
Received: 10 February 2022 Revised: 23 January 2023 Accepted: 25 January 2023

DOI: 10.1002/cpe.7672

R E S E A R C H A R T I C L E

A novel hybrid meta-heuristic-oriented latency sensitive cloud
object storage system

N. Nataraj R. V. Nataraj

Department of Information Technology,

Bannari Amman Institute of Technology,

Tamil Nadu, India

Correspondence

N. Nataraj, Department of Information

Technology, Bannari Amman Institute of

Technology, Tamil Nadu, India.

Email: n.nataraj08@gmail.com

Summary

Cloud providers must find out how to properly arrange data in a limited count of servers

while ensuring latency assurances to reduce total storage expenses. Timeout is also

important to consider because it has a substantial impact on response latency. The core

aim of this task is to implement a new cloud object storage system strategy that handles

challenges like “latency-sensitive data allocation, latency-sensitive data re-allocation,

and latency-sensitive workload consolidation.” The main contribution here is that dis-

tributing the latency of the cloud object storage system allows for better data allo-

cation, data reallocation, and workload consolidation. The primary aim is to use the

fewest number of servers feasible to fulfill all requests while maintaining their latency

requirements, lowering the overall data transmission cost. As a consequence, Whale

Butterfly Optimization Method (WBOA) is a novel hybrid meta-heuristic algorithm

that solves NP-hard problems by combining baseline advanced algorithms. The simu-

lation outcomes reveal that the offered paradigm consistently provides the greatest

outcomes regarding throughput utilization, lower latency, higher storage, and number

of used nodes when compared to competing techniques.

K E Y W O R D S

artificial intelligence, data allocation, data reallocation, latency sensitive cloud object storage

system, Whale butterfly optimization algorithm

1 INTRODUCTION

The data associated with the upper-tier services as well as applications are stored and managed by the CLOUD storage system. Modern

web-oriented applications rely heavily on cloud technologies like Open-Stack Swift1 and Amazon S3.2 Industrials construct and handle their

self-storage systems apart from the public cloud object storage systems, such as Facebook’s utilization of Haystack for stockpiling photos, LinkedIn’s

utilization of Ambry for retaining media objects, and Wikipedia’s utilization of OpenStack Swift clusters as media object-store locations for scal-

ability and efficiency.3 The cloud object storage system, as one of the most basic cloud services, stores as well as retrieves millions or billions of

different data objects (also known as blobs), such as images, videos, audio, documents, and so on.4 Furthermore, it may immediately service millions

of Internet users who are latency-sensitive.5 The traditional object storage systems, on the other hand, disperse data objects throughout the system

without taking into account the heterogeneity of supporting hardware or asymmetric connectivity patterns. Hybrid object storage technologies

enable business data centers to accomplish energy efficiency and performance at a low cost.6

Furthermore, millions of latency-sensitive Internet users may be served directly by the cloud object storage system.7 An analytic-oriented per-

formance method for the cloud object storage system based on the event-driven programming paradigm was created to better understand the link

between resource allocation and response latency distribution.8,9 In the case of a cloud object storage system, the response latency percentage

outperforms the average metrics for the below reasons.10 Initially, response latency is an important performance indicator for cloud object storage

Concurrency Computat Pract Exper. 2023;e7672. wileyonlinelibrary.com/journal/cpe © 2023 John Wiley & Sons, Ltd. 1 of 22
https://doi.org/10.1002/cpe.7672

https://orcid.org/0000-0002-1190-8140
http://wileyonlinelibrary.com/journal/CPE

2 of 22 NATARAJ and NATARAJ

systems because it has a significant influence on user experiences, which are linked to revenue.11 Next, even 1% of traffic equates to a large number

of user requests for cloud object storage systems.12 The waiting time contains a substantial influence on the cloud object storage system’s response

latency.13

The quality of latency information determines the usefulness of latency-driven approaches in enhancing application performance.14 A simple

method is to probe every delay that the program requires regularly.15 Continuous testing of pair-wise latencies is not practicable when the count

of nodes is extremely great,16 hence quite a technique stands to reason only in very small systems. Redirecting customers to their neighboring data

centers, for instance, would need Google maintaining latency statistics from practically every web client on the internet to each one of its data

centers.1 Furthermore, due to the highly dynamic nature of the Internet, newly recorded latencies are not necessarily a reliable indicator of their

contemporary equivalents, since one latency-measured value is often not a strong predictor of a similar measurement. These two issues necessitate

the development of accurate latency and scalable detection algorithms.17

The core improvements of this task are:

• To offer the latest methodology for cloud object storage systems focusing the problems like latency-sensitive data allocation and latency-sensitive

data re-allocation.

• To carry out the proper data allocation and data re-allocation by distributing the latency of the cloud object storage system.

• To utilize a lower count of a subset of servers in terms of the complete requests without violating their latency needs owing to this the total data

moving cost is not higher.

• To adopt the latest hybridized optimization algorithm called WBOA for deriving the objective functions of the data allocation and reallocation of

the considered latency-sensitive cloud object storage systems.

The leftover of this task is given below: Section 1 gives the introduction associated with cloud object storage systems. Section 2 provides the

conventional approaches to the recommended method. Section 3 offers the developed framework for the latency-sensitive cloud storage system.

The hybrid meta-heuristic-based latency-sensitive data allocation is given in Section 4. Section 5 gives the latency-sensitive data reallocation utilized

for the hybridized optimization algorithm. Section 6 visualizes the findings of the offered method. At last, the task is concluded in Section 7.

2 LITERATURE SURVEY

2.1 Related works

In 2019, Su et al.18 created a performance method for the cloud object storage system based on the assumption that no timeouts would occur. In the

setting of event-driven programming, sophisticated disc operations, and requests awaiting acceptance, this method forecasted the proportion of

requests fulfilling an SLA. Second, a mechanism was presented for determining if the model was appropriate by anticipating when timeouts would

occur. This method was tested on a real-world trace having a production system. It has decreased prediction errors by up to 90% in several cir-

cumstances when compared to baseline methods, and its overall average error was 2.63%. Furthermore, the method’s applicability was forecasted

precisely.

In 2021, Kou et al.19 developed a new node clustering approach based on graph convolutional networks (GCNs). It could use the excellent qual-

ity of pseudo clustering tags to self-supervise the training of node depictions by providing a self-supervision component. Furthermore, a latent

distribution preservation term was used to aid the latent models of the similar sample to attain a constant allocation in the original dimension

space and dimension space, as evaluated by KL divergence. The two above problems have been combined into a single optimization method.

When compared to conventional node clustering approaches, experimental findings on many public datasets showed that the approach was

successful.

In 2021, Arora et al.20 presented an intelligent hybrid disc storage system that was both energy efficient and intelligent. The suggested method

was able to detect recently accessed data from application traces. To allocate frequent records to hot discs and certain other files to cold discs, data

layout, and replica management were utilized. The request was carried out by an advanced arrangement mechanism that looked for and picked the

disc depending on its present status. The suggested system was deployed in the cloud environment by integrating disc management, which was

demonstrated to be extremely efficient for producing power savings.

In 2017, Wu et al.21 examined a variety of real-world company workloads and discovered that read and write requests were not spread

evenly among data objects. A biased object storage strategy (BOSS) was developed based on the findings, to decrease SSDs and increase the

efficiency of the system for hybrid OSS. Unlike traditional uniform and rigid data distribution systems, the BOSS could continuously migrate

and distribute data objects to several forms of devices based on online data access patterns. The BOSS could minimize 64% of writes on

NATARAJ and NATARAJ 3 of 22

SSDs and enhance the network efficiency by 29.51% on average while providing a degree of load balancing, according to the findings of the

experiments.

In 2019, Tao Shen and Yukari Nagai22 presented a technique for developing distributed cloud storage systems. Initially, the availabil-

ity of data must be evaluated in the study of the algorithmic model, which was produced in diverse contexts. Monte Carlo was an excel-

lent approach for document analysis since the estimation of data availability became extremely complex as the storage node grew. Its great

benefit was that it could minimize the complexities of the analysis framework simulation analysis. Next, while determining the best redun-

dancy allocation on every host was problematic, a particle Swarm optimization (PSO)-oriented allocation approach was presented. Further-

more, the key characteristic of this method in the evaluation of the data availability stage was that its redundancy index was quite low, which

improved the program’s effectiveness. The suggested strategy could minimize storage costs and data redundancy, according to experimental

outcomes.

In 2017, Baun et al.23 documented the creation and deployment of OSSperf, a lightweight software solution for investigating the effi-

ciency of object-oriented public cloud storage systems such as “Google Storage, Amazon S3, and Microsoft Azure Blob Storage, and private

cloud re-implementations.” This document also included a description of the tool’s outcome as well as a few lessons learned during development.

Distinct methodologies and current solutions for assessing the results of object-oriented storage services were assessed in this work,

and a novel solution dubbed OSSperf was implemented. This would cover a wide variety of private and public cloud services, as well

as their various APIs. It has also looked at the efficiency of the major significant elements of object-oriented storage systems, and

to mimic summaries with varying levels of usage, the tool has to offer a parallel mode of operation for object upload as well as

download.

In 2017, Yin et al.24 presented ASSER, an ASsembling chain of Erasure coding and Replication, as a unique storage system. The basic protocols

were used as a foundation. Across similar fault tolerance as well as consistency levels, ASSER surpassed pure erasure coding and N-way replication in

I/O throughput below a variety of workload and system configurations, demonstrating improved performance reliability. Most significantly, ASSER

provided consistently effective I/O efficiency at a far lower storage cost than its competitors.

In 2019, Mohammed25 established a unique approach to network latency estimate that, owing to its accuracy and effectiveness. To forecast the

amount of the end-to-end latency within any particular pair of nodes, a variety of machine learning approaches were applied, including traditional

linear regression, CNNs, and SVMs. The iConnect-Ubisoft and Ubique datasets were used to train as well as test the machine learning algorithms in

this system.

2.2 Review

As the primary cloud service, the cloud object storage systems store and retrieve a huge number of reading and heavy data objects. A huge count

of requests is served every day, which makes the response latency the major section of client experiences. The response latency suffered from

timeout problems owing to the lack of appropriate perception of the distribution. Numerous cloud object storage systems have been developed

in recent years, which have diverse superiorities and downsides as given in Table 1. Queuing theory18 efficiently predicts the applicability and

addressed the complexity of different disk operations, and improves the performance of the developed cloud object storage model. However, the

computation time of Queuing theory is low. GCN19 improves the performance with better clustering. Though, an insufficient distribution repre-

sentation affects the accuracy. The scheduling technique20 efficiently decreases the execution time and achieves better power savings. On the

other hand, the cost consumption of the developed model is more. The data placement strategy21 guarantees performance, durability, and avail-

ability. Conversely, this model suffers from little overhead. Monte Carlo and PSO22 reduce the storage cost and data redundancy and increase

the complexity of the analysis. However, sometimes, little observation is required for constructing the object cloud storage systems. OSSperf23

improves the performance of object-based cloud storage services. On the other hand, this model lacks implementation. MPL (Multiversional Par-

ity Logging)24 increases stability and efficient performance. This model does not establish the load balancing strategy. Linear regression, CNN,

and SVM25 efficiently predict the value of the end-to-end latency. Though, prediction approaches are affected by several challenges like net-

work latency, the size of the system, and poor performance. Therefore, there is a need of developing cloud object storage systems with latency

distribution.

3 DEVELOPED FRAMEWORK FOR LATENCY-SENSITIVE CLOUD STORAGE SYSTEM

3.1 Problem formulation

Suppose that a data chunk represents the fundamental data holding unit, with a size of c, and that it cannot be subdivided anymore. The

length of whatever data file e may be expressed in this situation as c ⋅ |e|, where |e| denotes the count of pieces that make up the file. For the

4 of 22 NATARAJ and NATARAJ

TA B L E 1 Superiorities and downsides of the existing cloud object storage systems.

Author [citation] Frameworks Superiorities Downsides

Su et al.18 Queuing theory • It efficiently predicts the applicability and

addressed the complexity of different

disk operations.

• It improves the efficiency of the offered

cloud object storage method.

• However, this method takes more time to

compute.

Kou et al.19 GCN • It improves performance with better clus-

tering.

• Though an insufficient distribution repre-

sentation affects the accuracy.

Arora et al.20 scheduling technique • It efficiently decreases the execution

time.

• It achieves better power savings.

• On the other hand, the cost consumption

of the developed model is more.

Wu et al.21 data placement

strategy

• It guarantees performance, durability,

and availability.

• Conversely, this model suffers from little

overhead.

Tao Shen and Yukari Nagai22 Monte Carlo and PSO • It reduces storage costs and data redun-

dancy.

• It increases the complexity of the analysis.

• However, sometimes, little observation

is required for constructing the object

cloud storage systems.

Baun et al.23 OSSperf • It improves the efficiency of object-based

cloud storage services.

• This model lacks implementation.

Yin et al.24 MPL (Multiversional

Parity Logging)

• It increases stability and efficient perfor-

mance.

• This model does not establish the load

balancing strategy.

Mohammed25 linear regression,

CNN, and SVM

• It efficiently predicts the value of the

end-to-end latency.

• Though prediction approaches are

affected by several challenges like net-

work latency, the size of the system, and

poor performance.

sake of simplicity, consider a single information document that can save on only one server and that cannot be split up and saved on several

servers.

A heterogeneous cloud storage system with a group of |T| servers T is considered. M(t) defines the maximum feasible I/O rates or high work-

load without deteriorating efficiency for a certain server t ∈ T in the cloud storage system, and D(t) specifies the storage limit. Assume that there

exist h different data accesses I/O rates, where b1, b2, · · · , bh. The data access (PUT or GET) time is assumed to follow a predefined distribu-

tion. As a result, the Cumulative Density Function (CDF) gc
t (y) shows the likelihood of retrieving one data chunk in the most y time units. The

CDF is in some ways based on the server load underneath the server’s maximum workload, although it has not altered considerably, for example,

as the server load grows, the latency may be a little greater. To address this problem, the “conservative” CDF is only used when the server’s

workload is near its maximum, that is, when the latency distribution function’s “upper bound” is reached. By doing so, (1) the latency restric-

tion may be ensured to the greatest extent possible, with the minimum server utilization cost. (2) The issue of complexity is much decreased;

alternatively, delay probability functions are required for various levels of server load. A variable “session” refers to a single GET/PUT thread or

procedure that distributes a request of data from an information document on one server to the other user’s end. Multiple periods can be cre-

ated in this scenario to supply one or multiple data requests on a single server (namely, t); however, the average absorbed I/O rates should not

surpass M(t).
The term U denotes the requested data access time for a data file e with size |e|, 𝛿 denotes the requested probability of recovering e under time

U, and 𝛼 denotes the requested I/O rate for a data request s(e,U, 𝛿, 𝛼). Assume that l servers (replicas) have been issued s and that Ot sessions have

been formed on the server t. Let us call the chance of accessing e the server t during time y as ge
t (y). As a result, the overall chance of reaching e inside

U is shown in Equation (1).

1 −
l∏

t=1

(
1 − ge

t (U)
)Ot

. (1)

The above equation
(

1 − ge
t (U)

)Ot shows the failed distribution of accessing E during the time U on the server t for Ot sessions and
l∏

t=1

(
1 − ge

t (U)
)Ot

describes the failed probability of accessing E during the time U on l servers for the entire respective sessions. As a consequence, the chance that

one period on one server may activate E during time U is 1 −
l∏

t=1

(
1 − ge

t (U)
)Ot

NATARAJ and NATARAJ 5 of 22

Let us look at an example where there is no discrimination between GET and PUT for the sake of simplicity. Assume there are two servers like B

and C, and the following are their probability density functions (PDF) for acquiring a data file e(|e| = 20Gb)during the time y (in ms) as in Equation (2).

ge
B(y) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

0.9 ∶ y ≤ 10

0.05 ∶ 10 < y ≤ 15

0.05 ∶ y > 15

, ge
C(y) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

0.75 ∶ y ≤ 6

0.2 ∶ 6 < y ≤ 10

0.05 ∶ y > 10

. (2)

Initiate by assuming that the server B contains 100 GB of storage and a server load of 60 Mb/s, whereas the server C contains 120 GB of storage

and a server load of 70 Mb/s. Assume a request s is received to retrieve a data file e at a rate of 𝛼 = 50 Mb∕s, U = 10 ms, and 𝛿 = 0.995. As per

their PDFs, putting e it on the server B alone can ensure a probability of 0.9 having a latency of no less than 10 ms, while putting e it on the server

e(|e| = 20Gb) alone can ensure a probability of 0.95 having a delay of no more than 10 milliseconds. As every server can only have one session

(either 60<2.50 = 100 or 70<2.50 = 100), installing E on either server B or C will not meet the demand 𝛿. Figure 1 illustrates that sequentially

placing e on both B and C results in a probability of 1-(1–0.9) (1–0.95) = 0.995 having a delay of no more than 10 ms, which meets the necessary

probability.

Take the issue in which every server may handle several data access sessions at the same time. As CDF gc
t (y) is dependent on server t

latency performance in the past, it already accounts for the case in which numerous sessions use shared resources like buffers on a simi-

lar server. As a result, every session on the server B may explicitly guarantee a probability of at least 0.9 of retrieving the data file during

time 10. Equation (1) remains true in this scenario when numerous sessions are to be formed on the same server. Let us pretend that both

servers B and C contain a 180 Mb/s available server load. In this case, there is no requirement to put e on two servers to meet the neces-

sary latency probability. Alternatively, the request may be sent with only one copy saved on any server, but there is a need to create multiple

sessions. For example, on the server B, three sessions are required to accept the request concurrently as in Figure 2A, because the odds of

utilizing two and three sessions are 1 − (1 − 0.9)2 = 0.99 < 𝛿 and 1 − (1 − 0.9)33 > 𝛿. On the server C, two periods are required (as illustrated

in Figure 2B), since 1 − (1 − 0.95)2 = 0.99759975 > 𝛿. It can be seen from the preceding example that to meet the latency probability limi-

tation, several sessions from separate data copies/locations or the similar data positions are often required. This last case can save a lot of

storage space.

F I G U R E 1 Data file placement on two servers by one session on every server to fulfill accessing data latency probability.

6 of 22 NATARAJ and NATARAJ

F I G U R E 2 Data file placement on a single server by multiple sessions to fulfill accessing data latency probability.

The first optimization objective of this work is the data allocation concentrates on the active server minimization with the help of the recom-

mended WBOA method. The second optimization objective of the data reallocation is to decrease the number of running servers by reallocating

data to underutilized servers using the offered WBOA method.

3.2 Data allocation model

Cloud computing represents a popular computing approach because it permits on-demand resource provisioning. The fundamental of meeting

unforeseen needs and optimizing the return on investment from the cloud infrastructure defines a technique of resource allocation as well as

NATARAJ and NATARAJ 7 of 22

reallocation. Data allocation is the method of assigning an available resource to client-hosted apps in the cloud. The services will starve if the

resources are not allocated and handled effectively. The resource provisioning manager tackles the problem by allowing the service provider to allo-

cate resources for every discrete component with the help of a variety of resource allocation strategies. When distributing resources for incoming

requests, how the resources are designed is critical. The services that a cloud may offer for developers can be abstracted at several layers, and vari-

ous factors can be optimized throughout allocation. In most cases, resources can be shared across several customers in a data center and should be

constantly allocated and changed to meet demand.

It is vital to realize that clients, as well as developers, may perceive those limiting resources as limitless, and the allocation schedule is the tool

that will allow them to do so. The allocation schedule should respond to these erratic demands flexibly and openly. This flexibility should permit the

dynamic utilization of physical resources, preventing both under and over-provisioning. Here, the data allocation focuses on active server minimiza-

tion as the objective, which is done by the proposed WBOA. The diagrammatic model of the data allocation for the latency-sensitive cloud object

storage systems is shown in Figure 3.

F I G U R E 3 Data allocation of latency sensitive cloud object storage systems.

8 of 22 NATARAJ and NATARAJ

3.3 Objective model for data allocation

A precise solution is presented to the data allocation problems. It begins with some basic notations and variables as follows. The group of the

requested data records is shown byΔ, the group of requests is shown by S(U, e, 𝛼, 𝛿), the group of data records cached in the previous servers Tf , in

which Tf ⊆ T is shown byΔf , the group of servers are shown by T, CDF of server t for accessing data having a size e for I/O rate𝛼 is shown by CDFe,𝛼
t (y),

maximum workload as well as storage limit of server t, in which t ∈ T is shown by M(t) and D(t), Boolean array value representing whether the server

t ∈ T has stored data file e already is shown by B[t][e], maximum session count for establishing on the server t ∈ T for a single request is shown by Ot,

a Boolean value representing whether data e ∈ Δ is stored in the server t ∈ T is shown by Ze
t , and a Boolean value representing whether the request

s is stored by locating its requested data e on the server t and is served by jth session is shown by Qs
t,j

. Thus, the objective of data allocation is shown

in Equation (3). This reduces the overall count of servers utilized. For example, the greatest value Ze
t is computed for the server t ∈ T, and if Ze

t = 1

for some e ∈ Δ, it is known that the server t is being used to store data e. Then, for every server t ∈ T, the total of max
e∈E

Ze
t is considered, and strive to

minimize this result.

fit1 = arg min
∑

t∈T

max
e∈E

Ze
t . (3)

The various constraints utilized are shown below. The data request time probability constraint is shown in Equation (4). Equation (4) assures

that the chance of accessing data e during time U is at least 𝛿 for every request s(U, e, 𝛼, 𝛿). Qs
t,j
⋅ CDF|e|,𝛼

t (U) specifies the probability of accessing E

the server t during time U by creating the jth session. In this view, Equation (4) shows that at least one session on every server t ∈ T has a chance of

accessing E during the time U no less than 𝛿 by putting into consideration all Ot potential sessions on every server t ∈ T.

1 −
∏

t∈T

Ot∏

j=1

(

1 − Qs
t,j ⋅ CDF|e|,𝛼

t (U)
)

≥ 𝛿∀s(U, e, 𝛼, 𝛿) ∈ S. (4)

The I/O rate constraint is shown in Equation (5). Equation (5) assures that every server’s t ∈ T maximum workload is not exceeded by the total

consumed I/O rates.

∑

U(U,e,𝛼,𝛿)∈S

O∑

j=1

QU
t,j ⋅ 𝛼 ≤ M(t) ∀t ∈ T. (5)

The data allocation is described on a particular server as in Equation (10). Whether a data file e ∈ Δ is stored on the server t ∈ T is determined

by Equation (6).

Zt
e′ = max

1≤j≤O,s∈S
Qs

t,j ∀e′ ∈ Δ, t ∈ T,where s ⋅ e = e′. (6)

The server capacity constraint is shown in Equation (7). It assures that every server’s storage limit is not exceeded.

∑

e∈Δ
Zt

e ⋅ |e| ≤ D(t) ∀t ∈ T. (7)

The server allocation constraint is shown in Equation (8). Equation (8) assures that the server that contains the previous data file is employed

first to fulfill the request.

B[t][e] ⋅ Ze
t ≥ Ze

t′ ∀e ∈ Δf , t ∈ Tf , t′ ∈ T∖Tf . (8)

When the existing loaded servers Tf are insufficient to issue the requests, Equation (3) assures that the servers Tf are initially allocated to handle

as many more requests as feasible. Equations (3)–(7) will then allocate (minimum) fresh empty servers to handle the remaining requests. When the

traffic requests may be provided by fewer than |
|Tf

|
| servers, Equation (8) assures that some of the current ||Tf

|
| servers are assigned to service the

entire requests and that the variable Z[e][t] for the other servers Tf is set to 0. If the above conditions are not satisfied under the data allocation

phase, then a high penalty will be added to the fitness to avoid that solution.

3.4 Proposed model

The cloud object storage system, representing a core cloud service, saves and recovers millions, if not billions, of read-heavy data items. Due

to the large number of requests received every day, response latency is an important part of the user experience. Timeout is also an important

NATARAJ and NATARAJ 9 of 22

consideration because it contains a noteworthy influence on response latency. The present system is to overprovision resources to satisfy a

service-level agreement (SLA) on response latency owing to a lack of accurate consideration of the prevalence of response latency and the fre-

quency of timeouts. Modern web-oriented applications rely heavily on cloud object storage technologies such as OpenStack Swift and Amazon S3.

Industrials create and manage their self-object storage systems apart from the public cloud object storage systems. For example, “Facebook uti-

lizes Haystack for archiving photos, LinkedIn employs Ambry for retaining media objects, and Wikipedia utilizes OpenStack Swift clusters as media

object stores for effectiveness and scalability.” The hybrid meta-heuristic-based cloud object storage model is the basic cloud service, that saves and

recovers even billions or millions of different data objects (also known as blobs), such as videos, images, documents, audio, and so on. Furthermore,

the hybrid meta-heuristic-based cloud object storage model may instantly service millions of latency-sensitive Internet users. Cost efficiency is one

of the key challenges for a hybrid meta-heuristic-based cloud object storage model, given the enormous amount of data objects and the long tail

data access dispersal. Attaining cost efficiency requires a verified performance measure of the hybrid meta-heuristic-based cloud object storage

model, which serves as the foundation for capacity planning. Data allocation in cloud computing is the technique of assigning available resources to

required cloud benefits via the internet. If resource allocation is not managed precisely, services are starved. The reallocation of resources from less

competitive to more key activities is a second key source of productivity improvement. The architecture of the introduced latency-sensitive cloud

object storage system model is given in Figure 4.

This architecture provides a new approach for cloud object storage systems that address issues such as “latency-sensitive data allocation,

latency-sensitive data re-allocation, and latency-sensitive workload consolidation.” The primary contribution here is that effective data allocation,

F I G U R E 4 Proposed architecture for latency-sensitive cloud storage system.

10 of 22 NATARAJ and NATARAJ

data reallocation, and workload consolidation are performed by dispersing the latency of the hybrid meta-heuristic-based cloud object storage

model. The main goal is to employ the smallest count of servers possible to fulfill the entire requests without breaking their latency needs so that

the overall data transfer cost is kept low. As both are NP-hard issues, this is done by introducing a unique hybridized optimization algorithm termed

WBOA. The data allocation focuses on the reduction of active servers as the objective function, while the data reallocation is concerned with the

reduction of makespan and energy.

4 HYBRID META-HEURISTIC-BASED LATENCY-SENSITIVE DATA ALLOCATION

4.1 Proposed WBOA

The proposed WBOA is used for enhancing the data allocation and the data reallocation phases of the proposed cloud storage system. BOA26

describes the features of the butterfly’s food gathering. The optimization is carried out by the BOA’s butterfly candidates. A lower-intensity fra-

grance is generated by the butterfly. Its fitness is linked to its intensity. The gain in fitness is due to the butterfly’s movement. As the aroma travels such

great distances, other butterflies may sense it, permitting them to share personal information. When a butterfly discovers the fragrance of other

butterflies, it embarks on a worldwide hunt. The BOA shows several advantages such as handling a wider range of optimization problems, solving

real-world problems, etc. but, it limits by drawbacks like it cannot handle combinatorial problems, cannot handle discrete as well as multi-objective

issues, etc. thus, to avoid these drawbacks, WOA is merged into it and the resulting algorithm27,28 is considered as WBOA. This WBOA shows

advantages like lessening computation time, handling multi-objective optimization problems, etc.

The WOA29 is a humpback whale-like creature. The bubble-net hunting approach is used to inspire it. “Bubble-net feeding is a unique activity

seen only in humpback whales. The spiral bubble-net feeding technique is mathematically used to optimize it.” In the proposed WBOA, the algorithm

is modeled by two constants a and b based on the fitness procedure as in Equations (9) and (10).

a = |worstfit − fit(i)|. (9)

b = |fit(i) − bestfit|. (10)

In the above equations, the fitness is shown by fit(i), the best fitness is shown by bestfit, and worst fitness is shown by worstfit, respectively. Next,

the condition a > b is checked. If this condition is satisfied, then the spiral upgrading location of WOA is as in Equation (11).

⃗Y(u + 1) =
⎧
⎪
⎨
⎪
⎩

⃗Y
∗
(u) − ⃗B ⋅ ⃗D if q < 0.5

⃗D′ ⋅ ecm ⋅ cos(2𝜋m) + ⃗Y
∗
(u) if q ≥ 0.5

, (11)

Here, the random number is shown by q, ⃗D′ = |
|
|
⃗Y
∗
(u) − ⃗Y(u)||

|
shows the length of the jth whale to the prey, ⃗B defines the coefficient vector, the

position vector of the best solution is shown by Y∗, the current iteration is shown by u, the position vector is shown by ⃗Y, element-by-element

multiplication is shown by ⋅, c defines a constant, and m defines a random number, respectively.

Otherwise, if a ≤ b, then the updates are carried out during the global search stage of BOA as in Equation (12).

Yu+1
j = Yu

j +
(

s2 × h∗ − yu
j

)

× gj. (12)

The solution vector is shown by Yu
j

for Yj for the jth butterfly in u iteration. The current best solution is shown by h∗, the random number

is shown by s, and the fragrance is shown by gj, respectively (Figure 5). The pseudo-code of WBOA is shown in Algorithm 1 and its flowchart is

in Figure 5.

Algorithm 1. Proposed WBOA

Start

Population and parameter initialization

Compute Fitness Function

Describe index i and population size as Npop

For u → 1 to umax

NATARAJ and NATARAJ 11 of 22

For i → 1 to Npop

Determine a and b by novel equations as in Equations (9) and (10)

If a > b

Update by the spiral updating position of WOA as in Equation (11)

else

Upgrade by the global search stage of BOA as in Equation (12)

End if

End for

End for

Stop

5 LATENCY-SENSITIVE DATA REALLOCATION USING THE HYBRIDIZED META-HEURISTIC
ALGORITHM

5.1 Data reallocation model

From the standpoint of the providers, the most important problem to address is maximizing usage while lowering essential costs. “Deciding what,

how many, where, and when to make a possible resource to a user” is known as resource reallocation. Users typically choose the kind and quantity

of resource containers they want, and providers subsequently install the containers on nodes in their data centers. The kind of resource container

should be adequately suited to the workload characteristics, and the amount should be essential to satisfy the limitations, that is, the task must be

done before the deadline. It’s equally vital to evaluate whether to make such modifications “in an elastic environment like the cloud, where users

might request or return resources dynamically”. The total reallocation procedure may be done by using a co-allocation and systematic allocation

approach to reallocate the data that is available in the system.

Begin

Population and
parameter initialization

Fitness calculation

for u 1 to umax

Determine a and b
by novel equations

if
a>b

Spiral updating position
of WOA update

No Yes

u=u+1

Stop

Global search phase
of BOA update

F I G U R E 5 Flow diagram of offered WBOA.

12 of 22 NATARAJ and NATARAJ

F I G U R E 6 Data reallocation of latency sensitive cloud object storage systems.

The goal of the data reallocation is to reduce the number of running servers by reallocating data to underutilized servers, which is done with the

WBOA. The data are transported to the server utilizing WBOA-assisted techniques. New techniques are developed, and data reallocation perfor-

mance is improved by reducing the makespan and energy usage. As a result, after data allocation, the overloaded data in every server are taken for

data reallocation and then relocated to the underloaded servers utilizing WBOA, therefore improving task completion efficiency in the cloud sec-

tor, thus reducing latency. If the energy and makespan are not minimized for deriving the objective function for the data reallocation, then a penalty

will be added. The diagrammatic representation of the data reallocation for the latency-sensitive cloud object storage systems is shown in Figure 6.

5.2 Solution optimization for data reallocation

Figure 7 shows the solution encoding of the data reallocation model using WBOA. The count of overloaded data files is 1 to the count of underloaded

servers, and the count of servers is 1 to the count of underloaded servers. Furthermore, the solution length may be adjusted based on the results of

trials with the count of overloaded servers and underloaded servers.

5.3 Objective model for data reallocation

The second major goal of this suggested cloud computing paradigm is data reallocation to degrade the makespan MT and energy consumption Eo of

the cloud storage system, which is accomplished via WBOA, which is given in Equation (13).

fit2 = arg min
{N1 …NN T1 … TT}

(MT + Eo). (13)

NATARAJ and NATARAJ 13 of 22

F I G U R E 7 Solution encoding of data reallocation model using WBOA.

After executing the entire tasks, terminating servers, and hosts, the sum of energy spent by the hosts computing the entire tasks in

the data center for a particular session will describe the data center energy consumption Eo, where energy consumption is obtained in

Equation (14).

Eo =
∫k

PQ(zt(k)). (14)

As seen in zt(k), CPU use represents a function of time. It is well understood that CPU utilization is proportional to the amount of power

consumed by servers. The power is also taken by an active but idle server; therefore, the power model is written as Equation (15).

PQ(zt) = l ⋅ PQmax + (1 − m) ⋅ PQmax ⋅ 𝜉. (15)

In the above equation, the server’s CPU utilization 𝜉 is indicated as 𝜉 ∈ [0,1], the proportion of power spent in an inactive state is indicated as

m, and the maximum power utilized by a fully loaded server is defined as PQmax. This study aims to lower the count of lively servers to save energy by

reducing the amount of energy consumed by the inactive state. The makespan MT is calculated using the memory and bandwidth needed for data

reallocation as outlined in Equation (16).

MTtn =
MFn

BXn
. (16)

In Equation (21), the available network bandwidth is denoted by BXn; the amount of memory used by VNn is denoted by MFn; and the time needed

to complete the reallocation is denoted by MTtn.

6 RESULTS

6.1 Experimental evaluation

The designed WBOA data allocation and reallocation in latency-sensitive cloud object storage systems were implemented in MATLAB 2020a and

CloudSim, and a simulation study was conducted. Through the analysis of distinct constraints, the performance of the suggested method was com-

pared to that of traditional models such as PSO,30 GWO,31 WOA,29 and BOA.26 Furthermore, the tests were carried out with a population of 10 and

maximum iterations of 100. Each experiment in the designed method is run 10 times. The introduced model was carried out by considering various

tests based on the number of files and servers, as given in Table 2.

6.2 Convergence validation on data allocation

The convergence validation of the suggested data allocation on latency-sensitive cloud object storage systems is represented in Figure 8

when the average of servers is 100 and the average of files is 500, 160 and the count of files is 800, 200, and the count of files

14 of 22 NATARAJ and NATARAJ

TA B L E 2 Experimentation description for the introduced model.

Experiments Number of servers Number of files

1 100 500

2 120 600

3 140 700

4 160 800

5 180 900

6 200 1000

7 220 1100

8 240 1200

9 260 1300

10 280 1400

F I G U R E 8 Convergence validation of the offered data allocation in latency-sensitive cloud object storage systems with consideration of “(A)
No of servers as 100 and No of files as 500, (B) No of servers as 160 and No of files as 800, and (C) No of servers as 200 and No of files as 1000.”

NATARAJ and NATARAJ 15 of 22

is 1000. Over early iterations, the cost function of the offered method is reduced and tested with alternative techniques, demon-

strating the improved efficiency of the data allocation. From Figure 8A, at the 20th iteration, the cost function of WBOA is 8.93%,

27.12%, 22.85%, and 18.03% better than PSO, GWO, WOA, and BOA. While taking Figure 8B, at the 60th iteration, the cost func-

tion of WBOA is 46.47%, 31.04%, 31.16%, and 37.8% more advanced than PSO, GWO, WOA, and BOA. Based on this efficiency

improvement, the designed and existing approaches have been arranged as WBOA, GWO, WOA, BOA, and PSO by computing the

cost function values. As a result, when compared to various current methodologies, the created data allocation model outperforms

them all.

6.3 Convergence analysis on data reallocation

As shown in Figure 9, the convergence behavior of data reallocation in latency-sensitive cloud object storage systems utilizing WBOA is

examined in various situations. In Figure 9 B, at the 90th iteration, the cost function of WBOA is 96.61%, 95.34%, 93.33%, and 90.90%

higher than PSO, GWO, WOA, and BOA. While taking Figure 9C, at the 80th iteration, the cost function of WBOA is 96.71%, 95.01%,

94.48%, and 91.95% more than PSO, GWO, WOA, and BOA. While analyzing the performance enhancement of the offered and baseline

techniques has been ordered as WBOA, BOA, WOA, GWO, and PSO using the computation of cost function values. As a result, the con-

vergence of the recommended data reallocation by WBOA has demonstrated that the suggested model is more efficient than previous

approaches.

F I G U R E 9 Convergence validation of the offered data reallocation in latency-sensitive cloud object storage systems with consideration of
(A) no of servers as 100 and no of files as 500, (B) no of servers as 160 and no of files as 800, and (C) no of servers as 200 and no of files as 1000.

16 of 22 NATARAJ and NATARAJ

F I G U R E 10 Average CPU utilization analysis for the suggested data allocation and reallocation strategy in latency-sensitive cloud object
storage systems through altering the experiments.

F I G U R E 11 Average memory utilization analysis for the suggested data allocation and reallocation strategy in latency-sensitive cloud object
storage systems through altering the experiments.

6.4 CPU Utilization analysis

Figure 10 shows the CPU usage performance for the proposed data allocation and data reallocation. While running various trials, the WBOA shows

less CPU utilization than the existing methods. In the fourth experiment, the average CPU utilization of WBOA is 14.81%, 13.37%, 11.53%, and

11.53% surpassing PSO, GWO, WOA, and BOA, respectively. As a result, the designed WBOA is more efficient than traditional approaches for data

allocation and reallocation.

6.5 Memory utilization analysis

Various trials, as shown in Figure 11, confirm the performance of the established data allocation and reallocation method in latency-sensitive

cloud object storage systems concerning average memory use. In the 6th experiment, the memory utilization of WBOA is 9.5%, 13.8%, 11.6%, and

13.8% more progressed than PSO, GWO, WOA, and BOA, respectively. As a result, when compared to conventional techniques, the developed data

allocation and reallocation approach improves performance in terms of average memory use.

6.6 Makespan analysis

As shown in Figure 12, the proposed model was studied concerning makespan to indicate the resource use of data allocation and reallocation.

From Figure 12A, in the 9th experiment, the makespan of WBOA is 90.49%, 89.55%, 93.84%, and 70.42% higher than PSO, GWO, WOA, and BOA

NATARAJ and NATARAJ 17 of 22

F I G U R E 12 Makespan analysis for the suggested data allocation and reallocation strategy in latency-sensitive cloud object storage systems
by WBOA through altering (A) experiments and (B) the number of data reallocation.

respectively. Similarly, in Figure 12B, when 10 data are taken for reallocation, the makespan of WBOA is 22.22%, 17.64%, 12.5%, and 6.6% improved

than PSO, GWO, WOA, and BOA, respectively. The developed WBOA enables greater resource usage concerning makespan.

6.7 Evaluation of data allocation

Table 3 shows the evaluation of the recommended data allocation concerning the “number of servers, cost function, and computation time.” In exper-

iment 5, the cost function of WBOA is 54.64%, 47.66%, 2.15%, and 66.37% improved than BOA, WOA, GWO, and PSO, respectively. The computation

time of WBOA is 9.43%, 1.73%, 1.42%, and 1.62% surpassed that of BOA, WOA, GWO, and PSO, respectively. Table 4 also includes a statistical eval-

uation of the offered data allocation model, which is necessary owing to the stochastic nature of optimization-oriented algorithms. “Measures like

best, worst, mean, median, and standard deviation” are used. The mean is “the average value of the best and worst values, the median is the center

point of the best and worst values, and the standard deviation is the degree of variation between every execution.” In the 6th experiment, the mean

of WBOA is 4.54%, 11.67%, 40.51%, and 22.78% more than BOA, WOA, GWO, and PSO respectively. As a result of the recommended model, the

performance of both data allocation and reallocation utilizing the WBOA has improved.

6.8 Comparative analysis of data reallocation

Tables 5 and 6 depict the comparative and statistical analysis of the data reallocation under various constraints. The superiority of the offered

method employing WBOA has been demonstrated in comparison to other traditional methodologies.

18 of 22 NATARAJ and NATARAJ

TA B L E 3 Performance analysis of the suggested data allocation strategy in latency-sensitive cloud object storage systems by WBOA
algorithm with distinct techniques for Experiment 1.

PSO30 GWO31 WOA29

Description

No.of

servers

No. of data

files stored

No. of active

servers

Cost

Function

Computation

Time

No.of active

servers

Cost

Function

Computation

Time

No.of active

servers

Cost

Function

Computation

Time

Experiment 1 100 500 98 1181.4 1.6019 100 1106.9 1.5235 100 1339.4 1.3912

Experiment 2 120 600 119 1054.3 3.7681 120 1473.1 3.4328 119 1014.7 3.2788

Experiment 3 140 700 140 1030.4 4.6044 140 372.61 4.5368 139 1424.4 4.348

Experiment 4 160 800 158 827.68 5.6724 159 789.18 5.063 160 1320.7 4.7842

Experiment 5 180 900 179 340.83 6.5805 179 1434.1 5.9866 180 699.52 5.8551

Experiment 6 200 1000 200 1189.7 9.0153 197 2218.9 8.7352 199 1758.5 8.575

Experiment 7 220 1100 218 2161.5 10.223 217 1350.2 10.126 219 2130 10.045

Experiment 8 240 1200 238 2099 10.772 240 2398.2 10.725 238 2624 10.559

Experiment 9 260 1300 257 1337.4 11.86 259 2342.7 11.473 255 1567.8 11.022

Experiment 10 280 1400 277 2655 13.015 277 1916.7 12.83 275 3360.7 12.757

BOA26 Proposed WBOA

Description

No. of active

servers

No. of data

files stored

No. of active

servers

Cost

function

Computation

time

No.of active

servers

Cost

function

Computation

time

Experiment 1 100 500 99 1469.2 1.3501 99 1064.5 1.2834

Experiment 2 120 600 119 497.5 3.1861 118 1112 3.1696

Experiment 3 140 700 139 1483.6 4.0257 138 750 3.7869

Experiment 4 160 800 160 1617.3 4.6998 160 866.56 4.6394

Experiment 5 180 900 180 843.57 5.8511 180 1143.6 5.7387

Experiment 6 200 1000 197 1533.5 8.0698 199 1482.5 8.0392

Experiment 7 220 1100 218 1632 10.023 220 2254.2 9.4455

Experiment 8 240 1200 237 3353.2 10.531 238 3087.2 10.37

Experiment 9 260 1300 255 1171.5 10.965 255 1801.7 10.811

Experiment 10 280 1400 279 1557.2 12.055 276 4134.5 12.023

TA B L E 4 Statistical analysis of the suggested data allocation strategy in latency-sensitive cloud object storage systems with distinct
techniques for Experiment 2.

PSO30 GWO31 WOA29

Description Experiment 1 Experiment 4 Experiment 6 Experiment 1 Experiment 4 Experiment 6 Experiment 1 Experiment 4 Experiment 6

Best 98.046 160.56 387.18 96.27 159.56 200.4 96.27 158.62 235.98

Worst 280.97 550.11 912.83 100.5 356.17 744.53 101.37 338.56 888.94

Mean 145.45 337.05 608.91 98.709 234.88 422.44 99.691 226.31 533.12

Median 101.21 318 628.81 99.334 160.56 388.38 100.05 159.56 372.24

Standard deviation 78.672 151.17 202.32 1.6978 102.44 201.62 2.002 92.33 298.8

BOA26 Proposed WBOA

Description Experiment 1 Experiment 4 Experiment 6 Experiment 1 Experiment 4 Experiment 6

Best 97 158 266.9 33,158 64,743 79,818

Worst 254.27 576.9 660 43,119 70,588 85,784

Mean 142.16 430.11 453.2 38,705 67,544 84,176

Median 99.27 510.73 467.68 40,914 67,560 84,758

Standard deviation 68.497 179.78 143.56 4276.8 2572.7 2488.9

NATARAJ and NATARAJ 19 of 22

TA B L E 5 Performance analysis of the introduced data reallocation strategy in latency-sensitive cloud object storage systems with distinct
algorithms for Experiment 1.

PSO30 GWO31 WOA29

Description

No.of

servers

No. of data

files stored

Cost

Function

Computation

Time

Cost

Function

Computation

Time CostFunction

Computation

Time

Experiment 1 100 500 750.61 4.5271 684.11 4.3237 775.15 4.2808

Experiment 2 120 600 1518.4 5.5984 1341.7 5.0931 1025.3 5.0584

Experiment 3 140 700 1088.3 6.0947 1705.1 5.8154 746.58 5.7698

Experiment 4 160 800 1477 7.2614 1720.7 7.2522 1311.6 6.8127

Experiment 5 180 900 1453 7.6211 925 7.6201 758.26 7.4925

Experiment 6 200 1000 3765.3 8.3323 2507 8.0918 1452.3 8.0782

Experiment 7 220 1100 1897 8.9978 1170.8 8.8874 2249.4 8.7148

Experiment 8 240 1200 1681.4 9.3011 2440.1 9.2571 2844.5 9.217

Experiment 9 260 1300 1926.4 9.7811 2735.1 9.5928 1885.7 9.3552

Experiment 10 280 1400 1053.1 10.293 2483.5 10.24 2368.3 10.215

BOA26 Proposed WBOA

Description

No.of

servers

No. of data

files stored

Cost

function

Computation

time Cost function

Computation

time

Experiment 1 100 500 823.16 4.2359 43,373 4.0972

Experiment 2 120 600 1015.2 4.971 53,468 4.9533

Experiment 3 140 700 1015.4 5.7108 61,497 5.6082

Experiment 4 160 800 1773.5 6.5692 70,988 6.4201

Experiment 5 180 900 927.05 7.3577 77,873 7.3243

Experiment 6 200 1000 1769.3 7.9243 90,235 7.7388

Experiment 7 220 1100 2649 8.5633 96,923 8.443

Experiment 8 240 1200 1575.2 9.0624 1.08 E+05 9.0165

Experiment 9 260 1300 2394.3 9.3259 1.14 E+05 9.3117

Experiment 10 280 1400 2904.2 10.185 1.23 E+05 9.9302

TA B L E 6 Statistical analysis of the introduced data reallocation strategy in latency-sensitive cloud object storage systems with distinct
algorithms for Experiment 2.

PSO30 GWO31 WOA29

Description Experiment 1 Experiment 4 Experiment 6 Experiment 1 Experiment 4 Experiment 6 Experiment 1 Experiment 4 Experiment 6

Best 97 161.19 200.2 98 156 198.27 99.17 158.22 199.27

Worst 99.322 700.43 268.5 100.5 659.42 497.27 185 549.95 676.27

Mean 97.729 462.1 213.9 98.934 348.13 360.74 117.95 337.54 397.67

Median 97.322 469.08 200.27 98 175.71 354 100.42 295 372.39

Standard deviation 0.97975 201.6 30.52 1.2836 254.77 108.89 37.587 155.83 175.85

BOA26 Proposed WBOA

Description Experiment 1 Experiment 4 Experiment 6 Experiment 1 Experiment 4 Experiment 6

Best 99.17 250 199.53 96 156.58 199.2

Worst 195 468.61 602 98.07 713.08 200.27

Mean 136.55 372.39 379.2 97.614 495.16 199.66

Median 99.386 409.47 339.21 98 516 199.27

Standard deviation 51.11 100.98 163.23 0.90276 209.91 0.56245

20 of 22 NATARAJ and NATARAJ

6.9 Evaluation of the ANOVA test

Evaluation of the ANOVA Test for the suggested data allocation and reallocation strategy in latency-sensitive cloud object storage systems is shown

in Figure 13. Hence, it is revealed that the designed WBOA method attains more advanced results than the other baseline approaches for all

experiments.

The estimation of the average convergence result of data allocation and reallocation strategy in latency-sensitive cloud object storage systems

is given in Table 7. While taking Table 7, the average convergence results of the designed WBOA method achieve a minimum result. Hence, it is

revealed that offered WBOA method attains elevated performance.

F I G U R E 13 Estimation of ANOVA teat for the offered data allocation and reallocation strategy in latency-sensitive cloud object storage
systems 6.10 Estimation of average convergence results for all algorithms.

TA B L E 7 Estimation of average convergence result of data allocation and reallocation strategy in latency-sensitive cloud object
storage systems.

PSO30 GWO31 WOA29 BOA26 Proposed WBOA

No. of servers as 100 and no. of files as 500

171.2301 152.4085 119.4171 79.23072 67.15561

191.3586 144.3719 113.7402 109.4071 109.4071

179.7112 156.7273 105.7225 91.5776 91.5776

141.5588 130.2582 88.72724 71.88592 49.89303

117.9091 98.23006 98.23006 56.30103 34.61474

No. of servers as 160 and no. of files as 800

391.6943 274.4103 258.4697 258.4697 258.4697

328.9633 244.2105 187.4956 185.8245 185.8245

287.6635 246.0414 246.0414 133.4213 131.8379

216.1076 170.6877 170.6877 92.33795 92.17401

313.2034 238.6977 177.7886 109.9962 73.26089

No. of servers as 200 and no. of files as 1000

404.6258 326.5156 316.4528 316.4528 316.4528

341.4327 262.322 187.7852 183.4927 183.4927

290.164 246.7949 168.9128 153.162 153.162

199.9156 165.3381 116.3816 93.85004 93.49662

313.8709 283.6343 159.0356 89.85663 46.2982

NATARAJ and NATARAJ 21 of 22

7 CONCLUSION

The core aim of this work was to provide a new approach for cloud object storage systems that addressed issues such as latency-sensitive data alloca-

tion, and latency-sensitive data re-allocation. The primary contribution here was that effective data allocation, and data re-allocation, were carried

out by dispersing the latency of the hybrid meta-heuristic-based cloud object storage system. The main goal was to employ the smallest number of

servers possible to fulfill all requests without breaking their latency requirements so that the overall data transfer cost was kept low. As a result, this

work has offered a unique hybrid meta-heuristic algorithm called WBOA to solve NP-hard problems. From the experimental evaluation, for data

allocation, the convergence analysis of WBOA was 54.64%, 47.66%, 2.15%, and 66.37% improved than BOA, WOA, GWO, and PSO, respectively.

similarly, for data reallocation, the cost function of WBOA was 86.59%, 84.73%, 61.13%, and 68.64% more progressed than BOA, WOA, GWO, and

PSO, respectively. Thus, the overall analysis showed that the suggested WBOA was better than the other methods for latency-sensitive cloud object

storage systems.

DATA AVAILABILITY STATEMENT

No new data were generated or analysed in support of this research.

ORCID

N. Nataraj https://orcid.org/0000-0002-1190-8140

REFERENCES

1. Schulz P, Ong L, Abdullah B, Simsek M, Fettweis G. End-to-end latency distribution in future mobile communication networks. Smart Antennas. 2020;1-5.

2. Yoon SK, Youn YS, Son MH, Kim S-D. Harmonized memory system for object-based cloud storage. Cluster Comput. 2018;21:15-28.

3. Huang C, Abdelzaher T. Bounded-latency content distribution feasibility and evaluation. IEEE Trans Comput. 2005;54(11):1422-1437.

4. Firmin L, Müller S, Rösler KM. The latency distribution of motor evoked potentials in patients with multiple sclerosis. Clin Neurophysiol.
2012;123(12):2414-2421.

5. Ni Z, Leodori G, Vial F, et al. Measuring latency distribution of transcallosal fibers using transcranial magnetic stimulation. Brain Stimul.
2020;13(5):1453-1460.

6. Ghosh SK, Burns CB, Prager DL, Zhang L, Hui G. On nonparametric estimation of the latent distribution for ordinal data. Comput Stat Data Anal.
2018;119:86-98.

7. Grozev N, Buyya R. Regulations and latency-aware load distribution of web applications in multi-clouds. J Supercomput. 2016;72:3261-3280.

8. Smith DG, Mewhort DJK. The distribution of latencies constrains theories of decision time: a test of the random-walk model using numeric comparison.

Aust J Psychol. 1998;50(3):149-156.

9. Celesti A, Galletta A, Fazio M, Villari M. Towards hybrid multi-cloud storage systems: understanding how to perform data transfer. Big Data Res.

2019;16:1-17.

10. Leyva-Mayorga I et al. A hybrid method for obtaining the distribution of report latency in wireless sensor networks. Wireless and Mobile Networking. IEEE;

2015.

11. Szymaniak M, Presotto D, Pierre G, van Steen M, Amsterdam VU. Practical large-scale latency estimation. Comput Netw. 2008;52(7):1343-1364.

12. Mulinti RB, Nagendra M. An Efficient latency aware resource provisioning in cloud assisted mobile edge framework. Peer-to-Peer Netw Appl. 2021;

14:1044-1057.

13. Choy S, Wong B, Simon G, Rosenberg C. A hybrid edge-cloud architecture for reducing on-demand gaming latency. Multimed Syst. 2014;20:503-519.

14. Sharma P, Zhichen X, Banerjee S, Lee S-J. Estimating network proximity and latency. ACM SIGCOMM Comput Commun Rev. 2016;36(3):39-50.

15. Nielsen JJ, Popovski P. Latency analysis of systems with multiple interfaces for ultra-reliable M2M communication. Wirel Commun. 2016;1-6.

16. Wang T, Xu K, Song M. A scalable network proximity estimate algorithm for the service provider selection method. Human Centered Computing. Springer;

Vol 8944: 2015.

17. Chandramouli B, Goldstein J, Barga R, Riedewald M, Santos I. Accurate Latency Estimation in a Distributed Event Processing System, Data Engineering.

Hannover; 2011:255-266.

18. Su Y, Feng D, Hua Y, Shi Z. Uunderstanding the latency distribution of cloud object storage systems. Journal of Parallel Distrib Comput. 2019;128:71-83.

19. Kou S, Xia W, Zhang X, Gao Q, Gao X. Self-supervised graph convolutional clustering by preserving latent distribution. Neurocomputing.

2021;437:218-226.

20. Arora S, Bala A. An intelligent energy efficient storage system for cloud based big data applications. Simul Modell Pract Theory. 2021;108:102260.

21. Wu L, Zhuge Q, Sha EH, Chen X, Cheng L. BOSS: an efficient data distribution strategy for object storage systems with hybrid devices. IEEE Access.

2017;5:23979-23993.

22. Shen T, Nagai Y. Non-homogeneous distributed cloud storage system with minimal redundancy in heterogeneous environment. Measurement.

2019;144:1-6.

23. Baun C, Cocos HN, Spanou RM. OSSperf – a lightweight solution for the performance evaluation of object-based cloud storage services. J Cloud Comp.

2017;6:24.

24. Yin J et al. ASSER: an efficient, reliable, and cost-effective storage scheme for object-based cloud storage systems. IEEE Transactions on Computers.

2017;66(8):1326-1340.

25. Mohammed SA. Artificial intelligence-based latency estimation for distributed systems. Adv Artif Intell. 2019;609-612.

26. Arora S, Singh S. Butterfly optimization algorithm: a novel approach for global optimization. Soft Comput. 2018;23:715-734.

27. Jose D, Kumar PN, Shirley JaA, Ghayathrrie S. Implementation of Genetic Algorithm framework for Fault-Tolerant System on Chip. Vol 17. International

Information Institute (Tokyo) Information; 2014:3921-3945.

https://orcid.org/0000-0002-1190-8140
https://orcid.org/0000-0002-1190-8140

22 of 22 NATARAJ and NATARAJ

28. Roy D, Dutta M. A systematic review and research perspective on recommender systems. J Big Data. 2022;9:59.

29. Mirjalili S, Lewis A. The whale optimization algorithm. Adv Eng Softw. 2016;95:51-67.

30. Mahi M, Baykan OK, Kodaz H. A new approach based on particle swarm optimization algorithm for solving data allocation problem. Appl Soft Comput.

2018;62:571-578.

31. Sanjay R, Jayabarathi T, Raghunathan T, Ramesh V. Optimal allocation of distributed generation using hybrid Grey wolf optimizer. IEEE Access.

2017;1-1:99.

How to cite this article: Nataraj N, Nataraj RV. A novel hybrid meta-heuristic-oriented latency sensitive cloud object storage system.

Concurrency Computat Pract Exper. 2023;e7672. doi: 10.1002/cpe.7672

	A novel hybrid meta-heuristic-oriented latency sensitive cloud object storage system
	1 INTRODUCTION
	2 LITERATURE SURVEY
	2.1 Related works
	2.2 Review

	3 DEVELOPED FRAMEWORK FOR LATENCY-SENSITIVE CLOUD STORAGE SYSTEM
	3.1 Problem formulation
	3.2 Data allocation model
	3.3 Objective model for data allocation
	3.4 Proposed model

	4 HYBRID META-HEURISTIC-BASED LATENCY-SENSITIVE DATA ALLOCATION
	4.1 Proposed WBOA

	5 LATENCY-SENSITIVE DATA REALLOCATION USING THE HYBRIDIZED META-HEURISTIC ALGORITHM
	5.1 Data reallocation model
	5.2 Solution optimization for data reallocation
	5.3 Objective model for data reallocation

	6 RESULTS
	6.1 Experimental evaluation
	6.2 Convergence validation on data allocation
	6.3 Convergence analysis on data reallocation
	6.4 CPU Utilization analysis
	6.5 Memory utilization analysis
	6.6 Makespan analysis
	6.7 Evaluation of data allocation
	6.8 Comparative analysis of data reallocation
	6.9 Evaluation of the ANOVA test

	7 CONCLUSION

	DATA AVAILABILITY STATEMENT
	ORCID
	REFERENCES

