performing a weighted summation across scales.

2.2. Feature selection of fault signal using M-PH, SE, and Hilbert
transform (HT) 3

Features are some representative's values which can indicate
bearing conditions. The represented features include time domain
features such as mean, root mean squares {RMS), variance, skew-
ness, kurtosis, etc., frequency domain features such as content at
the feature frequency, the amplitude of FFT spectrum, etc., and
time-frequency domain features such as statistical characteristics
of short time Fourier Transform (STFT), Wigner-Viller distribution,
wavelet transform, etc.

In this study, there are features like mean, rms, shape fac-
tor, skewness, kurtosis, crest factor, entropy estimation value, en-
tropy estimation error, histogram upper bound, histogram lower
bound, rms frequency, frequency center value, root variance fre-
quency value, and first 8 order coefficients of the auto-regression
(AR) model are extracted from the vibration signal. All the features
extracted were computed from each bearing measurement using
MATLAB code. Therefore it was obtained a 90 by 21 feature matrix.
These features are extracted using the proposed Transform and it
would be fed to the proposed Fuzzy Neural Network (FNN) classi-
fier model for bearing fault classification.

2.3. Moving-Peak-Hold (M-PH) method for refining peak signal
characteristics

Low-speed rotating machinery diagnosis is challenging, as de-
scribed above due to the difficulty in extracting the fault signal
from the diagnostic signal contaminated by noises. Effective fea-
ture extraction is the key to processing raw vibration data. The
down sampling approach is, as of now, the only effective method
for feature extraction for the purposes of low speed bearings diag-
nosis. The PHDS algorithm is a simple and effective peak holding
and down sampling method originally proposed by Noda {28] for
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S(N) = (x(D, 2+ 1) .x(f—-m+1D)1<i<n—-m+1

v

Max[S(N;)] and Min[S(N;)] are found

No  PIO=Min[S(Ny)]

[ Max[S(No)] Yes  [P(O)=Max[S(Ny)]

> Min[S(N)] |

The maximum absolute value 1s found.
Max_Abs(i)=Max{|Max[S(N;)], Min[S(N)] |} i

Have the same

i=i+]

P(i)=Max_Abs(})

h 4

[Max[S(N,)) P(i)=Max_Abs(i)

> Min[S(N)] |

P(i)=Max_Abs(i)

IP(1)=Max_Abs(i)

Fig. 2. Flowchart of M-PH.

- feature extraction to detect rotor problems. It is useful for mon-
itoring the conditions of low-speed rotary components based on
the vibration and AE signals, even at a 500-Hz down sampling ra-
tio [28].

M-PH retains the advantages of PHDS in refining peak signal
characteristics, by which the information at low frequencies can
be extracted according to the moving average method. The value
of each point is redefined by PHDS, which acquires the necessary
information during the feature extraction process. A flowchart of
the M-PH method is shown in Fig. 2. As an example, the outer
qee fault signal of a roller bearing was processed by PHDS and M-

A, respectively, and then HT was conducted to further extract the
$ignal feature. The waveform of PHDS was not providing the proper
features due to a relatively low sampling frequency. Whereas, the
spectrum of the signal processed by M-PH exhibited peaks at the
pass frequency and its high-order harmonics.

Each data segment with a fixed number of data points is ana-
lyzed by M-PH to extract the signal characteristics in the same way
as the moving average method. As shown in Fig. 2, when the ratio
is m, each segment with m points of signal x is analyzed, respec-
tively. For example, when the ith segment is analyzed, the maxi-
mum (Max [S(Ni)]) and minimum (Min [S (Ni)]) from this segment
are picked out first. Then, it is judged whether the maximum and
minimum signs are the same. At this point, the new value is de-
termined according to the following situations. Max_Abs (i) is the
larger absolute value between Min [S (Ni)] and Max [S (Ni)]. If the
maximum and minimum signs are the same, Max_Abs (i) or its in-
verse is used to replace the value of this point according to this
sign for this segment. If the signs are different, Max_Abs (i) or its
inverse is used to replace the value of this point according to the
sign of the previous datum. The purpose of this method is to high-
light the peak characteristics of the signal as clearly as possible.

2.4. Hilbert transform (HT) for signal decomposition

Hence the vibration signals are pre-treated via M-PH, and then
the signals are decomposed via Hilbert transform (HT) to extract
and reconstruct the feature spectra for distinguishing states. In or-
der to characterize the flaws from vibration signals, it is neces-
sary to acquire the signals by deliberately introducing defects in
the machines are considered. From the time domain analysis of
the signals, it is found that frequency is different for volumetric
and planar defect hence it is necessary to obtain the frequency
spectrum of the signals in order to analyze the flaws. Next step
is to identify an appropriate transform for converting the time do-
main into the frequency domain. From the literature, Fourier trans-
form is the highly reliable tool for converting a time domain signal
into a frequency domain. However as the ultrasonic test signals are
non-stationary in nature, frequency transform could not provide
the desired results. Hence Hilbert Transform is chosen for the anal-
ysis. Hilbert Transform performs the decomposition of the input
signal by removing the high-frequency components. These high-
frequency components are called Intrinsic Mode Function. This
process is repeated until the below condition is satisfied.

1. The number of local extreme of and the number of its zero-
crossings must either be equal or differ at most by one.

2. At any time t, the mean value of the “upper envelope” (deter-
mined by the local maxima) and the “lower envelope” (deter-
mined by the local minima) is zero. The HT transform steps are
as follows

The Hilbert transform is an important tool in constructing an-
alytic signals for various purposes, such as obtaining the envelope
of a signal in instantaneous frequency analysis, amplitude modu-
lation, signal démodulation, and many other domains. There are
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many ways to define the Hilbert transform meaningfully. Suppose
we have a signal x(t), the conventional Hilbert transform of a con-
tinuous signal x(t) is computed as

. 1 < X(7T)
x(t)_;Pv/_mt_Tdr (3)
where %(t)the Hilbert is transform and the Cauchy principle Value,
PV is taken in the integral.

The continuous Hilbert transform consists of a sr/2rad phase
shift (for positive frequencies only) in the frequency domain.T he
Fourier transform of the Hilbert transform is given by {28}

X (w) = —jsgn(w)X (w) (4)
where

J. forw =0
—jsgn(w) =1 0 forw=0

—j. forw <0

And X(w) is the Fourier transform of x(t). The discrete Hilbert
transform is developed as an exact equivalent of the Hilbert trans-
form for discrete domain sequences and is defined as [29]

X(n) = X(n)*h(n) (5)

where h(n) is the impulse response of the discrete Hilbert trans-
former.
2sin? (Z2)
h(n) = 7rn2 n#0
0 n=0
The transfer function of the discrete Hilbert transform is de-
fined as

[ J O<w<m
Hw)={0, w=0&w=m
—1J. T <w<0

The procedure to identify the components in the vibration sig-
nal spectrum related to the bearing faults relying on Hilbert trans-
formation is as follows

Step 1: Compute the Fourier Transform of the Vibration of sig-
nal in the time domain to isolate the resonance of the sys-
tem and to identify the largest harmonic component

Step 2: The vibration signal in the time domain is band-pass
filtered in order to obtain a reduced spectrum around the
largest harmonic component

Step 3: Compute the Hilbert transformation of the band-pass
filtered signal.

Step 4: Compute the Fourier Transform of the analytical signal
obtained through Hilbert transformation.

Hence the Feature selection process directly reduces the num-
ber of original features by selecting a subset of them that still that
still retains sufficient information for classification. Usually, a large
number of features often include many garbage features. Such fea-
tures are not only useless in classification, but also sometimes de-
grade the performance of a classifier which is designed by a fi-
nite number of training samples. In such a case short, removing
the garbage features can improve the classification accuracy.

2.5. Fault diagnosis using FNN

The features extracted from the vibration signals are used for
classification and determining the action. The extracted features
are given asan input signal to the FNN based classifier. The clas-
sifier based on the extracted features classifies the signals into
the following three classes: decreases steady and increases. The
design of FNN includes the development of the fuzzy rules that

have IF-THEN form. This is implemented by dint of optimal defi-
nition of the premise and consequent parts of fuzzy IF-THEN rules
for the classification system through training of fuzzy neural net-
works. In the paper, the Takagi-Sugeno-Kang (TSK) types of IF-
THEN rules that have a fuzzy antecedent and crisp consequent
parts are used. The TSK-type fuzzy systemn approximates the non-
linear system with linear systems and has the following form:

if x1 is the Ay and x; is Ay and ... and Xy 1S A (6)

m .
ThElej is Za,-jx,- +bj (7)
i=1

Here, x;and y;are input and output signals of the system, re-
spectively, i = 1, . .., m is the number of input signals, and
j = 1. ... ris the number of rules. A; are input fuzzy sets;
bjand gjare coefficients.

The structure of fuzzy neural networks used for the classifica-
tion of the vibration signal is based on TSK-type fuzzy rules. The
FNN consists of six layers. The first layer is used to distribute the
x; (i = 1, ..., m) input signals. The second layer includes mem-
bership functions. Here, each node represents one linguistic term.
Here, for each input signal entering the system, the membership
degree where input value belongs to a fuzzy set is calculated. In
the paper, the Gaussian membership function is used to describe
linguistic terms

("r"fu):
plix)y=e % Li=1,...,m j=1,...r (8)
where ¢; and o are centrethe and width of the Gaussian mem-
bership functions, respectively. (1;(x;) is membership function of
the ??th input variable for the jth term. m is a number of input
signals; r is a number of fuzzy rules (hidden neurons in the third
layer).

The third layer is a rule layer. Here, the number of nodes is
equal to the number of rules. Here, Ry,R;, .., Ry represents the
rules. The output signals of this layer are calculated using t-norm
min (AND) operation:

wix) =[Jut;). i=1,...m, j=1,....1, 9)
i

where ITis the min operation.

These ;(x)signals are input signals for the fifth layer.The fourth
layer is a consequent layer. It includes n linear systems. Here, the
values of rules output are determined as

m
yi= ) Xwij+b; (10
i=1

In the next fifth layer, the output signals of the third layer are
multiplied by the output signals of the fourth layer. The output of
jth node is calculated as
V1= pujx).y; (11)

In the sixth layer, the output signals of FNN are determined as

g = == (12)
Here, u are the output signals of FNN (?? = 1, .. ., ??). After

calculating the output signal, the training of the network starts.

Hence Roller bearing fault case for instance, there are classified
into early stage (spot flaw), middle stage (multiple localized de-
fects), and final stage (generalized defects). To handle this above
FNN classification using 10 fold cross validation approach is pro-
posed. Finally in the diagnostic procedure, SPs of the diagnostic
signal are calculated using the membership function and the state
of the bearing is determined using the IF-THEN rules obtained.
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2.5.1. Special SPs (SSPs)

The traditional time-domain SPs, such as peak value, RMS, crest
factor, kurtosis, and skewness, are typically utilized for condition
survey. However, they can only determine whether the bearing is
in a normal or faulty state, and cannot judge particular fault types.
Furthermore, because the SNR of the vibration signal is very small
and the fault features of low speed bearing are not significant,
other SPs must be found to detect the particular fault types. SPFO,
SPFR, and SPFI defined in {8) and (9) serve this purpose here, and
are applied to the fault type detection of low-speed bearings

F (M fx)

11N

if— == >T, then M=M+1 (13)

M MN
SPE =Y F(i.fe)/ D_F (14)
- —

where M is the high harmonic order of pass frequency used fo cal-
culate SSPs, and can be determined by using the threshold Ty as
shown in {8) and Fig. 3. fyrepresents the pass frequency of one
fault state; for example, fyrepresents the pass frequency of the
outer race fault. Tyrepresents the threshold to identify the fault
type when state x is identified, and set into 1.5 in this paper, as
shown in Fig. 3. N is the number of points between the i th peak
and the (i—1) th peak, Kify) is the amplitude of the enveloped
spectrum at the frequency ify, and Fj(f) represents the amplitude
of the enveloped spectrum at point j.

3. Experimental results

To verify the effectiveness of the proposed method, roller bear-
ing fault detection experiments were conducted using a low-speed
rotating machine with chain drive. Vibration signals were mea-
sured by an accelerometer located on top of the bearing hous-
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Fig. 4. Fault bearings used in the experiments. (a) IF fault, Small: 1.5 mm x 0.3 mm, Large: 2 mm x 0.3 mm, (b) OF fault, Small: 2.5 mm x 0.3 mm, Large: 4 mm x 0.5 mm,

(c) RF fault, Small: 2 mm x 0.3 mm, Large: 4 mm x 0.5 mm.
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Fig. 5. (a) Healthy Bearing's CWT plot.

ing. The SAS12SC accelerometer (Fuji Ceramics. Corporation) has
10.22 mv/ms~2 sensitivity in the measurement range from 5 Hz to
60 KHz. Bearing fault diagnosis focuses on the shape of the wave-
form and spectrum but not on acceleration value. No dimensional
parameters (SSPs) were introduced to reflect the feature of the ac-
celeration signals for the condition diagnosis. For this reason, in
this paper, the signal unit from the accelerometer was presented
in volts. In theory, roller bearing elements have their own specific
rotational frequencies that appear in the enveloped spectrum when
defects occur. These frequencies are referred to as defect frequen-
cies (also referred to as “pass frequencies”) [30]. The pass frequen-
cies used in the experiments are shown in Tabie 1. The literature
shows that upon fault of a roller bearing element, periodic pulses
will appear in vibration signals.

Table 1
Passing frequencies of experimental bearing faults in turbine
Processors generators.

States of roller bearing  Pass Frequency (Hz)

40 rpm 100 rpm 150 rpm
Outer Race Fault 3.2 8.5 129
IF Fault 4.9 119 17.9
Roller Fault 34 8.8 111

The time interval of these pulses corresponds to the character-
istic frequency. The pass frequencies of a defective bearing with
two or more faults (scratches) on the same element are similar to
those of a bearing with a single fault, but the characteristic param-
eters (e.g., RMS and kurtosis) increase as the bearing defects on
the same element increase |31}. Based on these results, the fault
detection of a bearing with a single fault is more difficult than
fault detection of a defective bearing with two or more faults on
the same element. In this paper, one fault per case was imposed
for diagnosing the low speed roller bearing fault at an early stage.
In all experiments, the sampling frequency was 100 kHz and the
shaft ran at fixed speeds of 40, 50, 60, 70, 100, 150, and 200 rpm,
respectively.

Four common bearing states were investigated: normal (N),
fault on the outer race (OF), fault on the inner race (IF), and fault
on the roller element (RF). The fault of each bearing is one line
imposed by a wire cutting machine to simulate an early stage of
fault. The imposed fault size was classified into “large” and “small”
categories as per their dimensions (width and depth), as shown in

Fig. 4.
3.1. Experimental results

A series of experiments was carried out to verify the effective-
ness and feasibility of this method. The vibration signals were col-

Beging

(a)

Fig. 6. Signal containing Inner Race Defects with different index of fault and its CWT plot.



»
1 =
By = O e ol T B ... = = = -
- [ m RTINS ' .
U a pmeids merniids w0 o B o o CTRE Ve e TR TR
ol 11101 e S ) it i e
R Lo womn Femints smes v mell™ = deonm
) GRS S SO S LR DL B
'l||"'“--l| ] = Ol N | B il | |
._.I‘l —" e Wl o oRE T A 'l_l .
JUERRELT R m RSl W EEEEE B OUCeR e LD
prpe e geye megg cuy ey gen  campgeegle g —— ‘ B
.‘II.‘II-IIIII_IIII‘II _IIIIh. " egun -uT
A IR D e s < e et y
- I BTSN TIS B SOl I LRSS Bl o8 e Rl R - IIII* Zmiien 1S 1En T e manme AT csmiiSe =N TH q
N - ] -r:_ ] “ll'li..l- M o 0 ' = - =’ ._
- Am - | - [T _1-.l-l =I8% = e LRSS peenm el - ”
. n CRaS e - g geEgeeE D EEe gEmpe g L W § ] Il Wil
- I.. . g . |-|-:-' e | —_ 1 -'u.:r = o -'I--'I_I- S Caass 'I'l'- .;-dl“
11 s =1 meamn 1 = | = e - = TE—
Pl b T T - o ol - . o=l MR s =SS Ce B mE MRS mLoo
B e 18 W ) - T : .lp# ol B M eell 1y B lmlal = S
- =3 i B TR o= S R R TERTRE B LR = St SR B l:i'
oh e B U e o o et e (s = |
! =i e 1 I e W RN RIS ey E W -|---| 1y
. . < o ek - -_:-Il.--=-i |ﬂ| n |
Viveenll e el o el Tt miee ! B[ " =l s e
0] ple= 0oy = i R o ""'-3“" N RS TR ILTIIHIJII—I
. | i

=i
I

S L S SR, T __|

- - g e o ﬂ—..ll o 4wl 4




L. Mubaraali, N. Kuppuswamy and R. Muthukumar/Microprocessors and Microsystems 76 (2020) 103079

¢ TeE c1 8!5 Z2 &3

e

(a) (b) (©

Fig. 7. Signal containing Outer race defect with different index of fault and its CWT plot.
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Fig. 8. Waveforms and enveloped spectra of the original signals at 40 rpm. (a) Normal state. (b) Inner race fault. (¢} Outer race fault. (d) Roller fault.
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Fig. 9. Waveforms and enveloped spectra of fault signals processed by SF. (a) Roller element fault. (b) Inner race fault. (c) Outer race fault.
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Fig. 10. Classification accuracy in processors with turbine generators.

lected from three different bearing conditions. Thirty data were
collected from each bearing condition. Each data contains n sam-
pling points. The n samples are pre-processed using CWT trans-
form to remove noises from the vibration signal.

3.1.1. Results of pre-processing

The CWT plots for waveforms of healthy bearing, faulty inner
race and outer races have been obtained using MATLAB and are
shown from Figs. 5.a to 7.c. The CWT coefficients computed as
above, form a matrix at the different scale and translation values;
the higher value of coefficients suggest a high correlation (simi-
larity) between the portion of the signal and that version of the
wavelet. The colors in the plot show the relative values of the CWT

coefficients. The light areas means higher values of the CWT coeffi-
cients and therefore, signal is very similar to the wavelet. Whereas,
dark area means lower values of the CWT coefficients and it shows
that the corresponding time and scale versions of the wavelet are
dissimilar to the signal.

The data for bearing fault conditions were acquired from differ-
ent loads. The time-domain plots and frequency plots of the raw
vibration signals are shown in Fig. 8.

The selecting discrimination index of the SF used for these ex-
periments was 1.25. The measured time of each sample was about
1.31 s (at 100-KHz sampling frequency), and the processing fre-
quency band interval of the SF was about 5 Hz. For represent-
ing the effectiveness of the SF, the normalized waveform and en-
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Table 2
Rule formation of FNN for 40 rpm.
S.no FNN Rules Faults
1 IF Peak<0.31 and RMS<0.00075 THEN Normal
2 IF Peak > 0.31 and RMS = 0. 00,075 THEN  SPFO
3 IF SPFO=14.5 THEN OF
4 IF SPFO < 14.5 THEN SPFR
5 IF SPFR>SPFI THEN RF
6 IF SPFR < SPH! IF
Table 3
Time-domain SPs in the Training Process.
No. State  Peak Value  RMS
1 N 0.1356 0.0002
2 N 0.0870 0.0003
3 N 0.0660 0.0003
4 IF 0.6180 0.0019
5 IF 0.6275 0.0016
6 IF 0.0629 0.0015
7 OF 1.2460 0.0013
8 OF 1.1475 0.0012
9 OF 1.1654 0.0012
10 RF 0.5847 0.0016
11 RF 0.4846 0.0017
12 RF 0.5333 0.0017
Table 4

Time-domain SPs in the Diagnosis process in turbine proces-
sors.

No. State  Peak Value RMS Recognised State
1 N 0.0900 0.0004 Normal

2 N 0.1200 0.0004 Normal

3 I 1.3812 0.0004  Normal

4 I 1.6621 0.0066 Fault

5 o] 14131 0.0036 Fault

6 0 1.2856 0.0030  Fault

7 R 0.7060 0.0025 Fault

8 R 0.7745 0.0027 Fault

veloped spectra of the fault signals processed by the SF are shown
in Fig. 9. The IF and RF waveforms became clearer after noises in
several frequency ranges were removed, as shown in Fig. 3(a) and
(b). In particular, the waveform of the processed OF fault signal ex-
hibited shock pulses at a regular interval, but the enveloped spec-
trum showed pass frequency and high-order harmonics with rela-
<ively strong noises, as shown in Fig. 5(c).

; Next, during the condition survey procedure, peak value, skew-
ness, kurtosis, and RMS SPs in the time domain were calculated
[31). The parameters (namely, peak value and RMS) of high diag-
nosis sensitivity were selected by the FNN as shown in Table 2,
which is obtained by the FNN were implemented in MATLAB. For
FNN Triangular-shaped membership functions are used for input
and output variables. The membership functions are selected on a
hit and trial basis with the aim of improving the classification ac-
curacy. ,

The rules established by the FNN for automatically detect-
ing fault states were peak value > 0.31 and RMS > 0.00075. In

L. Mubaraali, N. Kuppuswamy and R. Muthukumar/Microprocessors and Microsystems 76 (2020) 103079

the condition survey step of the diagnosing process, there were
two signal samples per state, The calculated SPs are shown in
1able 3 and Tabie 4. Under the conditions of peak value > 0.31 and
RMS > 0.00075, three signal samples were regarded as normal and
five were regarded as faulty. The diagnosis results were correct.
The comparisons are carried out by the classification tools
which can obtained on the internet based on MATLAB [53}, and the
result is shown in Table 5 and in Fig. 10. The performance of the
proposed method is compared with other diagnosis methods by
the experimental data for lowspeed bearing diagnosis. Signal sam-
ples from seven rotational speed categories are used. Fault bearings
with outer race fault, inner race fault and roller element fault were
used. Fault size is classified into “large” and “small” categories.

4. Conclusion

The fault detection of low-speed bearings is difficult to carry
out using traditional diagnostic methods for high and medium
speed bearings, so this paper has been conducted in an effort to
establish a new diagnostic method that can be applied to intelli-
gent diagnosis of low-speed bearings. SF, M-PH, and HT techniques
are combined to extract the weak features from the vibration sig-
nals contaminated by noises, while the FNN method was used to
produce rules for the automatic diagnosis. Special bearing diagnos-
tic SPs (SSPs) were newly defined for recognition of bearing fault
types, namely, SPFO, SPFR, and SPFL In order to verify the effi-
ciency of the proposed method, experiments were conducted on
four states of bearings: normal state, inner race fault, outer race
fault, and roller race fault at fixed rotational speeds of 40, 50, 60,
70, 100, 150, and 200 rpm. The results showed that as compared
with those of other methods, the proposed method is considerably
advantageous in terms of fault signal extraction and fault identifi-
cation of low-speed bearings. The false positive and false negative
rates are both 0% for distinguishing faulty state from normal state,
and the accuracy rate for distinguishing fault types is 98%.
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