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A dense layer model for cognitive emotion
recognition with feature representation
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Abstract. The predictions of cognitive emotions are complex due to various cognitive emotion modalities. Deep network
model has recently been used with huge cognitive emotion determination. The visual and auditory modalities of cognitive
emotion recognition system are proposed. The extraction of powerful features helps obtain the content related to cognitive
emotions for different speaking styles. Convolutional neural network (CNN) is utilized for feature extraction from the speech.
On the other hand, the visual modality uses the 50 layers of a deep residual network for prediction purpose. Also, extracting
features is important as the datasets are sensitive to outliers when trying to model the content. Here, a long short-term memory
network (LSTM) is considered to manage the issue. Then, the proposed Dense Layer Model (DLM) is trained in an E2E
manner based on feature correlation that provides better performance than the conventional techniques. The proposed model
gives 99% prediction accuracy which is higher to other approaches.
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1. Introduction

There is an important feature to finish the commu-
nication between the machine and human cognitive
emotion recognition, which is the effective date to
communicate with humans. The recognition of cog-
nitive emotion application is identified in various
domains. Consider an example that the states of
cognitive emotions are utilized for predicting and
monitoring the state of fatigue [1]. The recognition of
cognitive emotion is utilized in call centers in speech
recognition to predict the cognitive and emotional
state of the caller and give feedback on the quality of
service [2]. Due to the lack of human cognitive emo-
tions of the temporal boundaries and various single
expressions and accepting the cognitive emotions in
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various ways, cognitive emotion recognition is dif-
ficult [3]. Other modalities like visual information,
such as facial gestures, are used even though the
present work, like recognition of cognitive emotion,
focuses on inferring the subjects’ cognitive emotions
rather than the speech. In the past years, several
ground-breaking enhancements have been captured
with the deep network model in various implemented
regions of pattern recognition like speech, object, and
speaker recognition and the joined issue-resolving
techniques such as in recognition of audio and
visual and the present paralinguistics field. inherent
structure.

Different researches are presented in the needed
network property with the variants for modeling
the obtained in the signal of speech [4], having
more present attempts in research for the end-to-
end optimization to use like the less human priority
knowledge [5]. Nonetheless, these works have the
majority utilize the general handcrafted engineered
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features like coefficients of supra-segmental features
and Mel-Frequency Cepstral Coefficients (MFCC)
like these are utilized in the difficulties of AVEC and
ComParE series [6] that is established on the knowl-
edge which is gained in auditory study decades, and
that is presented to be powerful for multiple domains
of speech. Moreover, in recent years, a community
of machine learning has emerged to derive the pre-
sentation of input signals from unprocessed and raw
data. The aim behind the concept is that the network
acquires the intermediate presentation of the input
signal, which is raw and automatically suited to better
and improved performance.

The automatic sensing effect is proposed with the
help of both visual and speech data in a point-to-point
way. The CNN architecture is utilized for feature
extraction from the speech signal and is modeled
for the audio channel, and the ResNet-50 architec-
ture is used for the visual data [8]. The network
output is combined and given to the LSTM to iden-
tify the individuals’ affective states. On the contrary,
every network is trained separately; the outcomes
are provided simply to the consecutive classifier, and
the proposed system is trained point-to-point. In the
research, this is the primary work that uses these
point-to-point systems to recognize cognitive emo-
tion for the audio and visual.

Further, the concordance correlation coefficient
(pc) has explicit maximization, which is used in the
proposed system, and the performance is improved
concerning the prediction of cognitive emotion when
compared with the objective of the mean square error
that is optimized, and that is utilized conventionally
[9]. Lastly, interpretable cells have existed that are
found by researching the various cell activations in
the recurrent layers that are greatly correlated; hav-
ing different features of acoustic and prosodic, which
have the assumption for conveying the information
related to affective in speech like the basic frequency
and loudness. The primary version of the work is
described in [10], which uses the raw waveform of
speech. The modality related to visuals is considered
the extension of the proposed system in a point-to-
point way.

The database of REmote COLlaborative and
Affective (RECOLA) is determined in the proposed
system to provide the benefits of the suggested mul-
timodal model. In 2016, the Audio/Visual Cognitive
Emotion Challenge and Workshop (AVEC) was used
as part of the database. The proposed system is tested
and trained with the help of a complete database. The
merits of the multimodal model are shown by the

outcomes from the two modalities using the better
outcomes production for the valence and arousal like
the visual and speech networks [11-13]. The multi-
modal and unimodal models are compared with the
help of attained outcomes in AVEC 2016. The modal-
ities of visual, audio, or visual audio are used in the
system [14, 15]. However, in this work, the proposed
system creates better outcomes for both the modal-
ities of visual and speech that are presented using
the proposed experiments. The significance of the
anticipated model is provided below:

1) Feature learning for cognitive emotion recog-
nition-automatically;

2) The proposed DLM model transforms the audio
and video features and provides a suitable CNN
model.

3) The experimental outcomes specify the learned
features with promising results.

The work is structured as follows: the related works
are analyzed in Section 2. The dataset description is
given-in Section 3. The anticipated DLM model is
provided in Section 4. The experimental outcomes
are provided in Section 5. The conclusion is provided
in Section 6.

2. Related works

The models of pattern recognition have perfor-
mance that is enhanced by having DNNs. In recent
years, the sequence of the new architectures of neu-
ral networks has been revitalized like the autoencoder
networks [11], models of memory that enhanced neu-
ral networks or Deep Belief Networks (DLMs) [13],
CNNs [12], and models of LSTM [14]. The models
are utilized differently for multimodal recognition,
like speech recognition. Multimodal Deep Autoen-
coder (MDAE) network is suggested by Keren et al.
[15] for the feature extraction from video and audio
data. Bimodal DLM is primarily trained for initializ-
ing the deep autoencoder and fine-tuned with MDAE
to minimize both reconstruction error modalities.
A temporal multimodal network called Restricted
Boltzmann Machine (RBM) is proposed by Mayya et
al. [16] for modeling the series of audio-visual data.
Also, DNNs are utilized to recognize the gesture. The
researchers utilize the skeletal data and the images of
RGB-D to recognize the gestures in [17]. DLMs are
used for processing the skeleton’s features, and CNN
3D is for the data of RGB-D. Hidden Markov Model
(HMM) is stacked on top concerning temporal data.
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The domain of cognitive emotion recognition bene-
fits from having DNN’s advent. Some deep learning
techniques are employed to recognize speech cogni-
tive emotion. The handcrafted features are used by
Dhall et al. [18] for feeding the DNN which cre-
ates probability distribution rather than the states of
definite cognitive emotion. The classification is per-
formed using extreme machine learning trained from
the probabilities to calculate the statistic from the
complete utterance. After the data transformation,
with the help of a short time Fourier transform by
Simonyan et al. [19] using the CNN for the high-level
features extraction. LSTMs are used to obtain the
temporal structure. The end-to-end model suggested
by Ciregan et al. [20] employs CNN for the feature
extraction from the raw signal and LSTM is used for
obtaining the contextual data in the information.

Cognitive emotion recognition is solved using the
works with the help of facial data having DNNs. For
instance, Krishna et al. [21] suggest a framework
for transductive learning to recognize image-oriented
cognitive emotion using the combination of hyper-
graphs and DNNs. Every node is concerned with
fully connected layer for forming the hyperedge in
cognitive emotion classification. RNNs and CNNs
are combined to recognize the unconditional cogni-
tive emotion in video. CNN is trained primarily for
classifying the images related to static with cognitive
emotion. Thus, CNN is utilized for feature extrac-
tion by training RNN to create the complete video
cognitive emotion [22-25].

The CNNs extract the features, and multiscale
Dense SIFT features (MSDF) are used to extract the
features from the faces for training the SVR (linear
Support Vector Regression). The acoustic Parameter
Set (APS) is utilized to haul out the audio features.
The features are combined to use for SVR learning.
It is learned using combination of features. Multi-
modal CNN is used by Zeng et al. [26] to classify
cognitive emotions using visual and audio modali-
ties. There are two phases to training the model. The
two CNNs are pre-trained in the first phase on the
large image datasets, and it is tuned finely for per-
forming the recognition of cognitive emotion. Audio
CNN is considered with the meal-spectrogram seg-
ment as the input for the video and audio signal to take
the face from CNN. The DNN is trained in the sec-
ond phase to comprise the number of fully connected
layers. The two CNNs are utilized to concatenate
the extracted features as input. BLSTM-RNN is
used for capturing the contextual data presented
in the multimodal features like video, audio, and

physiological data for the extraction by Cootes
et al. [27].

The framework for the strength modeling is estab-
lished by Edwards et al. [28], which has been
proposed recently as decision-level and feature-level
techniques. It is combined with the feature vector
and gives the second regression for prediction. The
motivations for cognitive emotion recognition shows
significance with AVEC created [29]. The modalities
of video, physiological, and audio are concerned with
the challenge of 2016. Relevance Vector Machine
(RVM) is proposed by Liu et al. [30] to model video,
audio, and visual-audio data. Zhong et al. [31] antic-
ipated a model in another work with the features
of high-level geometry to identify the dimensional
features. Yu et al. [32] uses higher and lower-level
features to-model cognitive emotions. Some baseline
features for video and audio are complemented by
Senechal et al. [33] for performing cognitive emotion
recognition. The extra features are used by Siddiqi
et al. [34] where an audio-only modality is used.
The work utilizes the general handcrafted features
in visual or audio or, in a few cases, both. However,
the temporal information in the data is only some-
times concerned [35]. The trained multimodal model
is proposed in this research for the point-to-point,
which concerns the information related to contextual
temporal.

3. Dataset

Here, modalities refer to the analysis with three
diverse datasets like eNTERFACEOS5, RML and
BAUM. BAUM dataset consists of 1184 multi-modal
facial expressions and speech of 13 mental and emo-
tional states. It is a time-series dataset with 1184
instances. Itincludes short video clips in MP4 format,
and the mental and emotional states include fear, hap-
piness, sadness, anger, surprise, disgust, contempt,
boredom, bothered, concentration, neutral, confu-
sion, and so on.

Similarly, RML is an adult emotion dataset
that shows slight variations in feelings and human
thoughts. It offers social wealth clues to the
researchers that concentrate on motivation, intention,
attention and emotion. It is considered a produc-
tive tool for performing communication. Analysis of
these expressions provides better insight into human
behavior.

eNTERFACEOQS: The dataset for the visual and
audio by eNTERFACEOQS5 [36] has cognitive emo-
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tions, which are six. They are disgust, anger, joy, fear,
surprise, and sadness, having 14 various nationali-
ties from 43 subjects. The video samples of 1290
are present. Every audio sample having a rate of
sampling of 48,000 Hz is recorded having a mono
channel and 16-bit resolution. Every subject must lis-
ten to the six consecutive small stories to induce the
specific cognitive emotion. Two experts evaluate if
the reaction presents the cognitive emotion intended
unambiguously. The speech utterances gathered from
the video files have speaking subjects. The video
files should be, on average, 3—4 seconds. The orig-
inal video frames have the size of 720x576 % 3. Few
samples of the cropped face image are presented on
the dataset of eNTERFACEOS.

4. Methodology

Figure 1 presents the proposed model, which is the
model of deep hybrid learning, which has two single
streams of input, such as the processing of the visual
network having the visual data with the model of 3D-
CNN and the processing of the audio signal with the
audio network having the CNN. The fully connected
layers (FCL) have the outputs for combining the two
networks in the implemented fused network with the
DLN model.

The previous 3D-CNN and CNN models are
used in the proposed system having the largescale
image, which is pre-trained, and the works of
video classification for initializing the 3D-CNN
and CNN accordingly because of the restricted
volume of labeled data. Thus, the two CNN models
fine-tun with the labeled cognitive emotion data.
The CNN initialization and the C3D-Sports-1M
model are chosen for the initialization of 3D-CNN

Input Convolution Convolution Convolution Fully
P Layer-1 Layer-2 Layer-3 Connected
“ x Average Average Average Softmax

Pooling-1 Pooling-2 : Pooling-3

NN R
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Fig. 1. Feature representation with DLM.
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by AlexNet [38] in the proposed system. There
are 5 convolution layers like Convl-to-Conv5 by
AlexNet [37] and 3 fully connected (FCFC) layers,
and 3 max-pooling layers, such as Pooll-to-Pool5.
The FCFC layers, which are the first two, fc6
and fc7, have units of 4096, and the last layer of
FCFC, such as fc8, includes 1000 dimensions,
which are relevant to the classification of 1000
images. There are 8 convolution layers such as
(Convla — Conv2a — - - - —Conv5aConv5b, Pool
1 — Pool2 — Pool3 — Pool4 — Pool5) as 5
max-pooling layers and 3 layers of FC in the
C3D-Sports-1M model [39]. The fc6 and fc7 have
units of 4096, and the fc® has the classification of 487
videos in 3D-CNN. Figure 1 shows the initialization
of the visual and audio networks in the proposed
system to copy the network parameters from the
3D-CNN and pre-trained CNN models presented
earlier. It is important to consider that the parameters
of fc8 in the pre-trained two models are utilized.
This process explains how to create both 3D- and
CNN inputs and the training process with the hybrid
deep learning system.

4.1. Network generation

Every sample is partitioned into several overlapped
segments, and learning the visual and audio features
from every segment since the cognitive and emotional
video samples have various times. The amount of
trained data is enlarged for the proposed deep models.
The complete log Mel-spectrogram is obtained from
signals of audio extracted primarily. The calculation
of log Melspectrogram that are extracted having the
Mel-frequency filter output and discriminant power
is shown rather than MFCC to recognize the cogni-
tive emotion of audio [40]. Thus, the proposed system
uses the context (fixed) to divide the spectrogram into
overlapped segments that are transformed into rele-
vant CNN input. The relevant segment of the video is
used in the window context as the 3D-CNN input after
the pre-processing process. The Mel-spectrogram
segment and the video frames are produced in the
proposed system for every video segment presented
in Fig. 1. A detailed presentation about processing
visual and audio cues is done.

4.1.1. Input generation

Audio input: Fig. 1 shows the conversion of 1D
audio signals to the relevant CNN input. Three seg-
ments of log Mel-spectrogram channels are extracted:
delta, delta-delta, and static, which have 64 x64x3
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sizes. More particularly, the 64 Mel-filter banks are
chosen from 20-8000 Hz for obtaining a complete
log Mel-spectrogram (LMS) with the help of 10 ms
overlapping and 25 ms Hamming window for the
provided utterance in the proposed system. Thus,
the context window has 64 frames for dividing the
complete LMS into audio segments of 64 x 64 sizes.
During segmentation, a size of shift having the
frames as 30 is utilized, such as two adjacent seg-
ments having 30 frames through overlapping. Every
segment is divided into 64 frames in length and
10 msx(64—1)+25ms as time duration. Here, the
divided segment is 3 times higher than the minimal
length segment, such as 260 ms, to find the cogni-
tive emotion. Every divided segment gives adequate
temporal cues consecutively to find the cognitive
emotions. The segment of 2-D Mel-spectrogram [41]
is created having the 64x64 size to consider as
the primary static channel in three Mel-spectrogram
channels. The first order, such as delta and the sec-
ond order, such as delta to delta, is calculated in the
proposed system for the derivations of the frame-to-
frame time after extracting the segment with the static
Mel-spectrogram having 64 x 64 size. Better temporal
information related to Melspectrogram is obtained,
such as the trajectory of the feature across time that
is generally completed in speech recognition works.
The below regression formula is required to compute
the coefficients of delta having the static segment of
the 2-D Melspectrogram.

N
2 n=1 1 (Crin — Ci=n)
N
Zanl I12

Here, delta coefficients for the frame t are d;
specifies static coefficients of the segment of the
Mel-spectrogram having cyq fo ci—y. The n value
specifies window of regression having the value 2
typically. Thus, delta coefficients to the delta are com-
puted similarly from the attained coefficients of the
delta. Three segments of Mel-spectrogram channels
obtained have the 64 x 64 x 3 sizes presented in Fig. 1.
The LMS is extracted concerning the RGB images
with the audio data feature representations. There are
two needed properties. Primarily, the proposed sys-
tem establishes the operation of 2D convolution with
the axis and frequency of time over the operation of
1-D convolution. Secondly, this is easy to resize the
image to the relevant size like the pre-trained mod-
els of CNN as input as the feature representation of
the RGB image. More particularly, the audio net-
work is initialized in the proposed system by AlexNet

dy = (1)

[28], including the input size of 227 x227 x 3. Hence,
the original spectrogram is resized from having the
64x64x3 sizes to the new size of 227x227x%3 in
the proposed system having the bilinear interpola-
tion. Here, a is presented as the audio input in the
proposed system.

2) Video input: After dividing the video sample
into segments, the video segments are utilized as the
3D-CNN input. The detection of the face is deter-
mined, and the eye’s distance is determined for every
frame in the video segment. Lastly, the image size of
150%x110x3 for the RGB face is cropped. The pow-
erful real-time face detector is used in detail to detect
faces automatically on every frame. The two eye cen-
ters are placed in the up-right face, typically from the
outcomes for automatically detecting the face. Thus,
the facial images have the eye distance computed,
normalized to the fixed 55 pixels of distance. It is
noticed that the height is three times lengthier than
the distance of the eye for the face image, and the
width is twice what is estimated roughly. A resized
image of RGB, such as 150x 110x 3, is cropped from
every frame depending on the normalized distance of
the eye. The facial image for every frame is cropped
to resize for the input 227 x227x3 for the 3D-CNN
model, which is pre-trained to perform the fine-tuned
work. The same resizing operation is utilized in the
existing study [42]. Every video segment used has
frames of 16, which is the size of the input presented.
The videos overlap frames as L_Tm in the proposed
system when the video segment includes L > 16.
On the other hand, the first and last L%m overlap-
ping frames are repeated for L. > 16 in the proposed
system. It is important to consider that the duration
of every segment is 655 ms by 20 frames of video in
every segment of the video, such as 0.6 s x30 frame/s,
as 65 audio frames are used in the context window
for dividing the LMS extraction to the segments of
audio. The proposed system’s implementation does
notrequire dealing withthe L < 16 frames scenario.
On the other hand, the first 5 and last 6 overlapping
features are repeated in the proposed system when
using 15 frames of audio for the segments of Mel-
spectrogram relevant to over frames of 5 video such
as L = 5 for the experiments. The v is represented as
visual input in the proposed system.

3) Network training: The data of audio and visual
is presented as X = {(ai, Vi, ¥;) };_; .. gx» hav-
ing index as ‘i’ for segments for classified visual and
audio. The visual data and audio data are denoted by
vi and a; accordingly. The class label of the segment
is represented by y;. The class label must be used for



8994 S. Yuvaraj and J. Vijay Franklin / A dense layer model for cognitive emotion recognition

the global video sample as the class label segment
is yj. The fc7 has the output of 4096-D, denoted by
TA (ai, QA) in the network of audio that is repre-
sented as A, having the #” as the parameters of the
network. In the same way, the fc7 has the visual fea-
ture of 4096-D denoted by YV (v, 6V) for the visual
network that is presented as V having the 8 as the
parameters of the network. The audio/visual models
have trained accordingly during the network train-
ing, thus training the fused network in the successive
phase [43].

The visual and audio networks are primarily
trained separately, using fine-tuning techniques. The
final FCLs are replaced for the 3D-CNN and CNN,
that is, the layer of fc8, the two new layers of FCFC
that is relevant to the categories of cognitive emotion
on the target dataset to recognize the cognitive emo-
tion related to visual and audio. Consider an example
that fc8 needs to create the outputs as 6 for the 6 cog-
nitive emotions [44]. The cognitive and emotional
labels are predicted in the proposed system having
the networks of visual and audio accordingly to com-
pute the prediction errors, and lastly, the parameters
of the network need to be updated to lower the L
as a negative log-likelihood across the trained data.
The below minimization issue is followed in the pro-
posed system on training the audio data for updating
the network of audio A having the back-propagation.

K
. A ~rA . pA ;
Wr£1’11;A . L (softmax (W Y (a,, 0 )>, )’z)

(2)

i=

Here, the softmax layer has the weight values
are represented by WAWA, a; specifies minimiza-
tion issue, 0 represents back-propagation and the
calculation for the softmax (log loss) is presented
below.

!
LA, ==Y ylog(y}) @
j=1

Here, the ground truth label has the j® value
denoted by yj, the softmax layer has the i out-
put value denoted by y* for A, and the total class
labels are presented as L(A, y). Since a similar min-
imization issue is present in 3D-CNN like CNNss,
the minimization issue is solved in the proposed sys-
tem on training the visual data, which is the same
as the audio network. The prediction error is min-
imized similarly, V for updating the V as a visual
network. The parameters are updated individually in

the networks of visual and audio during the first stage
of training to generate more discriminate visual and
audio features, that is YV (vi; 6y) and YA (a;; 64).
The training of the fused network is presented in the
proposed system to combine visual and audio features
[45].

4) Network fusion: The fc8 layers are discarded
in the proposed system after the training of visual and
audio networks and combine the layers of fc7 into the
fused network, presented in Fig. 1. Two features of
4096-D YV (vi; 0y)and Y (aj; 6a) are combined to
constitute the feature of 8192-D as the fused network
input as

([0

that is presented as F having the 6F as the param-
eters of the network. Where, Tiv =7V (Vi; GV)
and T& = YA (aj ; 6*). The proposed system has
the fused network, which is implemented by having
the model of deep DLM that focuses on obtaining a
high non-linear relationship over modalities and cre-
ating the discriminative representation of features to
classify the cognitive emotion. There are two hid-
den layers, one visible and one output layer, as the
softmax layer, presented in Fig. 1. The two RBMs
are stacked to construct the model of DLM; that is,
the bipartite graph and the hidden nodes can have
the high-order input data correlation for the visible
nodes.

The proposed system trains the fused network via
the two training stages. Primarily, the pre-trained
unsupervised model implementation is done bottom-
up with the help of a training algorithm for greedy
layer-wise. The reconstruction error is lowered by the
pre-trained unsupervised model with the total training
samples as K, and the loss function of cross-entropy is
denoted by C (Zi, z/ ) between the reconstructed data
z; and input data, where the definition of C (Zi, z/ )
is presented below.

D
C (z,-, ZE) = Z(_Zi,j logz;, + (1 - Zi,d) log (1 - z,’-,d))

d=1
“

Secondly, every RBM layer is introduced after the
pre-trained model. Thus, the fine-tuned supervised
model is carried out to optimize the parameters of
the network. The last hidden layer has the output
performed in detail as the classifier input, and the
classification error is calculated. Thus, the network
parameters are readjusted by using back-propagation.
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The Gaussian-Bernoulli RBM is used, having the hid-
den nodes as 4096 for the first layer, there are 2048
hidden layers in the Bernoulli-Bernoulli RBM for the
second layer, and the 2048-D features have the out-
puts to classify the cognitive emotion since the DLMs
have the input features are the continuous values. The
DLMs structure as 8192-4096-2048- C is obtained
similarly to find the cognitive emotions as C on the
target visual and audio cognitive, emotional datasets.
The parameters are fixed in A and V when training the
successive stage and updating the fused network as F
for accurately creating more cognitive and emotional
predictions, giving the best feature fusion results.

4.2. Classification process

The representation of the 2048-D joint feature
is calculated after training the fused network com-
pletion on every segment of visual and audio (See
Fig. 1). Average pooling is used in complete features
of the segment from every sample of video for cre-
ating the global feature representation of video as
the fixed length since every video sample of visual
and audio consists of the various segments. The max
pooling and average pooling are compared in the
proposed system experiments, and identified that the
better performance is achieved by average pooling.
Hence, average pooling is utilized for processing
the extracted features from the segments. The lin-
ear SVM classifier is used easily to identify cognitive
emotion depending on the representation of global
video features [45].

5. Numerical results and discussion

The experiments on cognitive emotion recognition
are performed on three public datasets of cogni-
tive emotional visual and audio which are the acted
dataset of eNTERFACEOQS, to test the efficiency of
the suggested networks of deep hybrid learning to
recognize the visual and audio cognitive emotion.
The unimodal video and audio recognition outcomes
are presented to determine the performance, and the
results of multimodal cognitive emotion recognition
are provided to integrate video and audio cues.

5.1. Parameter setup
The mini-batch size is 30, and the stochastic

momentum of 0.9 has stochastic gradient descent
(SGD) to train the models. The rate of learning for

fine-tuning is 0.001. The epoch numbers are 400 for
3D-CNNs, 100 for DLMs, and 300 for CNNs. The
parameter of the dropout is 0.3 for the method of
FCFC fusion. The CNNs are implemented in the pro-
posed system with the MatConvNet tool, the DLMs
with the DeeBNet toolbox and one 3D-CNN with the
Caffe toolbox. The package of LIBSVM is used in
the proposed system for the classification of cogni-
tive emotion for performing the algorithm of SVM,
having the one-versus-one approach and the linear
kernel function.

5.2. Result analysis

The recognition performance has two features pre-
sented (See Fig. 2): extracted features learned with the
fine-tuned AlexNet and extracted features with the
models. The created visual and audio data in the pro-
posed system as the models for the extracted features
having the models of C3D-Sports-1M and AlexNet
to create the features of 4096-D from the fc7 layer
output-accordingly. Table 1 depicts the performance
of feature recognition shown on the eNTERFACEOS.
Table 1 shows that the learned features are shown
with the models of fine-tuned deep, such as C3D-
Sports-1M and AlexNet, that are presented to perform
well considerably than the extracted features having
the original models of pre-trained deep learning. The
accuracies are improved using the technique of fine-
tuning in detail on the dataset, 53.03% to 68.09% for
visual features and 60% to 66% for audio features.

In the same way, the proposed system creates the
enhancement from 49% to 55% for the feature of
visuals and 52% to 79% for the features of audio
accordingly. The enhancement of 8% for visual fea-
tures and 6% for audio features are obtained on the
dataset accordingly. The efficiency of the proposed
feature learning technique is demonstrated by the
results from experiments such as the deep model used
for learning the features of cognitive emotion. The
proposed system has the learned features that have to
give the robust ability for the deep learning models
potentially for extracting the more discriminant cues
over the designed features manually. The results from
the experiments determine the validity of the fine-
tuning technique. The pre-trained models are allowed
by fine-tuning to learn the useful feature represen-
tations to recognize the cognitive emotion in other
domains (See Fig. 3a to 3c).

The proposed system has the performance of hav-
ing recorded outcomes of the prior research with the
help of handcrafted features to present the merits of
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Fig. 2. Cognitive emotions with labels.
Table 1
Modality description

Modality Features RML eINTERFACE BAUM

Audio Audio features 60 52 37

Audio net 66 79 42

Visual Video features 54 49 42

Visual net 69 55 52

the learned features on the datasets. The compari-
son of the reported outcomes is considered due to the
works that utilize similar settings of the experiments
subject to independent test runs. The performance
comparisons for cognitive emotion recognition are
individually depicted in Tables 2 and 3 between the
relevant handcrafted features and proposed leaned
features. The proposed learned features of audio hav-
ing the CNNs perform well than the handcrafted
features of audio from Table 2 that are used broadly to
recognize the cognitive emotion of audio like MFCC,
features of prosody, acoustic Low-level Descrip-
tors (LLD), Power Normalized Cepstral Coefficients
(PNCC) and Relative Spectral Transform - Percep-
tual Linear Prediction (RASTA PLP). The learned
audio features are shown in the proposed system
using the fine-tuned model of AlexNet, which is
more discriminant than the handcrafted features of
audio to classify the cognitive emotion of audio. Also,
the performance of the proposed learned audio fea-
tures indicates the worth of using the three channels
with 64 x64 x3 with AlexNet as input from the Mel-
spectrogram. It happened due to the robust learning
ability of features of AlexNet, such as greater level
convolutions being inferred semantically in a pro-
gressive way from the greater receptive fields. The
representation of the RGB image is the same as the

Mel-spectrogram, which is extracted. The robust low-
level time-frequency features are extracted using the
representation with the help of low-level 2-D convo-
lutions. Thus more discriminant features are inferred
using the greater levels of convolution. Three Mel-
spectrogram channels represent cognitive emotions,
such as structures and particular shapes, efficiently
received using the trained AlexNet. The methodol-
ogy is presented to transform the 1-D audio signals
to relevant CNN input, which processes the images
of 2D or 3D conventionally.

It is obtained using the proposed visual learned
features having the 3D-CNNs obtain the good per-
formance from Table 3 over the handcrafted features
like LBP, Gabor wavelet, facial points, LPQ, and
QIM as Quantized Image Matrix, which is compared.
The merits of the proposed system, which is learned
visual features, are demonstrated and are created
using the fine-tuned model of C3DSports-1M that
gives more discriminant power over the handcrafted
features of visual to recognize the visual cognitive
emotion. The mentioned experiments provide that the
deep model is robust to learning the feature, and more
discriminant features are produced manually over the
designed model for the extracted features. Moreover,
the deep model needs a huge volume of trained data.
It inspires by the proposed system for transferring the
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Fig. 3. a) Prediction based on the RML dataset. b) Prediction
based on eNTERFACE dataset. ¢) prediction based on the BAUM
dataset.

pre-trained technique for learning the cognitive and
emotional features to other domains (See Fig. 4a to
4b).

The proposed system has the learned features
presented in Tables 4 and 5, which are more dis-
criminant in recognizing the cognitive emotion of the
handcrafted features. Moreover, the proposed feature
learning requires a huge training set, which can eas-
ily suffer from over-fitting the handcrafted features.
However, the features are extracted having deep mod-
els, which needs costly calculation because of the
huge parameters of the network. The performance
of the two kinds of extracted Mel-spectrograms hav-
ing various lengths is compared, such as 64x15x3
and 64x64x3, to explain the process of extracting
the segments of Mel-spectrogram having the length
of the frames as 64 over 15 frames that are used
broadly in the speech recognition. Table 4 depicts
the summarization of the experimental outcomes that
the extracted Mel-spectrogram size of 64 x 64 x 3 per-
forms well compared with another (See Fig. 5). The
length-of the segment as 15 frames is not relevant
to recognizing the cognitive emotion of audio. The
frames of 15 may be very small for conveying ade-
quate data to differentiate the cognitive emotions. The
anticipated system is compared with four multimodal
fused techniques: feature-level, decision-level, score-
level fusion, and the recently presented methodology
to check the proposed fusion method’s efficiency. It is
important to consider that the proposed system uses
the deep DLM technique for implementing the fused
network.

On the other hand, two layers of FCFC are used.
The proposed system aims to predict the global video
cognitive emotion sample. Hence, feature fusion
approaches are needed for aggregating the extracted
features on the visual and audio segments to the fea-
ture representation of the global video. Thus, the
linear SVM is utilized for classifying cognitive emo-
tion on the created features of the global video. The
feature and decision-level fusion structures have the
proposed models of two CNN. It is important to
consider that the score-level fusion structure is com-
pletely the same as the decision-level fusion (See
Fig. 6).

There are six ensemble rules like “Max”, “Major-
ity vote”, “Min”, “Sum”, “Product”, and “Average”
that are tested for the decision-level fusion. The
ensemble rule performance is investigated primar-
ily on the works of decision-level fusion, and the
best one is identified that is needed for creating
the recorded performance. The six ensemble rules
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Table 2
Prediction outcomes based on audio cognitive emotions
Datasets Techniques Features Accuracy
RML Kernel entropy model Prosody 52
Multi-view cognitive 57
emotion recognition
Deep discriminative PNCC 59
analysis
Multi-model deep CNN LLD 62
Proposed DLM Audio net 67
eNTERFACE 05 Audio-video cognitive PLP, RASTA and MFCC 73
emotion recognition
Acoustic cognitive emotion MFCC and prosody 73
recognition
Multimodal fusion Prosody 44
information
Visual cognitive emotion MFCC and prosody 55
recognition using ANOVA
feature representation
Proposed DLM Audio net 79
BAUM Affective and mental state PLP, RASTA and MFCC 30
recognition
Proposed DLM Audio net 43
Table 3
Prediction outcomes based on visual cognitive emotions
Datasets Techniques Features Accuracy
Kernel entropy model Gabor wavelet 65
Multi-view cognitive LBP 57
emotion recognition
Deep discriminative Visual net 69
analysis
Proposed DLM LQP 43
eNTERFACE 05 Audio-video cognitive Facial points 38
emotion recognition
Acoustic cognitive emotion QIM 40
recognition
Proposed DLM Visual net 55
BAUM Affective and mental state LPQ 46
recognition
Proposed DLM Visual net 51

have the performance to compare with the proposed
learned features on the works of decision-level fusion.
The proposed learned features have six ensem-
ble rules to compare the performance presented in
Table 5. The better performance is obtained by the
rule “Product”, presented in Table 6. Hence, the
decision-level fusion has the performance of the rule
“Product,” which is reported in the proposed system
in the below experiments. The score-level fusion is
implemented to refer to the techniques. More par-
ticularly, the equal-weighted summation is chosen
concerning the attained score values of the class pre-
sented. The modalities of visual and audio on the
recognition performance are presented in Table 6
with the assistance of various fusion techniques. The

fusion approach of FC-FC is observed in Table 6
to perform better than the product’s score-level,
feature-level and decision-level fusion. The fusion
network merits are implemented by having the two
layers of FC-FC. The fusion network of FC-FC is
implied for learning the joint feature representation
of visual and audio from the two fine-tuned deep
model outputs to identify the cognitive emotion via
the back-propagation learning algorithms.

Table 6 shows the proposed fusion method of DLM
performs well than other methods. The fusion of
DLM is considered the deep fusion model when com-
pared with the methods of score-level, feature-level
and decision-level fusion (See Fig. 7). It shows the
deep fusion efficiency to provide a better ability of



S. Yuvaraj and J. Vijay Franklin / A dense layer model for cognitive emotion recognition 8999

Prediction coutcomes based on
visual emotions for @eNTERFACE 05 Dataset

s5.0

a0.0

g =0
=
20 A
10
o
2 £ ==
s 5' 3
£ =
i3 £°
= 2 §
=2
= =
2
Techniques & Features
a Visual emotion prediction with eNTERFACE
Prediction outcomes based on
visual emotions for BAUM Dataset
51.0
so
46.0
a0 -
z >
z
=

Proposed DLM
Visual et

Affective and mental state recogntion
L

Techniques & Features

b Visual emotion prediction with BAUM

Fig. 4. a) Visual emotion prediction with eNTERFACE. b) Visual
emotion prediction with BAUM.

feature learning to capture the greater non-linear rela-
tionships over modality. It is possible due to using
the DLMs multilayer structure with many RBNs to
form the various hidden layers stacked. A generative
model is RBM to represent the probability distribu-
tion assigned with input data. Every RBM can learn
the joint probability distribution in the DLM for video
and audio input data. DLMs learn the non-linear
dependencies efficiently over modalities using RBMs
and training algorithms layer-wise, and the outcomes
are better for the audio and visual fusion features. The
consistent findings are there in the prior research. It is
needed for visualizing the learned weights of the pro-

Table 4
Segments-based recognition

Spectrogram BAUM eNTERFACE RML
64*15*3 34 53 51
64*%64*3 43 79 79

Table 5

Multi-modal-based recognition

Decision making BAUM eNTERFACE RML
Voting 46 70 64
Maximal 49 81 73
Summation 51 81.5 73
Minimal 51 79 73
Average 51 81 73
Product 52 82 75

posed model of DLM. Moreover, the proposed DLMs
input is visual and audio features over the semantic
image. The learned weights made the DLMs hard to
interpret. Rather than the method of FCFC fusion, the
DLM performed well, such as 84% vs. 86% on the
eNTERFACEOS dataset, 53% vs. 55% on the dataset
of BAUM-1s, and 79% vs. 81% on the RML dataset
accordingly. Because of the pre-trained unsupervised
model in DLMs, the merits are presented as the local
optimum weights to initialize the network. On the
other hand, the method of FCFC fusion has the initial
weights created randomly.

When the DLM is performed well on the dataset
of BAUM-1s, then the multimodal cognitive emo-
tion recognition results in a confusion matrix. The
multimodality performance is presented in Table 8
in terms of % to measure for every cognitive emo-
tion during the DLM is provided with the average
accuracy of 80.36% on the dataset of RML, Cogni-
tive emotion Precision Recall F-score Anger 85.33
88.70 86.98 Disgust 89.71 95.50 92.51 Fear 80.71
71.33 75.73 Joy 65.53 68.93 67.19 Sadness 91.03
83.33 87.01 Surprise 83.21 87.07 85.10 or results to
recognize the LOSGO. It is attractive to identify the
dataset of RML as “fear” and “joy” is more chal-
lenging to find than other cognitive emotions. It is
possible due to the cues of audio and visual as fear”
and “joy” is not enough in a distinct way. The cog-
nitive emotions of “surprise”, “fear”, and “sadness”
are identified as having less accuracy relatively on the
dataset of eNTERFACEQS that is over 80%.

On the other hand, identifying other cognitive
emotions is done with 90% accuracy. The average
accuracy in classification on the dataset of BAUM-
1 s is lesser than the other two datasets. Spontaneous
cognitive emotions are shown, which are more chal-
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Segments Based Recognition Table 7
S mm— emrTERFace Performance evaluation with multi-modal dataset
7e Performance evaluation - RML
so | Cognitive emotion Precision Recall Fl-score
o Anger 86 89 87
" Disgust 90 96 93
F o Fear 81 72 76
- Joy 66 69 68
Sadness 92 84 88
20 Surprise 84 89 86
- Performance evaluation —- eNTERFACE
Anger 90 91 91
s ca=1se3 i carcars Disgust 92 90 91
Fear 76 80 78
J 93 93 93
Fig. 5. Segments-based prediction. S(;B(]iness 87 84 86
Surprise 80 80 80
Performance evaluation - BAUM
Multi-modal Based Recognition
50 | mmmm eTERFACE Anger 28 28 27
p— AL Disgust 83 66 73
7 Fear 53 54 53
eo | Joy 21 26 23
o Sadness 26 26 26
z Surprise 42 65 51
= a0 |
—— Table 8
= | Performance evaluation - BAUM
Cognitive emotion RML eNFERENCE BAUM

£ £ 5 £ £ E FC (layer 1) 79 84 53
d - FCFC (layer 2) 78 83 52
FCFC (layer 3) 76 82 51
Fig. 6. Decision-making model. ggg ggz 3 ;? gg gg
DBN (layer 3) 81 86 54
DLM 82 87 56
Table 6
Subject independence-based recognition
Method BAUM eNTERFACE RML
Table 9
Feature 52 82 75 Multi-modal-based cognitive emotion recognition
Product 52 82 75
Score 52 81 74 Datasets Techniques Accuracy
FCFC 52 83 79 RML Kernel entropy model 73
DBN 55 85 80 Multi-view cognitive 76
DLM 56 86 81 emotion recognition
Deep discriminative 75
analysis
1 X . h h d - . Proposed DLM 81
enging '[(:) Yecogmze than the acte COngthC emgtlon. oNTERFACE 05 Audio-video cognitive 7
The precision, F-score, and recall are computed in the emotion recognition
proposed system for measuring the cognitive emo- Acoustic cognitive 72
tion of multimodality for performance recognition emotion recognition
Proposed DLM 86

on the three datasets added to the classification of

the confusion matrix. Tables 7 to 9 present the exper- BAUM iifgcgivt ieoind mental state 2
imental outcomes accordingly. These results indicate meosed DLM 55
that the three datasets provide various challenges in
predicting particular cognitive emotions. Consider an
instance that the identification is easy for the dataset identification of “joy” is easier on the BAUM-1 s and
of RML as “disgust” over the other two datasets. The eNTERFACEOS over the dataset of RML.
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Table 10
Comparison of various performance metrics

Methods Accuracy (%) Errorrate MCC
Hybrid CNN and NADE 95% 0.089  0.4656
CNN 96.13% 1.02 0.4534
CNN and KELM 93.6% 1.56 0.4317
Deep CNN with data 94.58% 1.63 0.4658
augmentation

CNN and Genetic Algorithm 94.2% 0.077  0.4205
Hybrid VGG16-NADE 97.31% 0.075 0.3564
ResNet+SE 98.8% 0.065  0.2645
Proposed 99% 0.055  0.1253

The DLMs structure affects the fusion per-
formance for visual and audio modalities. The
performance is presented for the three fusion net-
works of DLM to determine the efficiency of various
deep structures. They are (i) DLM-1 (8192-4096-
6), (il) DLM2 (8192-4096-2048-6), and.(iii) DLM-3
(8192-4096-2048-1024-6). In the same way, the three
fusion networks of FCFC have a performance that
is relevant to DLMs in the proposed system. They
are (i) FC-1 (8192-4096-6), (ii) FC2 (8192-4096-
2048-6), and (iii) FC-3 (8192-4096-2048-1024-6).
The dropout layer is included before the last layer of
softmax that is relevant to the classification of cog-
nitive emotion for the fusion networks completed.
The overfitting is reduced by setting the parameter of
dropout is 0.3. The comparison of various structures
shows the performance in the fusion network. The
better performance is obtained by FC-1 among the
three fusion networks of FCFC from Fig. 8a to 8c in
the proposed system. The FC-1 is extremely efficient
than FC-2 and 3 for combining visual and audio. It
is possible due to the more layers in the network of
FCFC and the huge increase in the parameters of the

network, which creates the network of FCFC is prone
to the problem of overfitting. The DLM-2 performs
better than DLM3 to obtain the best performance over
DLM-1 for the fusion network of DLM. The deeper
models of DLM, such as DLM-1 and DLM-3, can
feature fusion over 1-layer DLM-1 because of uti-
lizing the many RBIs and the training algorithm for
the efficient layer-wise. DLM-3 degrades the DLM-2
performance due to the depth of DLM-3 over DLM-
2, which has more parameters of the network that is
more challenging for optimizing the training dataset,
which is small scale.

Table 11 depicts that the anticipated method is eval-
uated with existing research on the three datasets.
It is important to consider that these researches are
performed based on the experiments of the subject,
which are independent and consistent with the set-
ting of experiments. Table 11 provides the outcomes
which present the proposed model as competition
to the modern outcomes. More particularly, the pro-
posed methods performed better than existing studies
on the datasets of eNTERFACEOS5 and acted RML
using over 5%. The performance is improved in the
proposed system from 51.29% to 54.57% on the spon-
taneous dataset. The comparison to the use of the
handcrafted features and the fusion methodologies
shallows for the integration of the visual and audio
modalities. Then, the merits of the proposed learned
features and techniques for fusion are provided (See
Fig. 9ato9c). Also, the proposed system enhances the
existing study on the dataset of RML from 74.32% to
80.36%. There are two enhancements to obtain (See
Figs. 10 and 11). They are (i) the proposed model
has the models of 3D-CNN for extracting the cues of
spatial and temporal from video to compared with the
models of CNN, and (ii) The fusion method of DLM
provides better fusion ability of multimodal feature
over the fusion method of FCFC is presented in the
proposed systems’ experiments.

Table 10 and Fig. 12 compare metrics like predic-
tion accuracy, error rate and MCC. The prediction
accuracy of the layered network model is 99% which
is 4%, 2.8%,5%, 4%, 4%, 4%, 1.6% and 0.2%
higher than hybrid CNN and NADE, CNN, CNN and
KELM, deep CNN with data augmentation, CNN-
GA, hybrid VGG16-NADE and ResNet+SE. The
error rate of the proposed model is 0.055, which is
lesser than other approaches. Generally, the MCC
value should range from -1 to 1; however, the pro-
posed model gives a better MCC value of 0.1253
while the others are 0.46, 0.45, 0.43, 0.46, 0.42, 0.35
and 0.26, respectively.
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6. Conclusion 09 . Roccurve

The multimodal system is proposed to operate on 0.85 L
the raw signal, which carries out the point-to-point
spontaneous prediction work of cognitive emotion
from the data of visual and speech. The LSTM (recur-
rent network) is concerned with contextual data.
The visual and speech networks are pre-trained in
the proposed system to fasten the model’s training
individually. Also, the recurrent layers have gate acti-
vations in the modality of speech, and the cells are ve

Sensitivity
o
©

©

Y

a
T

0.7 i

found which are greatly correlated, having the fea- 0 01 02 03 04 05 06 07 08 09
tures prosodic, which are assumed to cause arousal 1-Specificity

in the proposed system. Th.e proposed system obtains Fig. 11. ROC curve.

a better performance considerably on the test set by
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using the experiments carried out on the uni-modal
modality when compared with the other models with
the help of the available dataset, which has included
that is given to the challenge of establishing the learn-
ing features efficiency, which suits better for hand
work. The proposed model give 99%, 0.055 error rate
and 0.12 MCC which is substantially higher to other
approaches. Also, the proposed multimodal model

performs superiorly in both arousal and valence
dimensions than other models. The major research
constraint is the computational complexity where the
proposed model consumes time during execution as
it deals with three different multi-modal datasets.
The future study relies on analyzing behavior in the
wild nature of human expression. Incorporating more
modalities is done in the proposed system as physio
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Fig. 10. Prediction outcomes.
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Notations
AVEC Audio/Visual Cognitive Emotion
Challenge and Workshop
BAUM Bahcesehir University Multi-modal face
database
CNN Convolutional Neural Networks
E2E End-to-End network
DLM Dense Layer model
DNN Deep Neural Networks
FCL Fully Connected Layer
HMM Hidden Markov Model
MDAE Multimodal Deep Autoencoder
MFCC Mel-Frequency Cepstral Coefficients
MSDF Multi-scale Dense SIFT features
LLD Low-level Descriptors
LSTM Long Short Term Memory
LIBSVM Library of Support Vector Machine
MCC Mathews Correlation coefficient
NADE Normalized Auto-encoder and decoder
PNCC Power Normalized Cepstral Coefficients
RASTA PLP Relative Spectral Transform - Perceptual
Linear Prediction
ResNEt Residual Network
RBM Restricted Boltzmann Machine
RGB Red Green Blue
RML Ryerson Emotion dataset
RNN Recurrent Neural Networks
RVM Relevance Vector Machine

as the goal in the future to enhance the performance
to recognize the cognitive emotion works. Also, the
future system is intended to experiment with huge
cognitive emotion databases of discrete labels. It is
very attractive for experimenting with works over
recognizing cognitive emotion.
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