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Abstract. Microgrids (MGs) have become a reliable power source for supplying energy to rural areas in a secure, consistent,
and low-carbon emission manner. Power quality disturbance (PQD) is a common issue that reduces the MGs networks’
reliability and restricts its usage on a small scale. The performance, reliability and lifetime of the various power devices can be
affected due to the problem of PQD in the network. Researchers have proposed numerous PQD monitoring techniques based on
artificial intelligence. However, they are limited to low margins and accuracy. So, this paper suggests a novel hyperparameter-
tuned or optimized deep learning model with an attention-based feature learning mechanism for PQD prediction. The critical
stages of the proposed work, such as data collection, feature extraction, and PQD prediction, are as follows. The PQD signals
are first produced using the IEEE 1159 standard. Following that, the original time-domain features are directly recovered
from the dataset, and the frequency-domain features using discrete wavelet transform (DWT). The extracted features were
fed into visual geometry group 16 with multi-head attention and optimal hyperparameter-based bidirectional long short-term
memory (V16MHA-OHBM) to perform spatial and temporal feature extraction. These extracted features are concatenated
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and given to the fully connected layer to forecast the PQD. The results showed that the suggested approach surpasses the
prior state-of-the-art algorithms when trained and tested using 16 different types of synthetic noise PQD data produced using
mathematical models in line with IEEE 1159.

Keywords: Micro-grids, power quality disturbance, PQD prediction, data acquisition, IEEE 1159

1. Introduction

MGs are composed of loads with distributed
sources of energy that may function together inside
well-defined electrical boundaries to produce a sin-
gle, controlled entity which can be linked to or
detached from the primary grid [1, 2]. Significant
changes in frequency and voltage could threaten MG
stability. Smart functions in MG include generation
control, weather forecasting, data transmission, and
monitoring methods [3]. Additionally, the advent of
MG into the power sector is a soothing strategy for
resolving issues. It has numerous deployable advan-
tages over the prior grid, including improved quality
by preventing loss during transmission and distri-
bution, increased network stability, decreased rising
temperatures and pollution by utilizing technology
with low carbon uptake, and a consistent electric-
ity supply. However, MGs’ power quality (PQ) has
become a significant issue [4, 5]. PQ is the collection
of electrical characteristics in an electrical system
at a given point that is assessed against a set of
predetermined reference values [6]. PQ disturbances
(PQDs) are the aberrations of the reference variables
in electrical characteristics, which can be observed
by the producers and consumers of electrical power
[7, 8]. PQD issues are divided into two categories:
(i) simple PQDs, like sag, swell, surge, interruption,
flicker, and harmonic distortion; and (ii) sophisti-
cated PQDs, such as swell plus or sag plus distortions
[9, 31–34].

These PQDs are a result of system flaws, a vari-
ety of loads, or environmental variables. They can
also result in significant risks, including faulty relay
protection and damage to delicate equipment. As a
result, it is essential to identify the PQD type and
implement preventative measures [10]. Therefore, it
becomes essential for MG to predict PQ disruptions.
Researchers have recently developed several detec-
tion and classification strategies for complex PQDs.
However, the three-step method [11, 12] is the most
dependable and practical for hardware integration.
The primary components are signal preprocessing,
eigenvalue extraction, and signal categorization [13,

35]. Most researchers use a three-step process along
with cutting-edge technology to increase computa-
tional accuracy, such as a strategy based on machine
learning (ML) [14, 15]. The utilization of machine
learning (ML) approaches to uncover hidden data pat-
terns, trends, and correlations has shown encouraging
results [16, 36–39]. Some of the popular ML tech-
niques for predicting the PQD include support vector
machines (SVM), artificial neural networks (ANN),
decision trees (DT) and random forests (RF) [17].
However, these techniques have a small margin for
improvement and low accuracy. The practicality of
the algorithm is also decreased by the fact that ML
techniques need extra storage capacity to keep the
training set data.

Recently, some authors have focused on DL-based
methods to forecast PQD [18]. DL may extract tem-
poral and spatial information from the input without
signal processing. In addition to increasing accuracy,
DL in the PQD problem streamlines the procedure
by doing away with manual feature extraction [19].
However, DL models’ hyperparameters significantly
impact how well it performs [20] because the training
time and storage space requirements are increased
when the hyperparameters are selected randomly
in the network. So, this paper proposes an optimal
deep-learning method for PQD prediction with an
attention-based feature-leaning mechanism. The fol-
lowing is the list of the contributions made by the
current study:

• To represent the input signal in the fre-
quency domain using the DWT approach, which
improves the performance of the classification
system and its computational efficiency.
• To utilize the V16MHA mechanism to extract

spatial features from time and frequency
domains representation of the signals to pro-
duce the rich feature representation of the input
signals.
• To extract sequential data from V16MHA using

an OHBM method, the network’s hyperparam-
eters are adjusted using OLCFFHO to reduce
prediction loss.
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• To find the effectiveness of the suggested model,
a comparative analysis of the proposed and exist-
ing frameworks for PQD prediction is done
using some performance metrics.
• To find DWT analysis of normal micro grid per-

formance signal and harmonics.

The remainder of the paper is structured as fol-
lows: The literature review, which assessed the works
relevant to the proposed work, is covered in sec-
tion 2. Section. 3 describes the detailed explanations
of the proposed research model. The performance
of the suggested methodology with various existing
methodologies is examined in Section. 4 in terms of
some evaluation measures. Finally, section. 5 pro-
vides conclusions and future directions to wrap up
the suggested work.

2. Literature survey

PQ issues have given much interest, and numerous
studies on the automatic classification of single and
multiple PQDs have been undertaken.

PQDs in MG networks were detected and classified
by Suganthi S.T. et al. [21] using a probabilistic-
based intelligent classifier. The disrupted voltage
signal from the MG systems’ common bus was
first used for additional processing. The features
could be retrieved by applying the DWT approach
to the input three-phase time-varying voltage sig-
nal. Finally, these collected features were fed into
intelligent classifiers, including naive bayes (NB),
SVM, and multi-layer perceptron (MLP). The test-
ing findings demonstrated the system’s usefulness by
revealing a lower root mean squared error (RMSE) for
the SVM, MLP, and NB classifiers, ranging from 0.2
to 0.3. A classification of PQD in solar photovoltaic
(SPV) integrated MG using a hybrid deep learning
method was suggested by Belkis Eristi and Huseyin
Eristi [22]. Initially, an IEEE 13-bus system was used
to generate the PQD data. The generated signal was
segmented into fourteen cycles and scaled relative
to another signal. After that, features were retrieved
using continuous wavelet transforms (CWT) and a
convolutional neural network (CNN), and the sig-
nificant features were chosen using the neighbor
component analysis (NCA) approach. The selected
features were given to the hybrid deep learning model
called SVM to classify the PQD in an input signal, in
which the hyperparameters of the SVM were tuned
by applying the grid search approach.

The system attained a computational time of
0.184s, which showed the system’s superiority over
others. A novel hybrid CNN was proposed by Hatem
Sindi et al. [23] for the classification of PQD. First,
the original form of 13 distinct PQD signals was ana-
lyzed using a one-dimensional (1D) CNN network.
Then, a two-dimensional (2D) CNN was used to pro-
cess these signals once they had been transformed
into images. The feature vectors produced by the 1D
and 2D CNN were merged, and then this merged vec-
tor was finally categorized by a fully connected layer.
The system attained a sensitivity and specificity of
99.95% and 99.99%, better than the previous related
schemes. A two-dimensional Deep CNN-based PQD
classifier for MG was introduced by Cheng-I Chen et
al. [24]. The signal synchronization of the fundamen-
tal frequency was initially carried out using an IEC
61000-4-7 synchronizer to control the image matrix.
The collected signals from the divided cycles were
then synchronized, converted into submatrices, and
combined to create a controlled matrix. The catego-
rization of PQD was completed using the 2D deep
CNN methods. Datasets containing 14 different PQD
categories were used in the experiment. This result
showed that the system could enhance the efficiency
of PQD prediction in real time with only a 28-second
training period. Based on a hybrid machine learning
algorithm with strong noise immunity, Alper Ylmaz
et al. [25] established an automatic categorization
of PQD in a Solid Oxide Fuel Cell & Photovoltaic
(SOFC&PV)-based distributed generation. First, the
system generated PQD data by IEEE standards, with
50 Hz as the primary frequency and 10 kHz as the
sampling frequency. The system used UWT for sig-
nal decomposition, and the appropriate features were
then extracted using the pyramidal UWT. Finally,
the PQD was predicted using the stochastic gradi-
ent boosting decision tree (SGBT) approach. The
system attained an accuracy fi 99.59% for detecting
the PQDs in the MGs. Jinsong Li et al. [26] pre-
sented a PQD prediction system using S-transform
and CNN: i) Disturbance signals were extracted using
the S-transform to produce a time-frequency matrix
containing the disturbance signals’ properties. Ii) The
obtained high-dimensional time-frequency modulus
matrix was subjected to secondary feature extraction
using CNN to reduce the data dimensions and retrieve
the primary characteristics of the disturbance signal.
The primary features extracted were then classified
using the SoftMax classifier. iii) The results of a series
of simulation experiments demonstrated that the sys-
tem could accurately categorize single disturbance
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signals with less training and testing time of 205 s
and 0.8 s, respectively.

A hybrid technique combining the Kalman filter
based on maximum likelihood (KF-ML) and deep
belief network (DBN) was suggested by Yanhui Xi et
al. [27] for the detection types of PQDs and their time
localization First, the noise in the original distorted
signal was reduced using KF-ML, and the innovation
sequence produced from the KF-ML was utilized to
determine the starting and finishing times of the PQDs
After that, the DBN performed feature extraction and
correctly identified the type of PQDs based on the
extracted features The system was tested using noise
interferences with twenty kinds of PQDs, and the
findings revealed that the prediction time was closer
to the target time of the system. The absolute error
achieved was less than 0.3 ms. A PQD recognition
system based on a grasshopper-optimized SVM and
an adaptive chirp mode pursuit (ACMP) was sug-
gested by Shayan Z.T. et al. [28]. In the beginning,
data generation in the MATLAB environment was
done via parametric equations. The ACMP was then
used to extract the useful features, and a graph-based
technique was used to select the infinite features. In
the end, the SVM technique was used to forecast the
PQD, and the grasshopper optimization algorithm
was used to fine-tune the SVM’s hyperparameters.
The trial findings showed that the system outper-
formed traditional methods with a better accuracy of
97.76%.

A random subspace ensemble classification system
for PQD discrimination in solar photovoltaic (P.V.)
M.G. power networks were proposed by Arangara-
jan Vinayagam et al. [29]. Initially, the signal data
from various PQEs were gathered before perform-
ing the simulation of PV-integrated MG. The DWT
technique was then used to extract the characteristics
from the disturbance signals of various PQEs. These
extracted features were fed into the SVM learners and
random subspace (R.S.) ensemble for classification,
which outputted ten classes of PQDs in the generated
input signals. The experimentation was completed,
and it was determined that the R.F. classifier pro-
vided more excellent performance and accuracy of
99% compared to the kernel-based SVM classifier.
An ensemble technique was proposed by Arangara-
jan Vinayagam et al. [30] for PQD prediction in
P.V. integrated M.G. network. Initially, the system
was simulated using MATLAB/Simulink with sev-
eral PQDs, and then the current and voltage data of
the various PQDs were used for different processes.
Then, the DWT approach extracted the essential fea-

tures from the current and voltage data. Finally, the
extracted features from the DWT were given to the
intelligent classifiers, namely multi-layer perceptron
(MLP), Bayesian Net, and J48-based decision tree
(JDT) for PQD prediction. The experimental find-
ings demonstrated that the system achieved superior
results than traditional approaches.

2.1. Problem statement

Based on a literature review, all efforts have shown
increased performance in MGs for PQD prediction.
However, there are certain drawbacks to these, which
are as follows: Some authors [21, 25, 28, and 29]
utilized ML methodology to predict PQDs in MGs.
The PQEs were categorized using the most popular
approaches, including DT, RF, and SVM. SVM is the
most potent and successful classifier for both linear
and non-linear data [21, 28, and 29]. Compared to
other conventional classifiers, it also exhibits more
excellent generalization performance and can com-
petently handle a large, dimensional input vector. As
a result, most of the publications described above
have used the SVM technique to identify complex
PQD in MG power systems, taking into account the
benefits of the SVM classifier. The SVM algorithm
is unsuitable for massive data sets since it contains
some essential parameters that must be set precisely
to get better classification outcomes for any par-
ticular scenario. In addition, because the approach
necessitates the solution of a quadratic optimization
problem, SVMs can be computationally expensive
for big datasets. In order to classify PQD in MGs,
authors have adopted a DL technique [21–24, 26,
27, and 30]. The DL approaches demonstrate their
effectiveness in various disciplines, including com-
puter vision and natural language processing. These
algorithms have hierarchical architecture and several
non-linear layers to extract essential features from
large amounts of trained data. However, all DL algo-
rithms struggle to learn long-term dependencies that
span more than a few time steps. The information
about past events is exponentially fading with more
significant time steps. Additionally, the random selec-
tion of hyperparameters in DL lengthens training time
and complicates the calculation. This work proposes
a unique hyperparameter-tuned DL approach with
an attention-based feature learning mechanism for
PQD prediction in MGs to tackle the abovementioned
challenges. Micro-grid with distribution network as
shown in Fig. 1(a).



A
U

TH
O

R
 C

O
P

Y

R. Dineshkumar et al. / Power quality disturbance prediction in microgrids 2915

Fig. 1. (a) A micro-grid with distribution network [3].

3. Proposed methodology

This paper proposes a novel hyperparameter-tuned
deep learning model with an attention-based feature
learning mechanism for PQD prediction in MGs. The
proposed system involved ‘3’ stages: data acquisition,
feature extraction, and PQD prediction. Initially, the
PQD signals are acquired from IEEE 1159. Using
DWT, frequency-domain and time-domain features
are extracted from the generated signals. After that,
the system uses the V16MHA method to extract
spatial features and the OHBM approach to extract
temporal features from the extracted time and fre-
quency domain features. Finally, the extracted spatial
and temporal features are concatenated and given to
the fully connected layer to yield the final output. Fig-
ure 1(b) shows the working diagram of the proposed
work.

3.1. Data acquisition

Initially, the PQD signals were generated using the
IEEE 1159 system, which includes different types
of PQDs and their parameter variations. The thresh-
old limits of different PQDs have been considered
when generating them in the MG network accord-
ing to the IEEE 1159 standard. This study produced
16 distinct types of synthetic noise PQDs data by
mathematical models in line with IEEE 1159. This
kind of data generation has some benefits, such as
producing various signals of the same class by alter-

ing the values of parameters, which can help the
classifier function more effectively. The acquired 16
types of PQD are labeled as follows: Normal (CL1),
Sag (CL2), Swell (CL3), Interruption (CL4), harmon-
ics (CL5), Flicker (CL6), Impulsive transient (CL7),
Oscillatory transient (CL8), Periodic notch (CL9),
Spike (CL10), Sag with harmonics (CL11), Swell
with harmonics (CL12), Interruption with harmon-
ics (CL13), Flicker with harmonics (CL14), Flicker
with Sag (CL15), and Flicker with Swell (CL16).
Random noises are added to each generated signal
which ranges between 0 and 40 dB. The mathemati-
cal models of the PQDs are shown in Table 1 and 2
that includes 10 single type (P1-P10) and 6 multiple
type signals (P11-P16). In the mathematical equa-
tions, G is a constant value (generally equal to 1) that
denotes the amplitude of the waveform, � denotes the
several intensity disturbances in distinct events, the
duration of the disturbances is controlled by a step
function y(t), the disturbances occurred during t1 to
t2 is indicated as y(t–t1)–y(t–t2) and the real valued
step function is denoted as sgn, which is computed
as,

sgn (r) =

⎧⎪⎨
⎪⎩

1 x < 0

0 r = 0

−1 r > 0

For every type of disturbance, a thousand wave-
forms of voltage signals are produced by randomly
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Table 1
Mathematical model for single PQDs

Code Power quality
disturbance

Mathematical model Parameters

P1 Normal K(t) = G[1±�(y(t – t1) – y(t – t2))]sin (�t) � < 0.1, T≤ t2 – t1≤ 9T
P2 Sag K(t) = G[1 – �(y(t – t1) – y(t – t2))]sin (�t) 0.1≤�≤ 0.9, T≤ t2 – t1≤ 9T
P3 Swell K(t) = G[1 + �(y(t – t1) – y(t – t2))]sin (�t) 0.1≤�≤ 0.8, T≤ t2 – t1≤ 9T
P4 Interruption K(t) = G[1 – �(y(t – t1) – y(t – t2))]sin (�t) 0.9≤�≤ 1, T≤ t2 – t1≤ 9T
P5 Harmonics K(t) = G[�1sin (�t) + �3sin (3�t) + �5sin (5�t) + �7sin (7�t)] 0.5≤�3, �5, �7≤ 0.15,�(�i2) = 1
P6 Flicker K(t) = G[1 + �f sin (��t)]sin (�t) 0.5≤�f≤ 0.2,5≤�≤ 20 Hz
P7 Impulsive transient K (t) = G

[
sin (�t)+ α exp ∗ t−t1£ ∗ ((y (t − t1)− y (t − t2)))

]
0.1 ≤ α ≤ 0.8, T20 ≤ t2− t1 ≤ T

10 ∗ 8 ≤ £ ≤ 40

P8 Oscillatory transient K (t) = G
[

sin (�t)+ α exp ∗ t−t1£ ∗ sin�n (t − t1) ∗ (y (t − t1)− y (t − t2))
]

0.1 ≤ α ≤ 0.8, 0.5T ≤ t2− t1 ≤ 3T ∗ 8 ≤ £ ≤
40, 300 ≤ fn ≤ 900Hz

P9 Periodic notch K (t) = sin (�t)− sgn (sin (�t)) ∗{
9∑
0

a
[
y (t − (t1− 0.02n))− y (t − (t1− 0.02n))

]} 0.1 ≤ t1, t2 ≤ 0.5T, 0.01T ≤ t2− t1 ≤
0.05T 0.1 ≤ a ≤ 0.4

P10 Spike K (t) = sin (�t)+ sgn (sin (�t)) ∗{
9∑
0

a
[
y (t − (t1− 0.02n))− y (t − (t1− 0.02n))

]} 0.1 ≤ t1, t2 ≤ 0.5T, 0.01T ≤ t2− t1 ≤
0.05T 0.1 ≤ a ≤ 0.4
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of 20, 30, and 40 dB are added, correspondingly, to
the test set.

3.2. Feature extraction

After generating the PQD signal, feature extrac-
tion is done. The performance of classification and
computational power can both be enhanced by a suc-
cessful feature extraction mechanism. The collected
signals contain both time and frequency domain fea-
tures, in which the frequency domain features are
extracted from the signals using discrete wavelet
transform (DWT), and the time domain features are
extracted directly from the signals. A DWT is a trans-
form that divides a given signal into several sets,
where each set is a time series of coefficients that
reflects the signal’s periodic evolution in the asso-
ciated frequency band. It represents the signal with
many fewer wavelets and is an extremely fast time-
frequency estimator. Equation (1) below represents
the signal in a wavelet domain using DWT.

DWT (i, j) = 1√
li0

∑
δ
d̂ŝ (δ)φ∗

(
j − δ∈0l

i
0

li0

)

(1)

Where, i and j refers to the dilation and scaling
parameters, replaced by li0 and δe0l

i
0, respectively,

d̂ŝ (δ) denotes the discrete point sequence, δ indi-
cates the integer, and ϕ∗ represents the mother
wavelet function. After that, compute the approxi-

mation
(
ÄC̈
)

and detailed coefficients
(
D̈C̈
)

of the

DWT. At each level, the length of the detailed and
approximation coefficients (low- and high-frequency
coefficients) is equal to that of the original signal. It
is expressed as follows:(

ÄC̈
)
x

(δ) =
∑∞

i=−∞

(
ÄC̈
)
x+1

(i) ξ1 (i− 2δ)

(2)

(
D̈C̈
)
x

(δ) =
∑∞

i=−∞

(
D̈C̈
)
x+1

(i) ξ2 (i− 2δ)

(3)

Where, ξ1 and ξ2 refers to the low-pass and high-
pass filters, respectively. Using these processes, the
frequency-domain features are extracted from the
dataset. Finally, the extracted time and frequency
domain features are fed into the V16MHA-OHBM
network for PQDs prediction.
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3.3. PQD prediction

After feature extraction, the prediction of PQDs is
made using the V16MHA-OHBM. The V16MHA-
OHBM networks are neural networks that combine
two networks, namely V16MHA (mainly convolu-
tion, pooling, and multi-head attention layer) and
OHBM, for presenting the signals with spatial and
temporal rich representation. This framework pro-
cesses frequency domain and time domain signals
separately and simultaneously. Then obtained fea-
tures from V16MHA-OHBM are combined and
inputted into the fully connected layer to obtain the
final prediction. These are briefly explained as fol-
lows:

3.3.1. Spatial feature extraction using V16MHA
The spatial features from the time and frequency

domain features are extracted using visual geome-
try group 16 with multi-head attention (V16MHA)
mechanism. Visual geometry group 16 (V16) is a
high-speed and efficient CNN network. The network
includes 13 convolution layers, five max-pooling
layers and three fully connected layers to perform
its operations, in which the convolution and fully
connected layers have tunable parameters. So, the
network is named VGG-16 due to its total tunable
parameters in the convolution (13 layers) and fully
connected layers (3 layers). The convolution and
pooling layers are frequently combined to reduce
the size of the input feature maps and the compu-
tation cost. However, too many pooling layers in the
network cause the feature maps to lose information
about the small targets in the input data. So, this paper
includes a multi-head attention (MHA) model to the
V16 network to give the global feature-rich represen-
tation of the input data. In addition, the V16 network
suffers from a vanishing gradient problem, affecting
the network’s performance in PQD prediction. So, the
suggested system uses the swish activation function
to solve the gradient vanishing problem of V16. These
incorporations (MHA and swish activation) in con-
ventional V16 are termed V16MHA. The V16MHA
framework includes convolution, pooling, and MHA
layers which are briefly explained as follows:

a) Convolution layer: The primary layer in
V16MHA is convolution, which transfers low-level
features of the input data into high-level features. The
convolutional operator is combined with the kernel
function, and the kernel size of (3×3) is applied to
convolutional layers to generate the feature maps. A
padding size of 1 is utilized to maintain the output

of the convolution layer, and each contains 64 filters.
The output of the convolution layer is expressed using
the following equation:

T̈ly = SAFn
(
	q ∗ N̈ +�q) (4)

Where, T̈ly indicates the output of the convolution
layer, 	q and �q refers to the weight and bias of
the qndashth layer, N̈ represents input frequency and
time domain features extracted from the signals, and
SAFn (·) refers to the swish activation function. It is
the alternative form of the ReLU activation function.
ReLU is the most widely used activation function,
and it efficiently addresses the gradient disappearance
issue since it is easy to compute, simple to execute,
and has a quick convergence speed. However, the
ReLU function reduces some of the neuron output
to zero, which results in the output with migration
phenomena. So, to solve these issues, the proposed
work uses the swish activation function. It effec-
tively solves the gradient vanishing problem and a
smaller number of negative weights to be propagated
through, where the ReLU assigns zero to all negative
weights. So compared to ReLU, swish works better
in deep networks for classification tasks. Equation (5)
expresses the swish activation function carried out on
the convolution layer of the network.

SAFn
(
N̈
) = N̈ ∗ σ (N̈) = N̈

1+ e−N̈ (5)

b) Pooling layer: The output of the convolution
layer is given to the max pooling layer to minimize the
data dimension and retrieve important information
from the data. It could mitigate the impact of data
volatility, and it is superior to average pooling for
retrieving the information from the PQD waveform.
The resolution of the data is reduced by half using a
max-pooling size of 2×2 with strides of 2 after each
block. The max-pooling formulation is expressed in
Equation (6).

J ′′ly = max
(
T̈ly
)

(6)

c) MHA layer: The feature maps obtained from
convolution and pooling layers are passed to the
MHA layer for global feature extraction. The MHA
mechanism allows the network to learn richer repre-
sentation between the piece of input data sequences,
which leads to the performance improvement of the
machine learning models. In the MHA, the ‘Query’,
‘Key’, and ‘Value’ are packed into matrices Q̈R̈, K̈Ÿ ,
and V̈ L̈, which are used in the same set of queries for
the operation of the MHA function. The output matrix
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Fig. 2. (a) Layout of V16MHA.

of MHA can be defined as:

↔
Ams

(
Q̈R̈, K̈Ÿ , V̈ L̈

) = softmax(Q̈R̈ · K̈ŸT√
r

)
V̈ L̈

(7)

Where, r–indicates the dimension of K̈Ÿand V̈ L̈.
The MHA linearly processesQ̈R̈, K̈Ÿ , and V̈ L̈ mul-

tiple times via different weight matrices	Q̈R̈
d ,	K̈Ÿ

d ,

and 	V̈L̈
d . The results from the linear transformation

are fed to the scaled dot product attention (SDA) and

are indicated by ↔→ Id , as shown in Equation (8).

↔
I d = SDA

(
Q̈R̈	

Q̈R̈
d , K̈Ÿ	K̈Ÿ

d , V̈ L̈	V̈ L̈
d

)
(8)

Finally, the output of the MHA mechanism is
obtained by performing the following mathematical
operations.

Head = MULTIHead
(
Q̈R̈, K̈Ÿ , V̈ L̈

)
= Concat

(↔
I 1,
↔
I 2, . . . . . . . . . . . . ,

↔
I d

)
ψ

(9)

Where, d–refers to the head number of the MHA
layer. The extracted spatial features are passed to the
OHBM for sequential data extraction.

3.3.2. Temporal feature extraction using OHBM
The proposed system uses optimal

hyperparameter-tuned bidirectional long short-
term memory (OHBM) to extract the temporal
features from the V16MHA network. Bidirectional
long short-term memory (BM) is an extension of

Fig. 2. (b) Structure of the BM.

long short-term memory (LSTM), which learns
the dependencies between the input data in both
forward and backward directions. Proposed layout
of V16MHA depicted as Fig. 2(a). The structure of
BM is given in Fig. 2(b). The network comprises
the following layers: an input layer, a reverse LSTM
layer, a forward LSTM layer, and an output layer.
The memory cells of the network are controlled
using the input, output and forget gates. However, the
random initialization of the network’s hyperparame-
ter takes longer to converge and does not yield good
results in classification. Selecting the optimal set of
hyperparameters in the network is essential because
it impacts the classification performance. So, the
proposed system uses oppositional learning and
exponential nonlinear parameter-based fire hawks’
optimization (OLENFHO) algorithm to select the
hyperparameters of the BM optimally. This optimal
parameter selection in conventional BM is named
OHBM.

The foraging habits of whistling kites, black kites,
and brown falcons inspire the development of the
metaheuristic algorithm known as fire hawk’s opti-
mization (FHO). These birds are called fire hawks
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because they use fire to capture their prey in nature.
Its benefits include fewer parameters, straightforward
configuration, simplicity, and excellent computa-
tion accuracy. However, the conventional FHO
faces the following limitation while working on
higher dimensional optimization problems: the poor
balance between the exploration and exploitation
capabilities, slower convergence speed and being
trapped into local optimal solutions. So, the pro-
posed system includes oppositional learning (OL)
strategy as a population initialization model, which
enhances the population diversity of the algorithm
and avoids the premature convergence problem. In
addition, the proposed system uses an exponential
nonlinear (EN) parameter in the position updating
stage of the algorithm, which increases the global
search ability of the algorithm. These two incor-
porations enhance the algorithm’s performance by
adequately balancing its exploration and exploita-
tion abilities, and the conventional FHO is named
OLENFHO.

The populations of fire hawks are initialized using
an OL strategy that provides complementary candi-
dates from a set of initialized solutions. Since any
random solution and its opposite are preferably better
than two independent solutions, OL’s central notion
is to take both estimates and counter-estimates to find
the best solutions. For any solution {h1, h1,…….. hy}
in a y–th dimensional space, its oppositional solution
can be obtained using Equation (10).

Ḧxy = Rand ×
(
UBy − LBy

)+ LBy −H (10)

Where, Ḧxy indicates the x–th agent at y–th dimen-
sion, UBy and LBy upper and lower boundaries of
the algorithm at y–th dimension, and Rand ε [0,1]
refers to a random value. After that, compute the fit-
ness of the agent, which is used to assess each Ḧx
performance.

FitnessCal = Max
(
ŸAccuracy

)
(11)

ŸAccuracy = trp+ trn
tnv

(12)

Where, ŸAccuracy indicates the accuracy metric, trp
indicates the true positive, trn refers the true negative,
and tnv indicates the total number of samples. The
agents with higher accuracy are selected as the best
at each iteration. Here, the global optimal solution is
considered as the central fire that is first applied by
the fire hawks and the schematic representation of the

aspect is given as follows:

P̈R̈ = P̈R̈1, P̈R̈2, . . . . . . P̈R̈m, . . . . . . P̈R̈n (13)

F̈ Ḧ = F̈ Ḧ1, F̈ Ḧ2, . . . . . . F̈ Ḧu, . . . . . . F̈ Ḧv (14)

Where, P̈R̈m indicates the m–th prey in the search-
ing space w.r.t. the overall amount of n preys and
F̈ Ḧu denotes the u–th fire hawk considered an over-
all amount of v fire hawks in the searching region.
Then, the overall distance between the prey and the
fire hawks is evaluated using Equation (15).

DT
u
m =

√
(a2 − a1)2 + (b2 − b1)2,{
u = 1, 2, 3, . . . . . . v

m = 1, 2, 3, . . . . . . n
(15)

Where,DT
u
m indicates the overall distance betwixt

the u–th fire hawk and the m–th prey, v represents the
overall amount of fire hawks in the searching domain,
n indicates the overall amount of prey in the searching
domain, (a1,b1) and (a2,b2) characterizes the coordi-
nate of Fire Hawks and prey in the searching domain.
After that, compute the territory of F̈ Ḧu according to
the following formula:

F̈ Ḧu (τ + 1) = F̈ Ḧu (τ)

+
(↔
R1 × B∗sol −

↔
R2 × F̈ Ḧe (τ)

)
× ψ̃ (16)

Where, B∗sol indicates the best solution, F̈ Ḧe (τ)

refers to one of the other fire hawks at iteration τ,
↔
R1

and
↔
R2 represents random values ranges between [0,

1], and ψ̃ refers to the EN parameter that controls and
stabilizes the abilities of exploitation and exploration
and prevents the algorithm from being trapped into
local optimal solutions. As a result, the global search
ability of the algorithm is enhanced and it is written
as follows:

�̃ = β
(
βminmax × e2τ/maxitr

)
min

(17)

Where, �min and �max indicates the minimum and
maximum of �̃, τ refers to the current iteration, and
max itr denotes the maximum counts of iterations.
The major feature of animal activities for updating the
location is assumed using the motion of prey inside
the fire hawk’s territory.

P̈R̈z (τ + 1)

= P̈R̈z (τ)+
(↔
R3 × F̈ Ḧu −

↔
R4 × S̈u (τ)

)
(18)
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Where, P̈R̈z (τ) indicates the z–th prey’s new posi-

tion vector at iteration τ, and
↔
R3 and

↔
R4 represents

random values between 0 and 1. The term S̈u refers
to the safest position of an individual under an area
of the u–th fire hawk, and it is computed as follows:

S̈u =
⎛
⎝∑

↔
R
z=1 P̈R̈
↔
R

⎞
⎠ , z = 1, 2, 3, .....

↔
R (19)

After that, the position of the prey is updated using
the below formula (20):

P̈R̈z (τ + 1) = P̈R̈z (τ)

+
(↔
R5 × F̈ Ḧalter −

↔
R6 × S̈ (τ)

)
× �̃ (20)

Where, F̈ Ḧalter indicates one of the other agents

in the search space,
↔
R5 and

↔
R6 indicates a random

number, and S̈ denote the safest area outside the u–th

fire hawk’s territory, and it is computed as follows:

S̈ =
(∑n

m=1 P̈R̈m
↔
R

)
, m = 1, 2, 3, .....n (21)

The solutions are continuously updated until the
stopping condition is met. The agents offer optimal
solutions at all iterations and are considered optimal
hyperparameters for the BM network. Once getting
the optimal parameters, the working progress of BM
takes place in which the mathematical formulations

of forward LSTM
(

hα
)

are defined. The BM com-

prises an input gate, forget gate and an output gate.
The forget gate controls the effects and time depen-
dence of previous inputs and decides which states to
be forgotten or remembered, and it is computed using
Equation (22).

L̈F̈α = SAFn
(
ẄL̈F̈ ·

[→
ĥ α−1, ËS̈α

]
+ ÖB̈L̈F̈

)
(22)

Where, ẄL̈F̈ and ÖB̈L̈F̈ represents the optimal
weight and biases of forget gate L̈F̈ , ËS̈α indicates

the input extracted feature set at the time step �,
→
ĥ α−1

refers to the forward LSTM cell’s output, and SAFn
denotes the swish activation function, which is for-
mulated using Equation (5). Then the input gate is
responsible for selecting the current moment’s degree

of consideration.

L̈Ïα = SAFn
(
ẄL̈Ï ·

[→
ĥ α−1, ËS̈α

]
+ ÖB̈L̈Ï

)
(23)

After computing the input gate, the cell state(
L̈C̈α

)
is determined, and the resulting value updates

the cell state, and is expressed by Equation (24) and
the new memory state

(
L̈C̈α

)
is updated using Equa-

tion (25).

L̈C̈α = SAFn
(
ẄL̈C̈ ·

[→
ĥ α−1, ËS̈α

]
+ ÖB̈L̈C̈

)
(24)

L̈C̈α = L̈F̈αL̈C̈α−1 + L̈C̈αL̈Ïα (25)

Finally, the output gate proffers the final output
information and it is computed as follows:

L̈Öα = SAFn
(
ẄL̈Ö ·

[→
Ĥα−1, ËS̈α

]
+ ÖB̈L̈Ö

)
(26)

→
ĥ α−1 = L̈ÖαSAFn

(
L̈C̈α

)
(27)

These above processes are repeated to compute the

backward LSTM

(←
ĥ α

)
. Finally, we can connect the

two hidden states to get the temporal features of the
BM, which is formulated as follows:

→
ĥ α = LSTM

(
ËS̈α,

→
ĥ α−1

)
(28)

←
ĥ α = LSTM

(
ËS̈α,

→
ĥ α−1

)
(29)

FP
′′
op =

[

hα ⊕

←
ĥ α

]
(30)

Where ⊕ is the summation of the forward and
backward components and

(
FP

′′
op

)
refers to the

extracted temporal features from the extracted time-
domain and frequency-domain features, which also
fed into the FCL layer.

3.3.3. FCL layer
The last layer is the FCL layer, which predicts

the final output. It provides the final PQD predic-
tion results. The output from the V16MHA (spatial
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Table 3
Classification accuracy of the proposed approach

Disturbance types Classification Accuracy
0 dB 20 dB 30 dB 40 dB

CL1 99.85 93.87 99.85 100
CL2 99.68 98.74 98.97 99.94
CL3 99.69 99.74 99.04 99.03
CL4 99.74 99.97 100 99.82
CL5 100 100 100 100
CL6 100 100 100 100
CL7 100 100 100 100
CL8 100 99.61 100 100
CL9 99.86 90.41 99.74 99.68
CL10 99.79 99.34 99.82 99.54
CL11 99.12 99.85 99.21 99.08
CL12 100 99.93 100 100
CL13 99.91 99.88 100 99.58
CL14 100 100 100 100
CL15 98.64 98.28 98.96 98.84
CL16 99.31 96.78 99.86 99.63
Average 99.72 98.53 99.72 99.70

features) and OHBM (temporal features) are concate-
nated and given as input to the FCL layer.

4. Results and discussion

In this section, the outcomes of the suggested
methodology, a novel hyperparameter-tuned deep
learning model with attention-based feature learn-
ing for PQD prediction in MGs, are investigated with
state-of-the-art existing frameworks regarding some
evaluation metrics. To assess the generalizability of
the suggested approach, tenfold cross-validation was
performed. The training was done in two stages, with
the OLENFHO, dynamic learning rate, and Early-
Stop. The idea is to prevent fluctuating around the
optimum by approaching it as quickly as feasible with
a high learning rate and then lowering the learning
rate while improving the solution. The loss value is
tracked to ensure that it oscillates about the optimum.
The method starts with a learning rate of 0.001 and
progresses to the second stage if the loss value drops
10 consecutive times. The leaning rate is reduced to
0.0001 in the second phase, which ends when the
loss value worsens 20 consecutive times. The sug-
gested approach is trained and tested using an Intel
Core Xeon CPU running at 2.3 GHz, 16 GB of DDR4
RAM, and an NVIDIA Tesla P100 GPU in a Tensor-
Flow framework environment based on Python 3.7.
The system was tested using the signal acquired from
the standard IEEE 1159, which is briefly explained

in section 3.1, and section 4.1 examines the perfor-
mance of the proposed and existing models for PQD
prediction.

4.1. Performance analysis

Table 3 shows the attained accuracy of the sug-
gested V16MHA-OHM approach at different SNR
levels (0 dB to 40 dB) for various classes of PQDs
(CL1 to CL16). SNR measures the strength of a
desired signal relative to background noise. For 0 dB
SNR, the disturbances CL5 to CL8, CL12 and CL14
attain 100% accuracy. When the SNR increases from
0 dB to 20 dB, the proposed work achieves maximum
accuracy for all classes of disturbances. Similarly,
varying SNR to 30 dB and 40 dB, the results are
also good. Overall, in the below table, the accuracy
of CL5-CL7 always gets 100% accuracy in vary-
ing all the SNR values, and the model attains better
outcomes for various levels of SNR. The proposed
approach achieves an average accuracy of 99.72%
for 0 dB, 98.53% for 20 dB, 99.72% for 30 dB, and
99.70% for 40 dB. When varying the SNR 0 dB to 40
dB, the proposed one achieves maximum accuracy of
99.72%. Thus, it clearly shows that the proposed one
achieves satisfactory performance.

The typical types of PQD voltage waveforms from
the simulated system are shown in Fig. 3 and 4. The
three waveforms using different colors in Fig. 3 (a–d)
represent the three-phase fault waveforms. Figure 4
(a-d) shows the single-phase disturbance waveform.



A
U

TH
O

R
 C

O
P

Y

R. Dineshkumar et al. / Power quality disturbance prediction in microgrids 2923

Fig. 3. Three-phase voltage waveform: (a) normal, (b) swell, (c) sag, and (d) interruption.

Fig. 4. Three-phase voltage waveform: one-phase voltage waveform: (a) sag with harmonics, (b) flicker, (c) interruption with harmonics,
and (d) flicker with sags.

4.2. Comparative analysis

Here, the outcomes of the proposed V16MHA-
OHM are compared against the existing BiLSTM,
RF, recurrent neural network (RNN), SVM and CNN.
The evaluation metrics were used to compare the
outcomes of the suggested approach regarding the
accuracy, f-measure, and computational time, respec-
tively. These are shown in the following figure and
table.

Figure 5 shows the results of the proposed
V16MHA-OHM and existing approaches regarding
(a) accuracy and (b) f-measure. First, concerning
Fig. 5 (a), for 0 dB, the proposed one achieves
maximum accuracy of 99.72%, but the existing

BiLSTM, CNN, RNN, RF, and SVM produce less
accuracy of 98.85%, 95.12%, 93.64%, 91.12%, and
89.14%, respectively. For 20 dB, the existing BiL-
STM, CNN, RNN, RF, and SVM attains offers
accuracy of 97.74%, 93.47%, 91.17%, 89.64%, and
86.98%, respectively, which is lower when com-
pared to the proposed one, because the proposed one
achieves 98.53% accuracy. Similarly, when varying
the SNR from 30 dB and 40 dB, the proposed one
achieves maximum accuracy of 99.72% and 99.71%.
Figure 5 (b) indicates the performance of the sug-
gested method with existing methods in terms of the
f-measure metric. The highest possible value of f-
measure indicates the perfect system to detect the
PQD in MG. Herein also, the proposed one achieves
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Fig. 5. (a) Accuracy and (b) F-measure analysis.

Table 4
Computational time (s) analysis

Techniques 0 dB 20 dB 30 dB 40 dB

Proposed V16MHA-OHM 0.0312 0.0591 0.0486 0.0386
BiLSTM 0.0393 0.0682 0.0573 0.0462
CNN 0.0478 0.0764 0.0648 0.0587
RNN 0.0612 0.0948 0.0874 0.0712
RF 0.0874 0.1047 0.1048 0.0987
SVM 0.0956 0.1237 0.1247 0.1143

better f-measure value than the existing methods.
For example, for 0 dB, the proposed one attains
a high f-measure of 99.81%, but the existing BiL-
STM, CNN, RNN, RF, and SVM have f-measure
of 98.93%, 95.23%, 93.72%, 91.26%, and 89.27%,
which is comparatively lower than the proposed one.
Likewise, the proposed system attains better results
than the existing systems when varying the SNR val-
ues from 20 dB to 40 dB.

Thus, it confirmed that the proposed one outper-
formed the conventional methods in PQD prediction.
Next, Table 4 illustrates the proposed approach per-
formance with the existing methods concerning the
computational time. Figure 6 (a & b) depicted as three
phase voltage signal is recorded during the differ-
ent PQD in proposed MG’s, which is analysis the
performance of DWT method to extract the features
like normal MG signal and harmonics. The pro-
posed system decomposition of the original voltage
signal using coefficient of “D1 to D5” and approx-
imation “a5” signals. The above results show the
results of the proposed system with V16MHA based
effective feature learning mechanism, in which the
comparison of the proposed system with and with-
out including swish activation function in V16MHA
is given in Table 5. Thus, the overall experimental
analysis shows that the proposed one attains supe-
rior performance than the existing methods. The

reason is that the proposed work initially performs
feature extraction using DWT approach, which elim-
inates the irrelevant features and selects the important
features from the dataset which increases the predic-
tion accuracy and decreases the computational time
of the classifier. In addition, the proposed system
uses V16MHA and OHBM approaches to extract the
spatial and temporal features from the time and fre-
quency domain data extracted from the PQD signals,
which makes the prediction results more accurate by
learning global and sequential information from the
signals. The hyperparameters of the deep learning
model used for PQD prediction was done optimally
using the OLENFHO algorithm which minimizes the
classification loss and improves the prediction perfor-
mance of the classifier.

In Table 4, the proposed work outcomes are inves-
tigating against the existing approaches with respect
to the computational time metric. If the system took
less time to predict the output, the system would
be regarded as a good system. Here also, varying
the SNR values, the proposed one takes less time
to predict the output than the conventional meth-
ods. For example, for 40 dB, the proposed one takes
only 0.0386 s to predict the output, but the exist-
ing approaches like BiLSTM, CNN, RNN, RF, and
SVM take computational time of 0.0462 s, 0.0587 s,
0.0712 s, 0.0987 s, and 0.1143 s, which is higher
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Fig. 6. (a) DWT method of proposed MG’s normal signals.

Fig. 6. (b) DWT method of proposed MG’s voltage harmonics analysis.

Table 5
Analysis of the system based on proposed techniques

Technique Accuracy (%) F-measure (%)

Proposed system with swish in V16MHA 99.21 98.65
Proposed system without swish in V16MHA 97.87 96.12

than the proposed one. Similarly for the remaining
SNR ranges (20 dB to 40 dB), the proposed one
takes computational time of 0.0312 s, 0.0591 s, and
0.0486 s, this shows the suggested one takes lesser

time to predict the output. Thus, the overall experi-
mental analysis shows that the proposed one attains
superior performance than the existing methods. The
reason is that the proposed work initially performs
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feature extraction using DWT approach, which elim-
inates the irrelevant features and selects the important
features from the dataset which increases the predic-
tion accuracy and decreases the computational time
of the classifier. In addition, the proposed system
uses V16MHA and OHBM approaches to extract the
spatial and temporal features from the time and fre-
quency domain data extracted from the PQD signals,
which makes the prediction results more accurate by
learning global and sequential information from the
signals. The hyperparameters of the deep learning
model used for PQD prediction was done optimally
using the OLENFHO algorithm which minimizes the
classification loss and improves the prediction perfor-
mance of the classifier.

5. Conclusion

This paper suggests a novel hyperparameter-tuned
deep learning model with an attention-based feature
learning mechanism for PQD prediction in MGs. The
proposed system mainly comprises ‘3’ phases: data
acquisition, feature extraction, and PQD prediction.
The suggested model is trained and tested using 16
types of PQD signals acquired from standard IEEE
1159. First, the proposed work’s outcomes are ana-
lyzed for various SNRs (0 dB to 40 dB) in terms
of accuracy metric. Here, varying 0 dB to 40 dB,
some classes, say CL5-CL7 and CL14 reach 100%
accuracy. Next, the proposed approach is compared
against the existing BiLSTM, CNN, RNN, RF, and
SVM approaches regarding the accuracy, compu-
tational time, and f-measure. First, concerning the
accuracy metric, for 0 dB to 40 dB, the proposed
one achieves maximum accuracy of 99.72%, 98.53%,
99.72%, and 99.71%, which is higher than the exist-
ing methods. Similarly considering f-measure and
computational time metric, the proposed one attains
f-measure and computational time of 99.81% and
0.0312 s for 0 dB, 98.64% and 0.0591s for 20 dB,
99.81% and 0.0486 s for 30 dB, and 99.79% and
0.0386 s for 40 dB, which were better outcomes than
the conventional methods. The experimental results
show that the proposed method performs better than
the traditional methods, and they also demonstrate
that the proposed work effectively predicts PQD in
MGs. In future, this work will be extended using
advanced deep learning and feature reduction mech-
anisms to detect the additional types of disruptions
from the PQ signals with improved accuracy.
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