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Abstract
Northern Goshawk Optimization (NGO) is a recently proposed swarm-based optimization method that hunts like a northern 
goshawk. However, while the approach excels with many benchmark functions, it is incapable of dealing with the binary 
optimization problem. We proposed a binary variation of NGO for feature selection (FS) issues in classification tasks. We 
employed S and V-shaped transfer functions (TF) to convert continuous data to binary values. The suggested model is evalu-
ated based on six high dimensional micro array cancer datasets using the benchmark evaluation measures such as accuracy, 
fitness and number of features selected. To demonstrate the effectiveness of the suggested model, it is compared to traditional 
and recent binary versions metaheuristic algorithms. According to the findings, the S-shaped transfer function surpasses 
other transfer functions and classical models.

Keywords Feature selection · Micro array dataset · Binary optimization · Meta-heuristic optimization

1 Introduction

In machine learning (ML), FS is one of the well-known data 
pre-processing procedures (Tubishat et al. 2020). Its purpose 
is to reduce the number of features by deleting redundant and 
unnecessary elements. When doing feature reduction on a 
dataset, feature selection methods must take into account 
the accuracy of classification algorithms. In practice, FS 
is a typical strategy in ML for reducing dimensionality by 
eliminating unnecessary and redundant data from the raw 
dataset and reaching the ideal feature subset, which improves 
the speed and accuracy of classification algorithms (Nssibi 
et al. Jan. 2021). In reality, the purpose of feature selection 
is to choose a collection of m features from a total of n fea-
tures that enhances the learning algorithm's performance in 

terms of learning speed or classification accuracy (Zheng 
et al. 2019).

Irrelevant and superfluous characteristics may be removed 
from datasets using FS. In addition to misleading the learn-
ing algorithm and degrading performance, irrelevant and 
duplicated learning features significantly increase the com-
putational complexity and storage needs (Ibrahim et al. 
2017). FS techniques are divided into two categories: filter 
and wrapper (Zhu et al. 2007). Apart from determining the 
error rate, the filter technique evaluates the suitable rele-
vance of the features in the dataset (Lazar et al. 2012). The 
components with the lowest relevance score are eliminated 
from the dataset after comparing their relevance scores. 
Univariate and Multivariate are the types of filter methods 
(Tabakhi and Moradi 2015). The Univariate assesses each 
feature individually, whereas the Multivariate evaluates the 
features in reference to the connection between two or more 
qualities.

Feature scores may be evaluated using the filter method’s 
(Aladeemy et al. 2020) Information Gain (IG) (Kamkar et al. 
2015), Pearson correlation coefficient (Zheng et al. 2019), 
and Relief (Urbanowicz et al. 2018). The wrapper method 
searches the dataset for feature subsets and evaluates them 
(Abdel-Basset et al. 2021). The assessment requirements 
for the specified subset are met by employing learning 
algorithms to determine the feature subset with improved 
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accuracy. The wrapper approach explains the feature 
selection procedure in detail. Wrapper feature selection 
approaches include Differential Evolution (DE) (Gao et al. 
2012), ACO (Fahrudin et al. 2016), PSO (Shao et al. 2012), 
and Whale Optimization Algorithm (WOA) (Mirjalili and 
Lewis 2016). Wrapper strategies are more expensive than 
filter methods, but they are widely used to enhance the pre-
diction approaches’ performance because they interact with 
all of the dataset's features.

Researchers' curiosity was aroused by the discovery 
that metaheuristic (MH) algorithms had a lot of potential 
for solving the FS problem. The technique of merging ran-
dom and local search methods is known as MH algorithms. 
Utilizing a heuristic method and a clever fusion of several 
different concepts, this approach investigates and utilizes 
the search space. No optimization strategy is adequate for 
all applications, as per No-Free-Lunch theorem. To solve 
an issue, you must produce a novel approach to enhance 
existing optimization approaches via hybridization. Wrap-
per approaches that include effective search space strate-
gies serve to minimize time complexity and increase the 
predictive model’s performance. Evolutionary Algorithm 
(EA) (Rostami et al. 2021), Physics-based Algorithm (Gao 
et al. 2020), Swarm-based Algorithm (Zheng et al. 2015), 
and Human-based Algorithm (Zhu et al. 2014) are the four 
types of population-based MH algorithms. Genetic Algo-
rithm (GA) (Dhanalakshmi et al. 2009), Harmony Search 
(Diao and Shen 2012), Clonal Selection Algorithm (Ding 
and Li 2009), and Differential Evolution (Liu et al. 2020), 
which is inspired by natural evolution, are all part of the EA. 
Ions Motion Optimization (Javidy et al. 2015), MOA (Taya-
rani and Akbarzadeh 2008), and GSA (Rashedi et al. 2018) 
are physics-based approaches that claim to be the physical 
leaders of the natural world. PSO, WOA, and the Dragon-
fly Algorithm (Mirjalili 2016) are swarm-based algorithms. 
League Championship Algorithm (Husseinzadeh Kashan 
2014), FA (Li et al. 2017), and MBA (Sadollah et al. 2012) 
are examples of human-based algorithms. However, fulfill-
ing these objectives is difficult, especially if a strategy that 
can be extended to other domains is required. This encour-
ages researchers to improve on previous techniques, which 
keeps the research area alive. When it comes to solving an 
optimization problem, multimodal functions have a lot of 
dimensions, making it difficult to find an ideal value for 
all of them at the same time. This is why researchers use 
meta-heuristic approaches to tackle these kinds of problems, 
with the objective of finding the best answer in a reasonable 
amount of time. In order to meet these needs, research is 
now underway. We used the northern goshawk optimization 
(NGO) (Dehghani et al. 2021) algorithm to create a hybrid 
meta-heuristic FS approach.

The northern goshawk is a raptor whose hunting approach 
is based on optimization. The northern goshawk uses this 

method to first pick and attack its target, after which it pur-
sues the animal in a pursuit. This knowledge gap prompted 
the authors to create a novel optimization technique based 
on mathematical modelling of the northern goshawk's hunt-
ing tactics. It simulates the hunting behavior of northern 
goshawks. The suggested NGO algorithm's many phases are 
stated and then mathematically represented. It consists of 
two stages, in the first, it travels quickly towards the prey 
after spotting it, and next it chases the prey in a brief tail 
chase procedure. It outperforms cutting-edge MH algorithms 
in terms of exploration, exploitation, local optima, and pre-
mature convergence. Due to the advantages of NGO as well 
as the reality that it hasn't been applied to solve FS issues, 
getting the best features in FS is a challenging task, espe-
cially in wrapper-based methods. This is owing to the fact 
that each optimization step requires a learning algorithm. As 
a result, a suitable optimization technique is necessary; we 
provide a solution to the FS problem. Binary approaches are 
required to solve problems involving discreate search spaces.

We develop the binary NGO since the discrete search 
space cannot be solved by NGO. We suggest utilising a 
BNGO to handle the FS problem since binary arithmetic 
is simpler than continuous arithmetic and the search space 
may be specified in binary values [0, 1] depending on the 
nature of the FS probability.

The following are the primary findings of this study:

• There are two binary versions of the recommended 
NGO (V-BNGO and S-BNGO). Due to larger popu-
lation variety, the continuous search space is mapped 
to utilising two transfer functions, which increases the 
NGO's present search capability.

• Six distinct benchmark datasets were tested on impor-
tant features responsible for life-threatening disease.

• Assessment of suggested approach using, classification 
accuracy, p- statistical value, convergence rate, fitness 
function and complexity analysis.

• Validating the proposed methodology in comparison 
with conventional techniques such as HHO, SSA, SCA, 
MFO and classical NGO and binary versions such as 
Binary Harris Hawk Optimization, Binary Manta Ray 
Forging Optimization, Binary Atom search Optimiza-
tion, Binary Marine Predator, Binary moth-flame opti-
mization, Binary Gradient-based optimizer and Binary 
Artificial Algae Algorithm.

The remaining section organized as follows: Sect. 2 
deals with the recent related work followed by Sect. 3 
discuss the mathematical model of the NGO. Section 4 
deals with the proposed binary NGO for feature selection 
followed by the experimental results and discussion on 
Sect. 5. The final Sect. 6 elaborates the conclusion and 
future scope.
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2  Related works

Emary et al. (2016) proposed the binary-firefly algorithm, 
to solve FS issues based on threshold value. The recom-
mended method underwent extensive testing and was 
able to come up with a straightforward approach to the 
issue. Taghian and Nadimi-Shahraki (2019) suggested a 
binary form of SCA for the FS issue that was designed 
specifically for medical data. Binary variations of the V 
and S-shaped binary sine cosine algorithms are suggested 
in this work. The recommended methods are compared 
to four of the most current binary optimization strategies 
on five medical datasets. The selected subset is evaluated 
using the K-nearest Neighbor (KNN) classifier. The exper-
imental findings demonstrate that the suggested technique 
can match or even surpass current models on the larg-
est datasets. In another work, binary version of the Jaya 
method for FS, based on binary similarity measurements. 
The usual two TFs are employed in this study, as well 
as a novel Jaccard similarity (JS) based approach. Fur-
thermore, neighborhood search, a probability-based local 
search approach, is provided to balance exploration and 
exploitation. B Jaya-JS also has a faster convergence rate 
than competitive approaches across most datasets (Chaud-
huri and Sahu 2021).

The authors presented a binary variation of the local 
search algorithm-hill climbing for FS in another paper. The 
S-shaped TF converts the data into binary form. A collection 
of 22 benchmark datasets is used to assess the suggested 
technique. Variable configurations, transfer function effect, 
used classifier effect, and comparisons to other local search-
based approaches and population-based algorithms using the 
same UCI datasets are all part of the evaluation process. 
Three classifiers are employed to assess classification accu-
racy (KNN, Support Vector Machine (SVM) and Decision 
Tree (DT)). The K-NN is used in the recommended approach 
since it has the best performance (Ghosh et al. 2020). For 
FS issues, authors suggested a binary butterfly optimiza-
tion algorithm (BBOA) in another work. BOA's two binary 
variants are utilised to find the optimum feature. The recom-
mended binary algorithms are compared to five conventional 
approaches and four current high-performing optimization 
algorithms (Aroraa and Anand 2019). In the Binary Gravi-
tational Search Algorithm (BGSA), the authors proposed 
a population based on clustering for FS. The authors pre-
sented a binary variation of Moth Flame Optimization for 
FS, which uses eight distinct TFs: S-shaped and V-shaped, 
to fit it inside the FS. For FS issues, the authors presented a 
binary form of the competitive swarm optimizer approach 
(Rashedi and Nezamabadi-pour 2009).

In another work authors introduces an improved grass-
hopper optimization algorithm (GOA) based on OBL and 

called as OBLGOA (Too and Saad 2019) to resolve major 
MH approaches. It involves two stages, first stage initial-
izes population and its opposition using OBL and during 
its second stage, it applies OBL scheme to update the GOA 
population at each iteration. Totally, four engineering 
problems and 23 benchmarks functions are considered to 
measure the performance of proposed scheme and compar-
ison is made with other MH algorithms to prove the pro-
posed scheme’s quality work. The Moth swarm algorithm 
(MSA) is enhanced by Diego Oliva et. al and address the 
limitation of MSA (Ghosh et al. 2021) like convergence 
ability and high complexity in selecting optimal feature 
set. This enhanced version of MSA merges OBL scheme 
to provide good exploration ability and faster convergence. 
The testing is done to solve three engineering problems 
and nineteen benchmark functions including unimodal, 
multimodal and composite functions. The comparisons 
done here are validated against other conventional meth-
ods and outcomes shows superior performance attained by 
proposed MDSA in all statistical measurement.

In another research, the authors (Rai et al. 2022a) exam-
ined Human-Inspired Optimization Algorithms (HIOAs) 
components, categorization, common structure, applica-
tions, and prior work. Using human behavior and cogni-
tion, it optimized Multi-Level Thresholding (MLT) for color 
satellite image segmentation using Tsallis’ and t-entropy 
objective functions. The research found that several HIOAs’ 
objective functions for color satellite image segmentation 
were suitable, with t-entropy's efficacy based on thresh-
old levels. Increasing thresholds increased FSIM, PSNR, 
and SSIM for both objective functions. Despite threshold 
settings, all experimental HIOAs and PSO using Tsallis 
entropy as the objective function had high fitness values. 
These results demonstrate the potential of HIOAs to solve 
real-world optimization challenges, emphasizing the neces-
sity for research methodologies to identify and choose suit-
able HIOAs. In another research, the authors (Rai et al. 
2022b) reviewed image segmentation, Multilevel Thresh-
olding (MLT) which is crucial, especially when analysing 
segmented parts of multidimensional pictures and dealing 
with complicated non-linear scenarios. Nondeterministic 
methods are required due to the complexity of the objective 
function in MLT, making it a difficult exponential combina-
torial optimisation issue. Therefore, scientists have started 
using NIOAs (Nature-Inspired Optimisation Algorithms) 
to solve MLT problems. This research examines the most 
recent developments (from 2019 to 2021) in NIOA-based 
models for image multi-thresholding and the main prob-
lems connected with them. In another research, the authors 
(Dhal et al. 2022) introduce an enhanced version of Cuckoo 
Search (CS). This enhanced version involves allocating each 
solution in the population to one of two fuzzy sets based 
on its fitness. To improve the solutions, fuzzy collection 
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centroids, recommendations from the best global solutions, 
and mutations based on the Lévy distribution are employed. 
The experimental study evaluates the performance of this 
approach using the CEC-2014 test suite and the domain of 
picture multi-level thresholding, utilizing widely recognized 
objective functions such as Otsu inter-class variance and 
Kapur’s entropy. A comparison is made with several other 
algorithms which consistently delivers excellent results. The 
author presents (Rostami et al. 2021) a thorough examina-
tion of feature selection techniques in a separate study. This 
research encompasses an extensive overview, classifica-
tion, and comparison of these techniques. Furthermore, the 
study focuses on the latest advancements in feature selection 
techniques that leverage cutting-edge algorithms inspired by 
swarm intelligence. The relative strengths and weaknesses 
of various swarm intelligence-based approaches for feature 
selection are analyzed and contrasted, providing valuable 
insights into their effectiveness.

Binary Particle Swarm Optimization (BPSO) is a sug-
gested evolutionary computing technique that performs well 
in feature selection issues, according to a separate area of 
research. The transfer function is used to map the continuous 
search space onto the discrete one. In BPSO, transfer func-
tions are crucial. This study presents a more effective BPSO 
by fusing V-shaped and U-shaped transfer functions, as well 
as introducing a novel learning method and a local search 
technique based on adaptive mutation. The enhanced BPSO 
has more optimization potential, especially when used to 
the feature selection issue. The experimental findings dem-
onstrate that the enhanced BPSO outperforms competing 
algorithms in terms of its dimension reduction capability 
and classification performance (Chen et al. 2023).

In a separate study, the researchers proposed an 
enhanced search technique for MTS known as the Binary 
Whale Optimisation Technique (BWOA). The objective 
of this research is to provide an innovative approach for 
enhancing the efficacy of the Mahalanobis Taguchi System 
(MTS) via the development of a novel combination tech-
nique. Various MTS hybrid algorithms were also evaluated 
in terms of their efficacy in feature selection. The Bio-
geography-Based Optimisation Algorithm (BWOA) emu-
lates the hunting behaviour of humpback whales via a sys-
tematic approach that involves exploration of unexplored 
regions within the solution space, incremental reduction 
of the search space, and refinement of the solution (Huan 
et al. 2023). Two wrapper feature selection (FS) meth-
ods were presented in another research; they use a hybrid 
version of the ant colony optimisation (ACO) algorithm. 
There has not been a lot of research done on HRO, a novel 
metaheuristic that mimics three-line hybrid rice breed-
ing, for high-dimensional FS problems. During the first 
iteration of the hybridization, ACO is updated in a coun-
terbalanced fashion with HRO, which is an evolutionary 

operator. The second kind of hybridization allows for two 
populations to evolve in parallel while sharing information 
about their own local search spaces. To enhance ACO's 
global search capabilities in identifying the smallest and 
most representative features, a problem-oriented heuristic 
factor assignment approach based on the knee point feature 
is applied prior to hybridization (Ye et al. 2023).

To aid with feature selection (FS) for classification tasks 
using datasets from the IoMT, the authors of another work 
offered a binary version of AO (BAO). We employed a total 
of 12 transfer functions (TF) designed in the shape of S, U, 
and V to convert continuous data into binary values. The 
analysis of the proposed transfer functions indicates that Bar-
yon Acoustic Oscillation (BAO) techniques exhibit superior 
performance compared to other transfer functions, particu-
larly S2-BAO. In contrast to conventional transfer functions, 
the proposed methodology, which involves the identification 
of optimal features, fitness values, and enhanced classifi-
cation accuracy, achieves convergence to the global mini-
mum over multiple iterations (Dhanalakshmi and Nallagorla 
2022). In another work, the authors presented a BAVOA 
that uses an S-shaped and V-shaped eight-transfer function 
to change a continuous variable into a binary one. Using 
14 standard data sets, 15 traditional binary metaheuristics 
algorithms are compared to the suggested method in terms 
of classification accuracy, fitness function, number of chosen 
features, and ability to converge. The Wilcoxon test is also 
used to interpret the data statistically. The results of compar-
ing the S-shaped and V-shaped transfer functions show that 
BAVOA methods, especially S2-BAVOA, work better than 
other transfer functions(Balakrishnan et al. 2022).

3  Mathematical model of northern goshawk 
optimization

This section deals with the background and mathematical 
model of NGO.

3.1  Initialization

The approach is spirited into two parts, with the first stage 
consisting of a high-speed chase after spotting the prey, and 
the second stage consisting of a brief tail chase after spot-
ting the prey. Each NGO population participant provides 
a potential response to the issue that generates the values 
of the variables. The population members in the search 
space are randomly initialised at the start of the procedure. 
Equation 1 is used to calculate the population matrix in the 
NGO method. Equation 2 may be used to express the values 
acquired for the objective function (OF) as a vector.
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where Vi is the OF value acquired by the ith suggested solu-
tion and V is the vector. It serves as a criterion for determin-
ing which option is the best. The better the recommended 
solution in minimization issues is the lower the objective 
function value, while the better the proposed solution in 
maximizing problems is the higher the objective function 
value.

3.2  Exploration

In the initial phase of hunting, The Northern Goshawk quickly 
launches an assault on a victim it chooses at random. This 
phase improves the NGO’s ability for exploration because 
to the randomly chosen of prey in the search space. Equa-
tions 3–5 are used to mathematically model the notions pro-
vided in the first phase.

(1)X =

|||||||

x1,1 … x1,d … x1,m
xi,1 ⋱ xi,d ⋱ xi,m
xN,1 … xN,d … xN,m

|||||||

(2)V(X) =

|||||||||||

V1 = V
(
X1

)

⋮

Vi = V(Xi)

⋮

VN = V(XN)

|||||||||||

(3)Pi = Xk

(4)Xi
new,p1

j
=

{
xi,j+r(pi,j−Ixi,j
xi,j+r(xi,j−pi,j

where Pi is the ith northern goshawk’s prey position.

3.3  Exploitation

The northern goshawk attacks the victim, which then makes 
an effort to escape. The northern goshawk thus keeps up its 
tail-and-chase hunting strategy. By imitating this behaviour, 
the algorithm's capability for local search of the search space 
is boosted. In the recommended NGO approach, this hunting 
is expected to be near to an attack point with a radius of R. 
Equation 6 through Eq. 8 is used to mathematically model 
the notions provided in the second phase.

4  The proposed binary northern goshawk 
optimization

Mirjalili and Lewis introduced TF for continuous method to 
binarization. Using Eq. (9). Kennedy and Eberhart initially 
designed an S-shaped TF, as shown in Fig. 1a, to convert 

(5)xi =

{
Xi

new,p1

j
,V

new,p1

i
< Vi

Xi,V
new,p1

i
≥ Vi

(6)Xi
new,p2

j
= xi,j + R(2r − 1)xi,j

(7)R = 0.02

(
1 −

t

T

)

(8)i =

{
Xi

new,p2

j
,V

new,p2

i
< Vi

Xi,V
new,p2

i
≥ Vi

Fig. 1  a S-TFs and b V-TFs
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continuous PSO to binary. For GSA binarization, use the 
V-shaped function shown in Fig. 1b in Eq. (10).

The members of the feature subset in the future iteration 
are adjusted in the second stage using Eqs. (11) and (12).

S-BGNO and V-BGNO are two new binary whale opti-
mization algorithms for feature selection. S-BGNO uses an 
S-shaped transfer function, while V-BGNO uses a V-shaped 
transfer function. The transfer functions are used to convert 
continuous values to binary values. The binary values are 
then used to represent the feature subset. The S-BGNO algo-
rithm starts with a population of whales, where each whale 
represents a possible solution to the feature selection prob-
lem. The whales are then iteratively updated using a search 
strategy that is inspired by the bubble-net hunting strategy 
of whales. The bubble-net hunting strategy is a search strat-
egy that is used by whales to catch prey. In the bubble-net 
hunting strategy, the whales create a bubble net around their 
prey. The bubble net traps the prey and makes it easier for 
the whales to catch. The V-BGNO algorithm is similar to 
the S-BGNO algorithm, but it uses a different transfer func-
tion. The V-BGNO algorithm uses a V-shaped transfer func-
tion, while the S-BGNO algorithm uses an S-shaped transfer 
function. The iteration process for both algorithms is the 
same. The iterative process involves the following steps:

1. Initialization: Initialize the population of binary solu-
tions using S-BNGO or V-BNGO, depending on the 
chosen algorithm.

2. Fitness Evaluation: Evaluate the fitness of each binary 
solution in the population using the fitness function 
defined in Eq. (13). This fitness function considers both 
the robustness measure R(D) and the ratio of selected 
features to the total number of features (|R|/|N|).

3. Iteration: Perform iterative updates to improve the solu-
tions. In each iteration, the transfer functions (Eqs. 9 and 
10) are used to convert the continuous values to binary 
representations.

4. Feature Subset Selection: After each iteration, the fea-
ture subset is selected based on certain criteria. These 

(9)S(x
j

i
(t) =

1

1 + e−x
j

i
(t)

(10)S(x
j

i
(t) =

|||tanh(x
j

i
(t))

|||

(11)x
j

i
(t + 1) =

{
0ifrand < S(x

j

i
(t + 1)

1otherwise

(12)x
j

i
(t + 1) =

{
∼ x

j

i
(t)rand < S(x

j

i
(t + 1)

x
j

i
(t)otherwise

criteria may include the minimal number of selected 
features and the highest rating accuracy, as mentioned 
earlier.

5. Termination: The iterative process continues until a 
stopping criterion is met, such as reaching a maximum 
number of iterations or achieving a desired level of con-
vergence.

We compared the performance of S-BGNO and V-BGNO 
with other feature selection algorithms. The results showed 
that S-BGNO and V-BGNO outperformed the other algo-
rithms in terms of fitness value and average number of 
selected features.We also investigated the impact of different 
parameters on the performance of S-BGNO and V-BGNO. 
The results showed that the performance of S-BGNO and 
V-BGNO is sensitive to the choice of parameters. We iden-
tified the optimal settings for the parameters using a grid 
search.

Figure 2 depicts the comprehensive process flow of the 
BNGO. The prediction model is evaluated using the KNN 
classifier. The reduced feature set is divided into two divi-
sions using the tenfold cross-validation (CV) method: train-
ing and testing. Two opposing measures determine the 
acceptability of a subset of qualities: the minimal features 
selected and the greatest rating accuracy. The suggested 
algorithm's fitness function is defined by Eq. (13).

5  Experimental results and discussion

5.1  Overview of the datasets

The National Center for Biotechnology Information (https:// 
www. ncbi. nlm. nih. gov) and the public repository (http:// 
csse. szu. edu. cn/ staff/ zhuzx/ Datas ets. html), were used to 
provide the datasets for this study (Too and Abdullah 2020) 
(Table 1).

5.2  Comparison of classical NGO, S‑shaped 
and V‑shaped B‑NGO TFs

Table.2 shows the parameter settings of MH algorithms. In 
the general setting, the population size is set to 50, indicat-
ing the number of individuals in each iteration. The number 
of iterations is defined as 100, indicating the total number 
of times the algorithms will iterate. For the Whale Opti-
mization Algorithm (WOA), the exploration factor (a) is 
set to 2, and the spiral updating coefficient (b) is set to 0. 
Additionally, the intensity of spiral updating is specified as 

(13)Fitness = ��R(D) + �
|R|
|N|

https://www.ncbi.nlm.nih.gov
https://www.ncbi.nlm.nih.gov
http://csse.szu.edu.cn/staff/zhuzx/Datasets.html
http://csse.szu.edu.cn/staff/zhuzx/Datasets.html
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0.5, which determines the strength of the spiral movement 
during optimization. In the Salp Swarm Algorithm (SSA), 
the initial search space is determined by the number of col-
umns in the input data. The leader score is set as positive 
infinity (∞), indicating that the best score is not bounded. 
The leader position is defined as an array  (ai,j) of size 1*D, 

where  ai,j represents an element at row i and column j. In 
this case, all elements are set to 0, and j ranges from 1 to 
the number of columns (D) in the input data. The Harris 
Hawks Optimization (HHO) algorithm incorporates a Beta 
(Β) value of 1.5, regulating the degree of exploration and 
exploitation in the search process. Additionally, the epsi-
lon (|E|) parameter is specified as a value between 0 and 

Fig. 2  Proposed binary NGO approach

Table 1  Dataset overview

Name Total features Total samples

D1 Breast cancer 24,481 97
D2 Central nervous 

system (CNS)
7129 60

D3 Colon cancer 2000 60
D4 Leukemia 7129 72
D5 Oral squamous 

cell carcinoma 
(OSCC)

41,003 50

D6 Ovarian 15,154 253

Table 2  Parameter settings

General setting Population size: 50
Number of iterations: 100

WOA a, b (2, 0), 0.5
SSA Initial search space, 

Leader score, leader 
position

No of columns in input 
data, + ∞,  (ai,j)1*D, ∀ 
 ai,j = 0, j ∈ D

HHO Β 1.5, |E|�(0, 2)
MFO a, b [− 2, − 1], 1
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2, exclusive, denoting a range of values that can be chosen 
within the defined bounds. In the Moth Flame Optimization 
(MFO) algorithm, parameter ‘a’ is represented by an array 
[− 2, − 1], influencing the search behavior. The parameter 
‘b’ is set to 1, determining the significance of the respec-
tive component in the optimization process. The ideal subset 
served as the basis for the trial-and-error determination of 
these parameters, and KNN predictions suggest that it is 
preferable to exactly eliminate the overfitting issue of the 
five subgroups.

Figures 3, 4 and 5 show the results of the two TF classes 
in terms of accuracy, selected characteristics and fitness 
metrics. Figure 2 shows the classification accuracy of the 
suggested model via classical MH approaches. From Fig. 2, 
the average accuracy value for NGO, S-bNGO and V-bNGO 
are 0.68, 0.79 and 0.75 respectively.

This indicates that there are almost 73% on an average 
of S-b and V-b NGO methods accurate positive predictions 

made for counterpart NGO algorithm. Among NGO, S-b 
and V-b NGO, S-b NGO outperforms the other counter-
part algorithm by retaining 79% of prediction of correctly 
identified cases.

Figure 4 shows the number of features selected using 
NGO, S and V Shaped binary NGO. The average number 
of features selected for NGO, S-BNGO and V-BNGO are 
10.77, 8.5 and 11.46 respectively. This indicates that there 
are almost 9% on an average of S-b and V-b NGO methods 
accurate features are selected against the counterpart NGO 
algorithm. Among all the algorithms outperforms the other 
counterpart algorithm by retaining least percentage 8% 
of features selected which indicates the high degree of 
dimensionality reduction.

Fig. 3  Comparison of classifica-
tion accuracy NGO, S-shaped 
and V-shaped TFs

Fig. 4  Comparison of number 
of features selected in NGO, 
S-shaped and V-shaped TFs
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5.3  Comparison with recent binary MH approaches

In the next experiment, the evaluation of the suggested 
model is assessed with the different recent binary versions 
such as Binary Harris Hawk Optimization (Too and Saad 
2019), Binary Manta Ray Forging Optimization (Ghosh 
et al. 2021), Binary Atom search Optimization (Too and 
Abdullah 2020), Binary Marine Predator (Elminaam et al. 
2021), Binary moth-flame optimization (Nadimi-Shahraki 
et al. 2021), Binary Gradient-based optimizer (Jiang et al. 
2021) and Binary Artificial Algae Algorithm (Bahaeddin 
Turkoglu and Uymaz 2022). Modern binary MH algorithms' 
parameter settings are displayed in Table 3. Table 3 presents 
the parameter settings for the different binary optimization 
algorithms being evaluated in the experiment. These settings 
play a crucial role in guiding the behavior and performance 
of each algorithm during the optimization process. To ensure 
a fair comparison, a common set of general parameters is 
applied to all algorithms. The population size is set to 50, 
determining the number of candidate solutions explored in 
each iteration. The maximum number of iterations is set to 

100, defining the stopping criterion for the optimization 
process. For each specific algorithm, additional parameters 
are defined to fine-tune its behavior. The selection of these 
parameters is based on an ideal subset, which serves as a 
reference for determining the best values through a trial-
and-error approach. In the case of Binary Harris Hawk Opti-
mization (BHHO), the parameter β is set to 1.5. This value 
influences the exploration and exploitation balance within 
the algorithm, affecting the search space exploration capa-
bility. Binary Atom search Optimization (BASO) employs 
three parameters: α, β, and Vmax. α is set to 50, β to 0.2, and 
 Vmax to 6. These parameters control the movement and inter-
action of individuals within the population, guiding their 
search towards optimal solutions. Binary Marine Predator 
(BMPA) utilizes two parameters: FADs and p. FADs is set 
to 0.5, representing the fraction of population individuals 
acting as predators. The parameter p is also set to 0.5, deter-
mining the probability of prey individuals being captured 
by the predators.

Binary moth-flame optimization (BMFO) relies on a sin-
gle parameter, b, which is set to 1. This parameter influences 
the movement of individuals towards the best solutions, bal-
ancing exploration and exploitation.

Binary Gradient-based optimizer (BGBO) incorporates 
three parameters: α, β, and k. α is set to 0.99, β to 0.01, and 
k to 5. These parameters govern the search direction and step 
size during the optimization process.

Lastly, Binary Artificial Algae Algorithm (BAAA) 
involves three parameters: Share Force, e, and adaptation. 
Share Force is set to 2, influencing the interaction between 
individuals. The parameter e is set to 0.2, affecting the 
exploration and exploitation trade-off. Adaptation, set to 
0.3, determines the adaptability of individuals to changing 
environmental conditions.

Fig. 5  Comparison of fitness 
value

Table 3  Parameter settings

S. no. General Population size: 50
Max iter: 100

T1 BHHO � 1.5
T2 BMRFO – –
T3 BASO �, �, Vmax 50, 0.2, 6
T4 BMPA FADs, p 0.5, 0.5
T5 BMFO b 1
T6 BGBO �, �, k 0.99, 0.01, 5
T7 BAAA Share force, e, adaptation 2, 0.2, 0.3
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The ideal subset served as the basis for the trial-and-error 
determination of these parameters, and KNN predictions 
suggest that it is preferable to exactly eliminate the overfit-
ting issue of the five subgroups.

Figure 6 shows the classification accuracy reached by 
the proposed SBNGO technique versus traditional binary 
MH algorithms for each dataset. According to Fig. 6, the 
D5 datasets maintained the greater classification accuracy 
on BMPA while the S-BNGO kept the greatest classifica-
tion accuracy on 5 datasets (D1-D4 and D6). The impor-
tant adjustments are seen in relation to other traditional MH 
algorithms. The top spot is taken by S-BNGO, then BMPA. 
According to about 83% of the data, the suggested model 
maintained its superior classification accuracy.

Table  4 shows that, out of a possible six datasets, 
S-BNGO received the lowest fitness value. The D4 

datasets in this investigation failed to attain the lowest 
fitness value. Here, the text's bold language highlights the 
finest fitness values. This leads us to the conclusion that 
S-BNGO scored the highest with 5 datasets, followed by 
BMPA with 2 datasets and BASO with 1. In this investiga-
tion, the best fitness value was attained for about 83.3% of 
the datasets. The remaining traditional binary MH algo-
rithms in this situation were unable to produce the best 
outcomes in terms of fitness value. On the five datasets in 
Table 5, S-BNGO received the lowest score for the num-
ber of chosen features, with D2 receiving the next-lowest 
score. S-BNGO scored five datasets, followed by BMPA 
on one dataset, in terms of scoring. A modest number of 
the chosen characteristics on S-NGO were obtained by 
83.3% of the datasets used in the study. We may thus draw 
the conclusion that S-NGO performs better than other 

Fig. 6  Classification accuracy

Table 4  binary MH in terms of 
fitness value

Dataset T1 T2 T3 T4 T5 T6 T7 S-BNGO

D1 0.152 0.65 0.203 0.098 0.18 0.5256 0.192 0.091
D2 0.087 0.563 0.281 0.092 0.11 0.892 0.325 0.072
D3 0.792 0.812 0.091 0.495 0.579 0.078 0.286 0.045
D4 0.725 0.689 0.012 0.203 0.252 0.012 0.354 0.082
D5 0.072 0.035 0.032 0.319 0.2 0.005 0.092 0.005
D6 0.481 0.625 0.095 0.175 0.355 0.081 0.125 0.022
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binary MH methods in terms of fitness and average num-
ber of features selected.

Adapted from Fig. 7. It is deduced that the majority of 
the S-NGO dataset requires fewer operations to find the 
best answer, but other approaches are not even convergent, 
as seen by continual convergence. S-NGO, the suggested 

technique, pushes inexorably toward the best overall solu-
tion and produces considerable results. The convergence 
curve findings reveal that the proposed S-NGO technique 
outperforms in terms of speed, implying that S-NGO is bet-
ter at finding optimal solutions for varied data sets in fewer 
epochs.

Table 5  Comparison with 
binary MH in terms of average 
selected features

Dataset T1 T2 T3 T4 T5 T6 T7 S-BNGO

D1 16.25 11.59 14.52 15.2 12.25 15.56 14.55 11.64
D2 14.25 11.59 8.93 12.87 11.51 7.25 9.28 7.96
D3 11.36 15.23 10.35 10.25 9.26 8.92 10.25 5.91
D4 10.55 12.25 14.26 7.9 10.55 5.26 7.9 4.48
D5 12.52 10.25 10.32 14.62 11.01 11.26 9.52 10.32
D6 12.56 15.94 12.03 13.39 11.38 10.86 10.99 10.86

Fig. 7  converging ability
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5.4  Comparison with recent MH approaches

Table.6 shows the comparison of various MH approaches 
for the average number of features.

Among the lowest range values, the proposed technique 
gives the lowest of the lowest values with an average of 
8.52, indicating the closest solutions. The average difference 
in improvement between WOA and SSA, SSA and SCA, 
SCA and HHO, HHO and MFO, the proposed techniques 
is 1.9%, 2.0%, 1.4%, 0.9, 6.8% and 2.8% respectively. This 
shows that all algorithms have lower fitness function val-
ues. With the exception of the high-dimensional CNS data 
set, the proposed method scored lower fitness values than 
the conventional algorithms in all five data sets. Leukemia 
had the lowest fitness score of 5 records, followed by colon, 
CNS, OSCC, ovarian, and breast cancers.

From Table 7, SbNGO had a higher classification accu-
racy in the four datasets (OSCC, colon, leukemia and CNS). 
Based on the selected characteristics, SbNGO was observed 
to have superior performance on four datasets (OSCC, colon, 
leukemia and CNS). The average difference in improvement 
between WOA and SSA, SSA and SCA, SCA and HHO, 
HHO and MFO, the proposed techniques is 3%, 5%, 4%, 

1.7%, 1% and 1.5% respectively. All algorithms have higher 
classification values of more than 45%, which indicates the 
common ground of choosing algorithms of similar perfor-
mance for validating the efficacy of the proposed algorithm. 
The algorithms WOA and MFO have similar performance 
irrespective of the dataset. The potential of the suggested 
S-bNGO to effectively discover the solutions search space 
and discover the optimal feature subset with the maximum 
classification accuracy is demonstrated by having highest 
classification accuracy of 79% followed by WOA, and MFO 
algorithms.

Form Table 8, the proposed technique gives the low-
est of the lowest fitness values with an average of 0.05, 
indicating the closest solutions. The average difference in 
improvement between WOA and SSA, SSA and SCA, SCA 
and HHO, HHO and MFO, the proposed techniques is 0.48, 
0.34, 0.52, 0.47, 0.33 and 0.72 respectively. This shows that 
all algorithms have lower fitness function values. With the 
exception of the high-dimensional CNS data set, the sug-
gested approach achieved lower fitness values than the other 
approaches in all five data sets. Leukemia had the less fitness 
followed by colon, CNS, OSCC, ovarian, and breast cancers 
for the S-BNGO proposed method.

Table 6  Comparison of MHs 
in terms of average number of 
selected features

Dataset WOA SSA SCA HHO MFO S-bNGO

D1 21.62 18.39 18.50 15.94 17.59 11.64
D2 8.96 14.94 8.39 7.98 9.53 7.96
D3 6.26 9.21 10.96 5.98 5.95 5.91
D4 8.85 18.26 8.56 9.29 5.26 4.48
D5 29.22 29.46 26.29 24.92 18.55 10.32
D6 14.62 21.59 16.69 12.56 19.86 10.86

Table 7  Comparison between 
S-bNGO of classification 
accuracy

Dataset WOA SSA SCA HHO MFO S-bNGO

D1 0.48 0.48 0.50 0.50 0.48 0.53
D2 0.61 0.71 0.39 0.57 0.62 0.84
D3 0.82 0.64 0.86 0.75 0.77 0.89
D4 0.71 0.86 0.74 0.74 0.81 0.95
D5 0.95 0.75 0.75 0.90 0.86 0.95
D6 0.49 0.50 0.49 0.51 0.50 0.60

Table 8  Comparison between 
S-bNGO with fitness value

Dataset WOA SSA SCA HHO MFO S-bNGO

D1 0.22486 0.52620 0.75262 0.20865 0.62515 0.09138
D2 0.28956 0.59232 0.10562 0.16528 0.19205 0.07262
D3 0.27826 0.15350 0.36265 0.16356 0.52326 0.04526
D4 0.26326 0.62051 0.47262 0.05916 0.09562 0.02201
D5 0.23381 0.39261 0.09520 0.09656 0.12692 0.05900
D6 0.15546 0.55684 0.082610 0.19567 0.13209 0.02210
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5.5  Computational complexity analysis

This section looks at the computational difficulty of the 
BNGO FS approach that was put out in this study. The 
temporal complexity is summarised as follows:

Step 1: Initialization
O(n*d) time complexity is needed for initialization, 
where n is the population size of northern goshawks 
and d is the dimension space.
Step 2: Update function
Each induvial position of the population has to be 
updated, which O(n*d).
The amount of time required to map each population to 
the binary space O (n*d). o
The update phase also demands O(n*d*t) with the max-
imum iteration O(t)
The suggested model's computational complexity is 
O(n*d*t).

6  Conclusion and future scope

In conclusion, our study provides a binary NGO approach 
for feature selection in high-dimensional microarray can-
cer datasets. The recommended technique increases Binary 
NGO exploration and use by increasing population varia-
tion during startup. After each cycle, NGO balances global 
and local searches to find the global optimal without cap-
turing the local ideal. V- or S-shaped TFs (eight functions) 
convert continuous NGO to binary. Six high-dimensional 
data sets from free sources were used to evaluate the rec-
ommended strategy and compare it to its next-generation 
rivals. S-shaped transfer functions outperform NGO and 
V-shaped transfer functions in accuracy, feature selection, 
and fitness. Five conventional metaheuristic optimisation 
approaches and seven current binary MH algorithms are 
compared to the S-shaped transfer function. Findings show 
that the S-shaped transfer function outperforms compet-
ing models. Additionally, the AVOA algorithm and KNN 
classifier effectively analyse the training data, reducing 
the cost of the feature set selected from the data set. The 
tenfold cross-validation approach enhances feature selec-
tion by (1) compressing training and validation accuracy 
and (2) balancing bias and variance. This helps avoid over-
fitting concerns. Binary NGO might be used for many 
public data sets and practical applications and coupled 
with other classifiers to improve current methods. Addi-
tionally, numerous MH algorithms may be hybridised to 
solve a variety of engineering multi-objective optimisation 
problems.
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