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based binary CNN in-memory accelerator
(BIMA) with sense amplifier
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Abstract. The research tends to suggest a spin-orbit torque magnetic random access memory (SOT-MRAM)-based Binary
CNN In-Memory Accelerator (BIMA) to minimize power utilization and suggests an In-Memory Computing (IMC) for
AdderNet-based BIMA to further enhance performance by fully utilizing the benefits of IMC as well as a low current
consumption configuration employing SOT-MRAM. And recommended an IMC-friendly computation pipeline for AdderNet
convolution at the algorithm level. Additionally, the suggested sense amplifier is not only capable of the addition operation but
also typical Boolean operations including subtraction etc. The architecture suggested in this research consumes less power
than its spin-orbit torque (STT) MRAM and resistive random access memory (ReRAM)-based counterparts in the Modified
National Institute of Standards and Technology (MNIST) data set, according to simulation results. Based to evaluation
outcomes, the pre-sented strategy outperforms the in-memory accelerator in terms of speedup and energy efficiency by
17.13× and 18.20×, respectively.
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1. Introduction

Robotics, computational linguistics, computer
vi-sion, and many other fields have adopted convolu-
tional neural networks (CNN) to a large extent.
CNN has a large number of parameters, which
results in higher storage costs and longer latency.
The GraphS architecture converts the existing SOT-
MRAM into massively parallel computational units
that can accelerate graph processing applications
and provide extremely high internal bandwidth [1].
Deoxyribonucleic acid (DNA) short read alignment
is proposed to be performed by the parallel process-
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ing in memory (PIM) accelerator, which is optimized
through a novel data partitioning as well as mapping
approach [2].

The novel ReRAM-dependent graph analytics
accelerator could indeed enhance the workload
density of crossbars interactively by employing a
tightly-coupled bank parallel layout and handling sig-
nificant graphs that frequently have skewed degree
distributions [3]. Resistive memory (ReRAM) is used
in the research to substantially improve performance
in terms of energy efficiency. Efficient ReRAM-
based accelerators are designed using the general
concepts of processing-in-memory to enable both
training and testing operations [4]. Nevertheless,
writing operations typically perform longer and con-
sume more power in ReRAM than they operate on
DRAM. A SOT-MRAM-reliant PIM accelerator that
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fully facilitates floating point precision might have
emerged as an excellent solution to lessen the dom-
inant data movement cost because it eliminates the
need to access deep neural network (DNN) weights
[5].

It is suggested that a Depth wise CNN In-Memory
Accelerator (DIMA) depend on SOT-MRAM, and
the multiplication as well as accumulation, two
computationally expensive convolution procedures,
are transformed into hardware-friendly addition
operations in Add-Net [6]. SOT-MRAM, which
combines the compute-in-memory (CIM) as well
as near-memory systolic array to execute the sys-
tem level assessment for DNN inference engines
and obtain 93% and 51% higher energy efficiency,
respectively. Considering the prevailing pattern,
memory/computational capabilities and their inter-
action have invariably run into limits as DNNs have
become more complex.

Higher writing latency and the need for data with
a low bit-width were disadvantages of SOT-MRAM-
based PIM. To resolve such concerns, a framework
that uses design compression strategies, such as
weight pruning and quantization, and incorporates
the interchanging direction strategy of multipliers
to further ensure the feasibility of the solution was
pro-posed [7]. In order to trade off around power,
load computation, speed, and accuracy, a dynamic
channel-adaptive deep NN can change the involved
convolution channel at run-time and further use
knowledge distillation methodology to optimize and
quantize the model, respectively [8, 9]. In order to
effectively accelerate the training phase of GAN in
non-volatile memory, a processing-in-memory (PIM)
accelerator for Ternarized Generative Adversarial
Network (TGAN) is suggested. This accelerator
would be termed PIM-TGAN, and it is premised on
SOT-MRAM computational sub-arrays [10]. How-
ever, there are a number of unavoidable downsides
to the existing DRAM-based PIM designs, includ-
ing excessive refresh/leakage power, multi-cycle
logic functions, operand data overwriting, as well as
operand localization. The contribution is as follows:

� The research proposes a SOT-MRAM-based
Binary CNN In-Memory Accelerator (BIMA)
to minimize the power consumption and an In-
Memory Computing (IMC) for AdderNet to
further boost the performance.

� And recommended an IMC-friendly compu-
tation pipeline for AdderNet convolution at
the algorithm level, as well as observing that

subtraction had extended latency compared to
addition on iMAD.

� Additionally, the suggested SA is not only capa-
ble of the addition operation but also typical
Boolean operations including subtraction. The
SA performs READ, NOT, AND, NAND, OR,
XOR, and Addition (ADD) functions natively
and Subtraction (SUB) extensively.

� Evaluation outcomes show that the suggested
methodology achieves 17.13× speedup and
18.20× energy efficiency.
The organisation of the research seems to be
as follows: Section 1 provides an introduction
to the proposed work, while Section 2 pro-
vides related works. Section 3 comprises the
proposed research. Section 4 explains the out-
comes and the discussion. Furthermore, Section
5 concludes the research.

The organisation of the research seems to be as
follows: Section 1 provides an introduction to the pro-
posed work, while Section 2 provides related works.
Section 3 comprises the proposed research. Section
4 explains the outcomes and the discussion. Further-
more, Section 5 concludes the research.

2. Related works

Chang et al. (2019) developed a non-volatile mem-
ory (NVM) dependent CIM using a Preset-XNOR
operation with the SOT-MRAM. With relatively
minor changes to the peripheral circuitry, PXNOR-
binary neural networks (BNNs) carry out the XNOR
operation of BNNs in order to speed up the com-
putation of BNNs. Roohi et al. (2019) suggested
an in-memory bit-wise CNN accelerator employing
SOT-MRAM computational sub-arrays. It employs
a state-of-the-art AND accumulation technique that
performs a variety of low-bit-width CNN infer-
ence operations. Simulations show that, compared
to ReRAM-based acceleration, modern CMOS-only
approaches can be sped up with a 9.% increase in
speed and a 5.4% improvement in energy efficiency,
while maintaining the same level of inference accu-
racy as baseline designs. Kim et al. (2019) suggest
NAND-Net, an effective design in order to reduce the
computational complexity of in-memory processing
for BNNs. Relying on the finding that BNNs pos-
sessed a lot of redundancy, each convolution was
broken down into smaller convolutions, and any
unwanted functions were removed.
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Doevenspeck et al. (2020) describe an optimized
SOT-MRAM for weight memory in Analog in Mem-
ory Computing (AiMC) systems that make it possible
to modify the MTJ resistance to higher levels with-
out modifying the writing by manipulating the tunnel
barrier thickness. Angizi et al. (2018) present an
accelerator system framework based on a in-memory
convolution engine that can be utilized to speed up
CNN inference and dramatically lower the energy
consumption of convolutional layers, as well as
requiring 3× less energy than the current RRAM-
predicted equivalent.

Zhao et al. (2022) introduce a NAND-like spintron-
ics memory (NAND-SPIN)-based PIM architecture
for efficient convolutional neural network (CNN)
acceleration. An easy data mapping method is utilized
to boost parallelism and reduce data movements.
Using the benefits of NAND-SPIN and in-memory
processing architectures, experiments show that the
proposed method can be 2.6 times faster and use 1.4
times less energy than current PIM solutions.

Bavikadi et al. (2020) analyse Non-Von Neumann
computing architectures like IMC and PIM, and
the additional difficulties and restrictions in IMC
research, are explored to perform binary convolu-
tion without adding additional distinct logic circuits
for computation. The important issue of PIM is that
it uses excessive memory bandwidth and embedded
logic units for handle data in memory, thus might
result in remarkably minimal transmission energy as
well as latency.

Amiee et al. (2019) established a Spintronic
Logic-in-Memory (SLIM) XNOR neural network to
accomplish energy minimization, enhance through-
put, and improve accuracy compared to the traditional
binarized CNN hardware. Chen et al. (2020) establish
adder networks (Ad-derNets) to exchange these enor-
mous multiplications within deep neural networks,
specifically CNNs, for substantially lesser expensive
additions to decrease computing expenses.

Huang et al. (2021) investigate a hybrid
spin/CMOS cell (HSC) architecture in which the
non-volatile data from the spin element as well as
the volatile knowledge from the CMOS element
could easily accomplish the XNOR operation in an
in-memory computing approach. Kim et al. (2022)
recommend adopting SLIM cells, which employ
voltage-controlled magnetic anisotropy (VCMA) to
maximize the memory cycle efficiency and enable
efficient logic inside memories. Additionally, it is
indicated that the crossing input source PIM (CRISP)
design would substantially increase parallel process-

ing and eliminate the additional memories, hence
maximizing the advantages of SLIM cells.

Asad et al. (2022) investigated these challenges in
their analysis of recent advancements in the design
methodologies and efficient memory structure of
the DNN accelerator. Additionally, the application
of adaptive DNN computations in flexible memory
systems will be examined. The analysis of new mem-
ory technology will be the last step. Ielmini et al.
(2022) explore the state of IMC and its challenges
from a device perspective and describe a reference
implementation employing RRAM. Contemporary
developing memories are contrasted in terms of their
variation and conductance. Pham et al. (2022) demon-
strate a unique architecture relying on STT-MRAM
arrays for the in-memory processing of BNN work-
loads. Bitlines are used in the proposed architecture
to feed BNN inputs. Then, in order to solve issues
with the sensing circuit in STT-MRAM, BNN vec-
tor multiplication is carried out by sensing the total
SL voltage of a row. This enables unlimited accumu-
lation across rows for optimum array use and BNN
model scalability.

Krizakova et al. (2022) review the basic qualities
of SOT and their utilization to switch magnetic tun-
nel junction (MTJ) devices as well as demonstrate
the magnetization reversal in nanoscale structures and
the morphology of the MTJ in aspects of stack devel-
opment and material. Amin et al. (2022) suggested
an analog development of the transcendental activa-
tion function using two SOT-MRAM devices as well
as a CMOS inverter, which consumes 2.5 times less
space and 27 times less power than the most cur-
rent analog and digital equivalents. Additionally, the
developed neuron is easily able to integrate memris-
tive crossbars without the requirement for any further
intermediary signal converter components. Jamshidi
et al. (2022) present a processor that can carry out
Boolean logic operations using a magneto-resistive-
based CIM (henceforth referred to as the MagCiM
processor). Additionally, they demonstrate how the
MagCiM processor is well matched for embedded
systems since it provides normally-off, instant-on
computing capacity, reduced power and energy con-
sumption, and minimized consumed area.

Mandal et al. (2022) propose the COIN comput-
ing architecture, which is communication-aware in
memory, to speed up graph convolutional networks
(GCNs). COIN aims to enhance performance and
energy efficiency in GCN operations by minimiz-
ing intra- and inter-CE communication in addition
to using in-memory computing and customized
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Fig. 1. (a) SOT MRAM device architecture (b) Schematic of SOT-
MRAM.

Table 1
Biasing conditions of SOT-MRAM bitcell

Operations Write Read

WWL VDD 0
RWL 0 VDD

RBL 0 IREAD

WBL VWP (VWN ) 0
SL 0 0

compute elements (CE) to accelerate calculation.
Experiments using well-known datasets show that
the most advanced GCN accelerator can use up
to 105% less energy. Ali et al. (2022) propose an
IMC programmable architecture in order to imple-
ment BNN effectively. Computing memory based on
the recently popularized memristor overwrite logic
(MOL) design approach are used, which effectively
runs the sophisticated quantization algorithm of the
XNOR-Net BNN. Shen et al. (2022) propose the Con-
jugate Adder Network, or CAddNet, which uses the
difference between the absolute values of conjugate
pairs of inputs and the weights.

3. Proposed System

3.1. In-memory processing platform

Figure 1(a) depicts the device structure for a
SOT-MRAM and MTJ. In Fig. 1(b) and Table 1,
respectively, the bitcell configuration of SOT-MRAM
and its biasing characteristics are presented.

The SOT-MRAM sub-array architecture that is
being shown could operate in a dual mode that can
carry out memory read-write as well as AND/OR
logic operations. To carry out standard memory oper-
ations, each SOT-MRAM cell was connected to the
Write Word Line (WWL), Write Bit Line (WBL),
Read Word Line (RWL), Read Bit Line (RBL), and
Source Line (SL). Additionally, any two cells in the
same column might be sensed concurrently in this
system to carry out an in-memory logic function. The
activation of the current path through the array is con-

trolled by the peripheral decoders. The WBLs are
utilized with voltage drivers to supply the necessary
write voltage.

Memory Write: Write current must be injected
through the SOT-heavy MRAM’s metal substrate in
order to write a bit in either of its cells, such as the first
row and first column. While keeping the remaining
source lines and word lines disabled, the row decoder
will enable WWL1 and ground SL1 for activating this
write current path. The voltage driver (V1) linked to
WBL1 is now adjusted to negative (/positive) write
voltage in order to write a "1" (or a "0"). As a result,
the MTJ resistance is set to High − Rp(/Low − Rp),
permitting for adequate charge current to proceed
from V1 towards ground (/ground towards V1)

Memory Read: When reading data from a
memory, a read current move from a chosen SOT-
MRAM cell towards ground, producing a sense
voltage at the SA’s input which is then com-
pared towards the memory mode reference voltage
(Vsense, P < Vref < Vsense,AP ). The enable values
(ENM, ENAND, ENNOR)= (1,0,0) should be set to
this reference voltage generation branch. Now, the
outcome of the SA generates a low (/high) voltage
signifying logic "0" (/"1") if the path resistance is
lesser (/greater) than Rref , i.e. RAP (/Rp).

Computing Mode: Each pair of bits kept in the sim-
ilar column could be simultaneously chosen as well
as sensed throughout this mode. It should be noted
that the row decoders have been updated to allow
the multiple line enable function by integrating two
single line enable decoders and connecting their out-
comes to the OR gates. After that, SA differentiates
the equivalent resistance of these parallel-connected
SOT-MRAMs.

The SA can carry out fundamental Boolean opera-
tions (i.e. AND and OR) by choosing from a variety
of reference resistances (ENAND, ENM, ENNOR).
Rref would be set at the intersection of RAP//RP

(‘1’,‘1’) and RAP//RP (‘1’,‘0’) during the AND
operation. Thus, the output becomes higher only
when the two chosen SOT-MRAM bit-cells are simul-
taneously in the anti-parallel state. Otherwise, the
output remains low. Corresponding to above, Rref

usually set at the intersection of RP//RAP and
RP//RP for the OR operation.

3.2. Proposed accelerator for BCNN

The Adder Neural Network (AdderNet), a novel
class of CNNs that offers a good trade-off among
speed and accuracy, is the foundation of the pro-
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posed Binary Convolution Neural Network (BCNN).
CNN is a machine-learning classifier that analyzes
images to determine the likelihood that certain fea-
tures belong to particular output classes. A CNN often
has numerous convolutional layers, fully-connected
layers (FC) and pooling layers. It should be noted that
convolutions should be employed to construct fully
layered structures in an identical manner.

The L1 norm is where AdderNet evaluates how
comparable the features are in convolutional layers.
Employing the L2 norm among the activation X and
the filter F, traditional CNNs produce the convolu-
tion result Y, as shown by equation (1), where (c, h,
w) are (Channel, Height, Width) and p, q, and r are
iterator variables. The lightweight addition and sub-
traction operations used by AdderNet in place of the
computationally demanding multiplications result in
reduced power consumption and quicker speed than
typical CNNs, as shown by equation (2).

L1 norm : Yc,h,w =
∑

p,q,r

Fp,q,r × Xp,h+q,w+r (1)

L1 norm : Yc,h,w =
∑

p,q,r

|Fp,q,r × Xp,h+q,w+r| (2)

The precise computation procedure is listed below.
Assume that the initial storage locations for the input
fmaps (I) and kernels (W) in memory are the respec-
tive image banks as well as kernel banks. In order to
do batch normalization, which will ensure minimal
information loss, inputs were initially sent to the pro-
cess. The second step is the binary operation with the
sign function that binarizes the normalised inputs and
weights. The suggested CIM ARRAY is then given
binarized inputs I(B) and weights W(B) to execute an
in memory operation.

Each layer of CNN’s convolutional layer is
revealed to collect a feature grouping in a multiple
channel format as input (Input fmaps). It applies W
through convolutions of high dimensions, and then
generates the output fmaps (features) for the follow-
ing layer. The results will then be processed using a
non-linear activation function, for instance, ReLU.

O[n][k][x][y] = ReLu(B[k]+
c−1∑

z=0

I[n][z][Ux + i][Uy + j]W[k][z][i][j]),

Fh−1∑

i=0

Fw−1∑

j=0

0 ≤ N, 0 ≤ k < K, 0 ≤ x < W2,

0 ≤ y < H2;

(3)

Fig. 2. The computation workflow of ABCNN.

Fig. 3. Workflow of memory controller.

It is possible to fully perform the convolutional
operation of I(B) and W(B) in memory by expressing
it as follows:

I ∗ W = Bit − Count(I(B)&W(B)) (4)

3.3. Accelerator architecture

According to Fig. 2, the suggested BCNN is made
up of computing memory arrays (CMAs) and data
processing units (DPUs). The CMAs, which are out-
fitted with the suggested BCNN for adder’s sparse
addition and subtraction operations, were under the
control of convolutional and FC layers. It has 128K
2-bit weight registers, 4096 CMAs, and 64 MiB of
total memory. The batch normalisation as well as the
activation layers are handled by the DPU. With the
exception of the lack of a hardware quantizer, the pro-
posed DPU design is virtually identical to that of Para
PIM and MRIMA.
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The weight quantizer is not essential because the
weights of newer BCNNs are already quantized
because they are taught to be 1-bit binary values. Due
to the lack of a quantization mechanism, eliminat-
ing the quantizer also results in a reduction in chip
space and power. In conclusion, the DPU, with its
activation functions as well as batch normalization,
cooperates with the CMAs with effective addition and
subtraction.

3.4. DPU’s components

3.4.1. Batch-normalization
By normalization of the input sample, it possess a

zero mean with unit variance and decreases the infor-
mation loss. The transformation could be defined as:

I0(R) = Ii(R) − μ√
σ2 + ε

γ + β (5)

And the associated output and input pixels, respec-
tively, are identified as I 0 (R) and I i (R). σ and μ

stand for statistics obtained while in training mode,
γ as well as β indicates the parameters which were
trained, and ε was used to avoid round-off issues.
Every pixel of the input fmap is efficiently fetched by
the DPU, which then writes back the matching nor-
malized pixel because all the variables in the above
mentioned equations are saved in SOT-MRAM sub-
arrays.
Activation Function: The accuracy of network pre-
diction is significantly influenced by the choices of
the activation function. For maximum accuracy, this

unit could be modified to conduct two different acti-
vation functions, notably (i.e. tanh(x)+1

2 and sign(x).
Workflow: Convolution layers are handled by the
CMA, and the other two tasks are undertaken by
the DPU. The CMA is divided into odd as well as
even rows, each of which can hold an 8-bit value.
The odd rows are being provided with weights first.
The activations should then be mapped to the even
rows. Third, the convolution outcomes are calculated
concurrently across all memory columns. The DPU
then receives the convolution outcomes from each
CMA. Fifth, the DPU activates the convolutional
results using activation functions. To create the output
feature maps, the DPU then performs batch normal-
isation and scales the normalised values into 8-bit
numbers.

AdderNet In-Memory Convolution: By convert-
ing the activations to an Image-to-Column (Img2Col)
fashion, it performs convolution in the General
Matrix Multiplication (GMM) style. A GMM among
Img2Col and the unrolled filters can be used to recon-
figure the two-dimensional convolution with three
filters, as shown in Fig. 4. Figure 5 displays the entire
AdderNet workflow inside the CMA. The filters were
duplicated at specific times to meet the shape of the
converted activation, and they were mapped towards
the first rows of the memory. The Img2Col, which are
replicated for each filter, are stored in the second row.
For purposes of illustration, the third row also serves
as the even row. In order to record the partial sums
that were immediate in the even rows, initially add
together the associated values in every two rows. Sec-

Fig. 4. An Img2Col example.
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Fig. 5. GEMM dependent AdderNet convolution.

Fig. 6. The SA architecture.

ond, determine if the accumulation of the partial sum
requires addition or subtraction by reading the sign bit
row. In order to perform addition/subtraction among
the two partial sums and save the instantaneous value
in the second operand, the Memory Controller (MC)
then transmits the appropriate signals.

The MC then re-does the second action until the
bottom of the column has the total accumulation out-
come. Because every column has a SA, all of the
columns are computing concurrently, which are the
reason IMC devices perform well.

Sense Amplifier: The SA, which specifies the kind
of operations the device can handle, is the essential
part of an IMC device. In order to facilitate addition
operations more rapidly and effectively than exist-
ing works, a SA must be designed. Additionally, the
suggested SA is not only capable of the addition oper-
ation but also typical Boolean operations including
subtraction. The SA performs READ, NOT, AND,

NAND, OR, XOR, and Addition (ADD) functions
natively and Subtraction (SUB) extensively.

Architecture and Workflow: Fig. 7 demonstrates
the architecture of the recommended SA. Four phases
contribute up the SA’s signal flow.
Sensing: According to equation (6), where Iref indi-
cates the reference activation current and RMTJ

indicates MTJ’s resistance as well as RT symbolizes
the resistance of access transistor in the memory cell,
the operational amplifier (OpAmp) in the SA collects
the overall current from SL as well as the voltage of
the SL VSL.

VSL = Iref .((RMTJ1 + RT1)//(RMTJ2 + RT2))
(6)

Vref = Iref .Rref (7)

Comparing: The OpAmp in the SA receives the
sensed voltage VSL and relates it to the reference
voltages Vref. (provided in equation (10)) to produce
the AND, READ or OR result, which may then be uti-
lized to calculate more sophisticated functions. While
reading out a solitary memory cell, the detected volt-
age VSL could alternatively be lesser (VP,O).

As demonstrated in Fig. 8(b), the reference volt-
age for reading VREAD therefore lies within VP,O

and VAP,1. Corresponding to this, as illustrated in
Fig. 8(c), the sensed voltage VSL of reading out two
memory cells could indeed be VP−P,00, VP−AP,01
and VP−AP,11. As a consequence, whereas the refer-
ence voltage for ANDVAND stands within VP−AP,01
and VP−AP,11, that of VOR is between VP−P,00 and
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Fig. 7. (a) The equivalent circuit for simultaneous two memory cellssensing. (b) The VREAD for single memory cellsensing. (c) The VAND
and VOR for two memory cellssensing.

Table 2
Selector signals configuration in the SA

Selector port AND OR XOR SUM

Sel1 0 0 1 1
Sel2 0 1 0 1

VP−AP,01.

A XOR B = [A AND B] NOR [A NOR B] (8)

SUM = [A XOR b] XOR Cin (9)

Cout = ([AORB] AND Cin) OR [AAND B] (10)

Combining: In order to calculate complex func-
tions, such as SUM and XOR, as well as carry
out addition operations, as illustrated in Fig. 7,
the various logic gates available in SA integrate
the AND, NOR, and OR signals produced by the
OpAmps. Equation (8) represents signals delivered
by the OpAmp from the comparison step and illus-
trates how the XOR is computed, for instance, by
NOR among the AND and NOR of operands A and
B.

In a similar manner, equations (9) and (10) are
employed to estimate the SUM and Carry-out Cout ,
whereas Cin symbolizes the Carry-in, saved in D-
Latch. Consequently, as demonstrated by equation
(11)–(13) and Fig. 7, the SA necessitates four logic
gates (NOR, OR, AND and XOR) as well as one
D-Latch in the combining phase.

Selecting: The desired outcome is then transmitted
to the output port OUT by the selector depending on
the selecting signals Sel1 as well as Sel2 as in Tables
2 and 3.

Table 3
Enable signals’s configuration in the SA

Operation EN (Enable) READ NOT AND NAND OR XOR ADD

EN READ 1 0 0 0 0 0 0
EN AND 0 1 1 1 0 1 1
EN OR 0 1 0 0 1 1 1
Selector port OR XOR AND XOR OR XOR SUM

3.5. Configuration and supported operations

The recommended SA depends on the MC ’s
enable and selector signals to produce the intended
outcome. This modifies the SA’s enable signals so
that it can serve various purposes. In the process,
it chooses the outcomes sent to the selector’s input
ports, and then receive the outcome at the OUT port.

Although the SA enables 8 functions, imple-
menting 8 selection ports for each function adds
complication and costs a lot of space. In order to
minimize the design to just four selector ports, it opti-
mizes the SA on the NOT, READ, SUB and NAND
functions. First, because they both employ the same
OpAmp, the OR and READ operations use the iden-
tical OR selector port. Second, since equation (11)
demonstrates that NOT equals XOR with "1"s, thus
it read in the operand combined with the row of "1"s
and output the NOT outcome at the selector port of
XOR. Third, when calculating the NAND at the SA’s
second OpAmp, it turn off the EN READ and EN
OR. When the VSL is larger than zero, the OpAmp
NOR port outputs a "0". Equation (12) demonstrates
how the NAND outcome follows a NOR between the
AND and "0"s at the XOR port. Lastly, conduct the
SUB operation through one NOT proceeded by one
ADD as given in equation (13).

NOT A = A XOR 111...1 (11)
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A NAND B = (A AND B) NOR 000...0 (12)

A − B = A + ((NOT B) + 1) (13)

As a consequence, among the works currently in
existence, the SA seems to have the fewest enabling
(EN), selector, as well as amplifier signals.

3.6. IMC-friendly convolution pipeline

When running AdderNet on IMC, the two bot-
tlenecks were seen. First, compared to the addition
operation, the two-step subtraction has a longer delay.
Second, IMC platforms do not effectively utilize
AdderNet’s absolute function. In order to increase
performance, it performs two optimizations on the
first AdderNet convolution. First, as shown by equa-
tion (14), it add to the subtractions found inside the
absolute function. The filter weights F can be treated
as constants and their opposite integers can be used in
the L1 norm because they are known before inference.
The absolute function’s subtractions are now added
more effectively than before. Second, as shown by
equations (15) – (16), it merge the accumulation with
the Neg () function in place of the absolute function
and eliminates the subtraction outside of the accumu-
lation.

Yn,kn,h,w = −
∑

c,l,m

| − Fkn,c,p,q + Xn,c,h+p,w+q|

(14)

Yn,kn,h,w = −
∑

c,p,q

Neg(−Fkn,c,p,q + Xn,c,h+p,w+q)

(15)

Neg(x) = {−x,x≥0
x,x<0 (16)

Equation (17) displays the overall number of
operations performed by a single original Adder-
Net convolution layer. Without operator fusion, the
ABS operator equals βSUB Equation (18) defines
the operation number for the optimized AdderNet
convolution. In contrast to the original, the opti-
mized computation pipeline minimizes 2βSUB and
improves βADD. Assuming β = 0.5, the optimized
AdderNet eliminates 33% of subtractions and con-
verts the remaining 33% into additions.

Opsold = (SUB + ABS + ADD).c.kh.kw + SUB

(17)

Opsnew =(ASS + αSUB + βADD)

.c.kh.kw, α + β = 1
(18)

Fig. 8. Efficiency and latency of addition comparison.

4. Results and discussion

Testing on MNIST data set, Modified CACTI [11]
as well as NVSim [12] are employed to evaluate the
suggested accelerator’s system-level performance,
speedup, and energy efficiency. Meantime, this uti-
lizes existing technologies [13, 14] that perform
comparisons utilising RRAM and SOT-MRAM. Fol-
lowing were the findings that contribute. The power
and latency results are obtained from Virtuoso ADE
L using Spretre, and the area is calculated using Vir-
tuoso Layout L.

The proposed system refers to [15] for the write
time of the 1-Transistor-1-Junction MRAM memory
array implemented in the same 45nm process. Keep-
ing the standard STT-MRAM array which accounts
for around 85% area in a CMA unchanged, and mod-
ified the SA.

4.1. Performance of sense amplifier

Power and Latency of In-Memory-Computing Oper-
ations: The performances of IMC in different SAs are
compared, including PIM [16], COIN [17], ReRAM
[18] and the proposed BIMA. The SUM, Read, OR,
XOR and AND operations’ normalized CP latency
and average dynamic power are depicted in Fig. 8.

From obtaining the sensing signal flowing from the
memory cells until receiving the operation outcome
at the OUT port, the SA latency has been estimated.
PIM and BIMA both seem to have slightly shorter
read latency than one another (14% for SUM and
15% for AND, OR, and XOR). The suggested BIMA
outperforms ReRam on Read by 35% and on AND
and OR by >15%. Owing to its aggressive processing
technique, COIN outperforms FAT on SUM by 7%,
however it would not support XOR. Additionally, the
suggested BIMA has power efficiency gains over PIM
and COIN of 1.32× and 1.51×, respectively.
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Fig. 9. Normalized area breakdown of the SA comparision.

Fig. 10. Energy efficiency and speedup of the BIMA across net-
work sparsity.

4.2. Efficiency and latency of addition operation

The PIM has the shortest critical path (CP) as well
as the lowest latency when performing one scalar
addition [19–21]. According to the SA and the sug-
gested efficient addition strategy that accumulates the
carry in a latch rather than the memory array, the pro-
posed BIMS outperforms COIN and ReRAM in the
CP, single addition, and vector addition. The effec-
tiveness of these SAs was additionally examined in
Fig. 9 along with the latency, Energy-Delay-Product
(EDP), performance/watt, and power density (PD) in
power/area.

First, BIMA is 1.14×, 3.14× and 3.36× faster
than PIM, COIN and ReRAM respectively. When
the additional write of Carry is taken into consider-
ation, it is discovered that COIN and ReRAM are
significantly slower than PIM [22–26]. Although
writing the Carry onto the memory consumes a
longer time, the addition as a whole had been slowed
down even if ReRAM possesses lower processing
delay in the SA. Thus, the BIMA has the shorter
latency in addition. Second, BIMA had the largest
performance/watt and is 1.12-2.976× as compared

Fig. 11. Energy efficiency and speedup of the BIMA across net-
work sparsity.

to the other works. Third, the proposed method has
the lesser EDP among the existing works PIM, COIN
and ReRAM. Fourth, BIMA possesses a reduced
PD than PIM and ReRAM, which indicates that the
proposed BIMA is more balanced to endure a longer
lifetime.

Reliability and Area of SA

The area of the proposed BIMA and associated
works were illustrated in Fig. 10. Though BIMA com-
prises of the majority of logic gates, BIMA has lesser
area than COIN and ReRAM. Also, the SA is more
reliable than COIN and ReRAM. The sense margin
of the two operand was 2.5× high, while compara-
ble towards the three-operand operations. As a higher
sense margin delivers lower error rate, the proposed
SA is highly reliable comparing to PIM and ReRAM.

4.3. Network level performance

On configurations with equivalent layer-to-layer
sparsity, Fig. 11 demonstrates the network level
speedup as well as energy efficiency, which fur-
ther replicates the single layer parameters [27–30].
Although only PIM designs constitute BWN IMC
accelerators within the three relevant works, PIM is
employed as the baseline. The proposed accelerator
could achieve 17.13× speedup and 18.20× efficiency
compared with PIM.

5. Conclusion

This research proposes a SOT-MRAM-based
Binary CNN In-Memory Accelerator (BIMA) to
minimize the power consumption and proposes an
In-Memory Computing (IMC) for AdderNet con-
volution to further enhance the performance. And
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observe that the constraints on IMC are the replace-
able subtractions as well as the inefficient absolute
function. This performs comparable operator replace-
ment as well as operator fusion to deliver an
IMC-friendly AdderNet convolution, where the 1/3
subtractions are transformed to additions. and elimi-
nates other 1/3 subtraction operations. Relying on the
evaluation outcomes, the proposed accelerator out-
performs the existing in-memory accelerator in terms
of speedup and energy efficiency by 17.13 and 18.20,
respectively.
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