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Abstract: In this paper, we compare the performance of Intrusion Detection System Classifiers using various 
feature reduction techniques. To enhance the learning capabilities and reduce the computational intensity of 
competitive learning neural network classifiers, different dimension reduction techniques have been proposed. 
These include: Principal Component Analysis, Linear Discriminant Analysis, Independent Component Analysis. 
Many Intrusion Detection Systems are based on neural networks. However, they are computationally very 
demanding . In order to mitigate this problem, dimension reduction techniques are applied to a given dataset to 
extract important features. In the proposed research various classifiers are applied to the reduced feature dataset 
and their performance is compared. On the basis of these results, a technique is proposed which performs 
exceptionally well, in terms of both accuracy and computation time. When applied to the KDDCUP99 reduced 
feature dataset, this technique performs better than a standard learning schema based on the full featured dataset. 
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1. INTRODUCTION 
 
Intrusion Detection Systems (IDSs) are amongst the 
main tools for providing security in computer 
systems and networks. They detect intrusions and 
attacks through the analysis of TCP/IP packet data. 
Based on the data source, IDSs are classified into 
host-based and network-based. Also depending on 
the analysis approach, IDSs are categorized into 
misuse detection and anomaly detection systems. 
Misuse detection systems detect known attacks 
using pre-defined attack patterns and signatures. 
Anomaly detection systems detect attacks by 
observing deviations from the normal behaviour of 
the system. Supervised and unsupervised nets have 
been used in IDSs. Most supervised neural net 
architectures require retraining, to account for 
changes in the input data. Unsupervised nets offer an 
increased level of adaptability to neural nets, and 
have been used in intrusion detection systems.  
To enhance the learning capabilities and reduce the 
computational intensity of competitive learning 
neural network, different dimension reduction 
techniques such as Principal Component Analysis, 
Linear Discriminant Analysis, Independent 
Component Analysis. Many Intrusion Detection 
Systems are applied to KDDCUP99 (Aapo and Oja, 
2000; Balakrishnama, 1998), a well known dataset. 
Many Intrusion Detection Systems based on neural 
networks have been proposed. However, they are 
computationally very demanding and they face high 
misclassification rate. In order to mitigate these 

problems dimension reduction techniques are 
applied to the training dataset to extract important 
features. Various neural network classifiers such as 
Gaussian mixture, RBF, Binary tree, LAMSTAR, 
SOM, ART are applied to the reduced feature 
dataset and their performance is compared.   

2. DIMENSION REDUCTION  
In statistical terms, dimension reduction (Berchtold 
et al., 1998; Fodor, 2002; Gopi et al., 2004) is the 
process of reducing the number of random variables 
under consideration. This process can be divided 
into feature selection and feature extraction  
The curse of dimensionality is a term coined by 
Richard Bellman to describe the problem caused by 
the exponential increase in volume associated to the 
addition of extra dimensions to a (mathematical) 
space. 
The curse of dimensionality is a significant obstacle 
in machine learning problems that involve learning 
from few data samples in a high-dimensional feature 
space. 
 
2.1 Predictive Data Mining 
 
One of the predictive tasks of Data Mining is that of 
finding some form of classification of the items 
contained in the data mart from a set of raw data. 
When there is a finite set of classes that describe the 
domain of the data, the classification can be carried 
out by means of if-then rules that help users to 
classify a new item in one of such predefined 
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classes. Such classification process is based on the 
values of some characteristics of the item itself and 
can be deterministic (e.g. there is no doubt about the 
membership of the item to the given class) or 
heuristic (e.g. the association of the item to one or 
more classes is given with a degree of certainty). 
The association model can take the form of a 
decision tree, rather than a set of if-then rules, but 
the purpose of the model remains the same. When 
the classification domain is not finite (e.g. when the 
examined variable is a real number) the operation is 
called regression. The regression task models the set 
of data submitted to the task and can be used to 
predict new, not submitted, values. 
 
2.2 Curse of Dimensonality 

 
It is intuitive to think that increasing the dimension 
of the features should never reduce the recognizer’s 
performance, since we are providing a larger, or at 
least the same, amount of information. Therefore the 
worst that could happen should be that performance 
would remain the same. As practice shows, this is 
unfortunately not the case; the performance can 
decrease even though we feed more data to the 
system. This behaviour is due to the finite amount of 
training data that can be presented to the model. In 
theory we normally assume the training data to be 
infinite and so the model could be perfectly trained 
under all circumstances. In practice this is not 
possible and if we chose a model that is too complex 
then it would be unlikely that all of our parameters 
could be well estimated. On the other hand the 
model should not be too simplifyed either.  
 
2.3  Feature Reduction Techniques 
 
Feature extraction (Graupe, 1997; KDDCUP99, 
1999) applies a mapping of the multidimensional 
space into a space of fewer dimensions. This means 
that the original feature space is transformed by 
applying e.g. a linear transformation using principal 
components analysis. 
Feature extraction involves simplifying the amount 
of resources required to accurately describe a large 
set of data. When performing the analysis of 
complex data one of the major problems stems from 
the number of variables involved. Analysis with a 
large number of variables generally requires a large 
amount of memory and computation power or a 
classification algorithm which over-fits the training 
sample and generalizes poorly to new samples. 
Feature extraction is a general term for methods of 
constructing combinations of the variables to get 
around these problems while still describing the data 
with sufficient accuracy. 
We considered three dimension reduction techniques 
in this work 
 

i. Linear Discriminant Analysis 

ii. Independent Component Analysis 

iii. Principal Component Analysis 

2.4. Linear Discriminant analysis 
 
LDA (Jing et al., 2006) finds the optimal 
transformation matrix as to preserve most of the 
information that can be used to discriminate between 
the different classes. Therefore the analysis requires 
the data to have appropriate class labels. In order to 
mathematically formulate the optimization  
procedure  
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we have to compute the mean vector and the 
covariance matrix  for each class and for the 
complete data set (with all classes pooled together) 
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In the above formulas N denotes the total number of 
training tokens and Nj stands for the number of 
training tokens in class j. Naturally, the number of 
classes is J. 
With these definitions, we can easily formulate the 
optimization criterion. Namely the numerator 
represents the covariance of the pooled training data 
in the transformed feature space. The denominator 
represent the average covariance within each class in 
the transformed feature space. Hence, the criterion 
really tries to maximize the ‘distance’ between 
classes, while minimizing the ‘size’ of each of the 
classes at the same time. This is exactly what we 
want to achieve because this criterion guarantees 
that we preserve most of the discriminant 
information in the transformed feature space. It turns 
out that the optimum matrix according to the above 
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formula can be found in a fairly easy way. The result 
consists of those eigenvectors that correspond to the 
p largest eigenvalues. LDA is applied to the 
KDDCUP99 data and the features selected are 
shown in table 1. Tables 2 to 7 shows the 
performance of the various neural network 
classifiers using 17 features. 
 

 

Table 1:  Best 17 features selected after  
linear discriminant analysis 

 

S.no Feature Description 

0 duration Continuous 

1 protocol_type Symbolic 

2 Service Symbolic 

3 src_bytes Continuous 

4 land Symbolic 

5 wrong_fragment Continuous 

6 num_failed_logins Continuous 

7 logged_in Symbolic 

8 root_shell Continuous 

9 num_file_creations  Continuous 

10 is_guest_login  Symbolic 

11 count  Continuous  

12 srv_count  Continuous  

13 serror_rate Continuous 

14 srv_serror_rate Continuous 

15 diff_srv_rate Continuous 

16 dst_host_count Continuous 

 
 

Table 2 : Confusion matrix for  
Gaussian mixture  IDS (17 features) 

CPE = 0.3309    FP=0.18    FN=10.31 
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Normal 60024 380 178 5 6 99.1 
Probe 193 3882 91 0 0 93.2 
DOS 17930 8966 202943 9 5 88.3 
U2R 148 21 2 52 5 22.8 
R2l 13815 613 6 30 1725 10.6 

%correct 65.2 28.0 99.9 54.2 99.1  

 
 

Table 3: Confusion Matrix for RBF IDS (17 
features) CPE = .4665    FP=.37     FN=14.74 
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Normal 59435 573 575 8 2 98.1 

Probe 530 3554 78 3 1 85.3 

DOS 37850 21191 170792 15 5 74.3 

U2R 195 13 2 18 0 7.9 

R2l 7280 7810 200 0 899 5.5 

%correct 56.4 10.7 99.5 40.9 99.1  

 

Table 4: Confusion Matrix for SOM IDS (17 
features) CPE =.2436  FP=1.23  FN=6.74 
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Normal 56750 3548 285 8 2 93.6 
Probe 1290 2519 350 5 2 60.5 
DOS 8193 1125 220530 4 1 95.9 
U2R 102 69 9 47 1 20.6 
R2l 11395 3026 7 0 1761 10.9 

%correct 73.0 24.5 99.7 73.4 99.7  

 
 

 
Table 5: Confusion Matrix for Binary Tree Classifier 
IDS(17 features)   CPE=.2283 ,  FP=.60,   FN=5.44 

 

 
 

Table 6:  Confusion Matrix for ART IDS (17 
features) CPE=.2295    FP=.59   FN=5.37 
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Normal 58750 773 1068 1 1 96.9 

Probe 106 4001 58 0 1 96.0 

DOS 4210 2806 222833 3 1 96.9 

U2R 57 128 4 39 0 17.1 

R2l 12360 1550 474 1 1804 11.1 

%correct 77.8 43.2 99.3 88.6 99.8  

 
 
Table 7: Confusion Matrix for LAMSTAR  IDS (17 

features) CPE=.1304 FP=0.11    FN=3.40 
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Normal 60239 284 65 4 1 99.4 
Probe 118 3982 65 0 1 95.6 
DOS 2583 551 226715 3 1 98.6 
U2R 98 52 5 72 1 31.6 
R2L 7801 473 1810 0 6105 37.7 

%correct 85.0 74.5 99.1 91.1 99.9  

 
2.5. Independent Component Analysis 
 
ICA (Jolliffe, 2002) is very closely related to the 
method called blind source separation (BSS) or 

P
re

di
ct

ed
 

A
ct

ua
l 

N
or

m
al

 

P
ro

be
 

D
O

S
 

U
2R

 

R
2L

 

%
co

rr
ec

t 

Normal 58700 1300 583 7 3 96.9 

Probe 569 3096 493 6 2 74.3 

DOS 8204 1730 219915 3 1 95.7 

U2R 99 99 3 26 1 11.4 

R2l 8061 1003 7037 0 88 0.54 

%correct 77.6 42.8 96.4 61.9 92.6  
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blind signal separation. ICA is one method, perhaps 
the most widely used, for performing blind source 
separation.  
A relevant feature is defined as a feature whose 
removal deteriorates the performance or accuracy of 
the classifier, while an irrelevant or redundant 
feature is a not relevant one. Irrelevant features 
could deteriorate the performance of a classifier that 
uses all the features because irrelevant information is 
taken into account. Thus the motivation of a feature 
selector is (i) simplifying the classifier by the 
selected features; (ii) improving or not significantly 
reducing the accuracy of the classifier; and (iii) 
reducing the dimensionality of the data so that a 
classifier can handle large values of data. 
ICA techniques provide statistical signal processing 
tools for optimal linear transformations in 
multivariate data. These methods are well-suited for 
feature extraction, noise reduction, density 
estimation and regression. The ICA problem can be 
described as follows, each of h mixture signal x1(k), 
x2(k),…,xh(k) is a linear combination of q 
independent components s1(k), s2(k),…,sh(k) , that 
is, X = AS where A is a mixing matrix. Given X, the 
problem is to compute A and S. Based on the 
following two statistical assumptions, ICA 
successfully obtains the results: 1) the components 
are mutually independent; 2) each component 
follows a non-gaussian distribution. By X = AS, we 
have S=A-1 S = A inverse of X=WX (where W = A 
inverse). 
The task is to select an appropriate W which applied 
on X to maximize the non-gaussian  behaviour of the 
components. This can be done through an iterative 
procedure. Given a set of n-dimensional vectors, the 
independent components are the directions (vectors) 
along which the statistics of the projections of the 
data vectors are independent of each other. 
Formally, if A is a transformation from the given 
reference frame to the independent component 
reference frame, then 
 
X = AS   indicates that 

(.)),()( aia wherePSPSP ∏=    (8)  

is the marginal distribution and p(s) is the joint 
distribution over the n-dimensional vector s. 
Usually, the technique for performing independent 
component analysis is expressed as the technique for 
deriving one particular W, y = Wx, Such that the 
components of y become independent of one 
another. If the individual marginal distributions are 
non-gaussian then the derived marginal densities 
become a scaled permutation of the original density 
functions if one such W can be obtained. One 
general learning technique to find a suitable W is   
 

,))(( WyyIW Tφη −=   (9)  

Where )(yφ  is a nonlinear function of the output 
vector y.  ICA is applied to the KDDCUP99 data 
and the features selected are shown in table 8. 

Tables 9 to 14 show the performance of various 
neural network classifiers using 12 features. 
 

Table  8: Best 12 features selected after  
independent component analysis 

 

S.no Feature Description 
0 service Symbolic 
1 src_bytes Continuous 
2 dst_bytes Continuous 
3 logged_in Symbolic 
4 count Continuous 
5 srv_count Continuous 
6 serror_rate Continuous 
7 srv_rerror_rate Continuous 
8 srv_diff_host_rate Continuous 
9 dst_host_count Continuous 
10 dst_host_srv_count Continuous 
11 dst_host_diff_srv_rate Continuous 

 
 

Table 9: Confusion Matrix for Gaussian mixture IDS 
(12 features) CPE = .3417  FP=.34      FN=10.53 
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Normal 59510 692 380 5 6 98.2 

Probe 295 3726 145 0 0 89.4 

DOS 18445 10472 200922 9 5 87.4 

U2R 153 27 1 42 5 18.4 

R2l 13875 775 5 30 1504 9.3 

%correct 64.5 23.7 99.7 48.8 98.9  

 

Table 10: Confusion Matrix for RBF  IDS (12 
features) CPE = .3417   FP=0.34       FN=10.53 

 

 
Actual 

Normal Probe DOS U2R R2L %cor
rect 

Normal 59400 593 590 8 2 98.03 

Probe 550 3514 98 3 1 84.34 

DOS 37875 21216 170742 15 5 74.28 

U2R 196 15 2 15 0 6.57 

R2l 7294 7820 200 0 875 5.4 

%correct 56.4 10.6 99.5 36.6 99.1  

 
 

Table 11: Confusion Matrix for Binary Tree Classi- fier 
IDS (12 features) CPE=.2309  FP=0.67    FN=5.51 
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Normal 58501 1402 680 7 3 96.5 
Probe 635 2950 573 6 2 70.8 
DOS 8354 1523 219971 4 1 95.7 
U2R 99 97 5 26 1 11.4 
R2l 8063 1000 7055 0 71 0.43 

%correct 77.3 42.3 96.4 60.5 91  
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Table 12: Confusion Matrix for SOM IDS (12        
12 features) CPE =.2485 FP=1.22  FN=6.86 
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Normal 56400 3773 410 8 2 93.0 

Probe 1305 2474 380 5 2 59.4 

DOS 8523 1324 220000 5 1 95.7 

U2R 103 70 10 44 1 19.3 

R2l 11410 3041 12 0 1726 10.6 

% 
correct 72.5 23.2 99.6 71 99.6  

 
 

 
Table 13: Confusion Matrix for ART Classifier 

IDS(12 features) CPE=.2309    FP=.67  FN=5.51 
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Normal 58625 848 1118 1 1 96.7 

Probe 166 3901 98 0 1 93.6 

DOS 4460 2956 222433 3 1 96.8 

U2R 58 129 5 36 0 15.8 

R2l 12400 1580 484 1 1724 10.6 

%correct 77.4 41.4 99.2 87.8 99.8  

 
 
 

Table 14: Confusion Matrix for LAMSTAR  IDS  
(12 features) CPE = .3417   FP=.34   FN=10.53 

 

Predicted 
Actual Normal Probe DOS U2R R2L % 

correct 

Normal 60150 341 97 4 1 99.3 

Probe 248 3700 217 0 1 88.9 

DOS 2688 661 226500 3 1 98.5 

U2R 99 59 9 60 1 26.3 

R2L 7819 450 2920 0 5900 36.4 

%correct 84.7 71.0 98.6 89.5 99.9  

 
 

2.6. Principal Component Analysis 
 
Principal Component Analysis( PCA) (Khaled and 
Vemuri, 2002; Kordylewski, 1998; Morteza et al., 
2004) is one of the most widely used dimensionality 
reduction techniques for data analysis and 
compression. This technique identifies patterns in 
the data, and expresses the data in a way that 
highlights their similarities and differences. Because 
patterns can be hard to find in data of high 
dimensions, PCA is a powerful analysis tool. Once 
patterns in the data are found, the data can be 
compressed reducing the number of dimensions 
without a significant loss of information.   
Given the data, if each datum has N features 
represented for instance by x11 x12 … x1N , x21 

x22….x2N, the data set can be represented by a 
matrix Xn×m. 
 
The average observation is defined as 
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The sample covariance matrix of the data set is 
defined as  
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Eigen values and Eigen vectors of the sample 
covariance matrix C are usually computed by the 

Singular Value Decomposition. Suppose (λ 1, u1), 

( λ 2, u2)…. (λ m, um) are m eigenvalue-
eigenvector pairs of the sample covariance matrix C. 
The k eigenvectors having the largest eigenvalues 
are selected. The dimensionality of the subspace k 
can be determined by 
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Where  is the ratio of the variation in the 
subspace to the total variation in the original space. 
A m×k matrix U is formed 
whose columns consist of the k eigenvectors. The 
representation of the data by principal components 
consist of projecting the data onto the k-dimensional 
subspace according to the following rules. PCA is 
applied to the KDDCUP99 data and the features 
selected are shown in tables 15. Tables 16 to 21 
show the performance of various neural network 
classifiers using 13 features 
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      Table 15: Best 13 features selected after 
principal component analysis 

 

S.no Feature Description 

0 duration Continuous 

1 flag Symbolic 

2 src_bytes Continuous 

3 dst_bytes Continuous 

4 land Symbolic 

5 wrong_fragment Continuous 

6 urgent Continuous 

7 num_failed_logins Continuous 

8 logged_in Continuous 

9 dst_host_serror_rate Continuous 

10 dst_host_srv_serror_rate Continuous 

11 dst_host_rerror_rate Continuous 

12 dst_host_srv_rerror_rate Continuous 

 
 

Table 16: Confusion Matrix for Gaussian mixture 
IDS (13 features) CPE = .2776 FP=.18 FN=10.32 
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Normal 60019 383 180 5 6 99.05 
Probe 195 3876 95 0 0 93.03 
DOS 17945 8972 202922 9 5 88.28 
U2R 155 25 1 42 5 18.42 
R2l 13825 625 5 30 1704 10.5 

%correct 65.13 27.92 99.86 48.83 99.06  

 
 

Table 17: Confusion Matrix for RBF IDS (13 
features) CPE = .3805 FP=.20 FN=14.40 
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Normal 59940 313 330 8 2 98.92 

Probe 450 3704 8 3 1 88.91 

DOS 36975 20116 172742 15 5 75.15 
U2R 196 20 2 10 0 4.38 

R2l 7294 7820 200 0 875 5.4 

%correct 57.16 11.58 99.68 27.77 99.09  

 
 

Table 18: Confusion Matrix for SOM IDS (13 
features) CPE = .3805 FP=.20 FN=14.40 

 

Predicted 
Actual Normal Probe DOS U2R R2L % 

correct 

Normal 56820 3508 255 8 2 93.77 

Probe 1270 2549 340 5 2 61.18 

DOS 7843 1025 220980 4 1 96.13 

U2R 101 68 9 49 1 21.49 

R2l 11391 3019 7 0 1772 10.94 

%correct 73.38 25.06 99.72 74.24 99.66  

 
 
 

Table 19: Confusion Matrix for Binary Tree 
Classifier IDS (13 features)  

  CPE=.1837     FP=0.61 FN=5.11 
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Normal 58683 1300 600 7 3 96.84 

Probe 564 3102 492 6 2 74.45 

DOS 7174 1003 221671 4 1 96.44 

U2R 97 99 2 29 1 12.71 

R2l 8063 1000 7054 0 72 0.44 

%correct 78.68 47.69 96.45 64.04 91.13  

 
 

Table 20: Confusion Matrix for ART IDS (13 
features) CPE=.2198    FP=.58  FN=5.49 
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Normal 58775 808 1008 1 1 96.99 

Probe 136 3971 58 0 1 95.31 
DOS 4210 2756 222883 3 1 96.96 
U2R 57 126 4 41 0 17.98 
R2l 12390 1560 454 1 1784 11.01 

%correct 77.77 43.06 99.32 89.13 99.83  

 
 

Table 21: Confusion Matrix for LAMSTAR IDS  
(13 features) CPE=.2198 FP=.58  FN=5.49 
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Normal 60411 140 37 4 1 99.69 

Probe 42 4118 5 0 1 98.84 

DOS 1688 146 228015 3 1 99.20 

U2R 99 54 5 69 1 30.26 

R2L 7519 985 1020 0 6665 41.16 

%correct 86.68 75.03 99.53 90.04 99.94  

 
 
3. IMPLEMENTATION 
 
We focus our research on Misuse based Intrusion 
detection system using Neural network classifiers. 
Anomaly based systems are not suitable for Network 
environment, hence we focus on Misuse based 
systems.  Misuse detection systems detect known 
attacks using priori defined attack patterns and 
signatures. We consider Six Neural Network 
classifiers (Gmix ,RBF, Binary tree,  LAMSTAR, 
SOM, ART)  in this paper. We tested the classifiers 
with three different reduced feature 
(LDA,ICA,PCA) KDDCUP99 dataset.  
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3.1 Gaussian Mixture 
 
The Gaussian Mixture classifier (Nguyen, 2006) can 
perform better than a Gaussian classifier when the 
classifier distributions are not unimodal Gaussian. 
Different simulations were performed by changing 
various parameters: each class has its own Gaussian 
mixture, all classes share a single set of tied 
Gaussian mixtures, diagonal covariance, full 
matrices covariance, separate variance for each 
Gaussian distribution(?). 
 
 
Table 22: Comparison of detection rate, false alarm 

rate, training time and testing time of various 
classifiers (17features) 
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3.2 Basis Function  
 
Radial Basis Function classifiers (Selvan and 
Venkatachalam, 2007) calculate discriminant 
functions using local Gaussian functions. A total of 
six simulations were performed using the RBF 

algorithm. Each simulation used initial clusters 
created using the K-means algorithm: there were 
8,16,32,40,64 and 75 clusters each in different 
output classes. Weights are trained using the least-
square matrix inversion method to minimize the 
squared error of the output sums, given the basis 
function outputs for the training patterns. During 
training and testing variances are increased to 
provide good coverage of the data. For each RBF 
simulation, the cost per example for the test dataset 
was calculated. 
 
3.3 SOM 
 
For SOM (Lippmann, 2003) the training algorithm 
can be summarized in four basic steps. Step 1 
initializes the SOM before training. Step 2, identifies 
the best matching unit is determined. The best 
matching unit (BMU) is the neuron, which is the 
most similar to the input pattern. Step 3 adjusts the 
best matching neuron (or unit) and its neighbours so 
that the region surrounding the best matching unit 
more closely represents the input pattern. This 
training process continues until all the input vectors 
are processed. The convergence criterion utilized 
here is expressed in terms of training epochs, and 
defines how many times all the input vectors should 
be fed to the SOM for training purposes. 
 
3.4 Binary Tree classifier  
 
The binary decision tree classifier[15] trains and 
tests very quickly. It can also be used to identify the 
input features, which are most important for 
classification because feature selection is part of the 
tree-buliding process. Two different training options 
were used 1. Expansion of the tree until no more 
errors are found. 2. Early interruption of expansion. 
Two different testing options were used 1. Full tree 
for testing,  2.Maximum number of nodes during 
testing 
 
3.5 ART 
 
The stability and plasticity of ART (Shyu et al., 
2003) nets and their ability to cluster input patterns 
based on their user-controlled mutual similarity, 
made such nets more appropriate for using in IDSs, 
rather than the other types of unsupervised nets 
including SOM, for classifying network traffic into 
normal and intrusive attack. Accordingly, we used 
two types of unsupervised ART nets, ART-1 and 
ART-2. For ART1 and ART2 the optimum value for 
the vigilance parameter and the number of epochs 
determine performance. 
 
3.6 LAMSTAR 
 
LAMSTAR stores the information in neurons as 
well as the correlation links created during training, 
which make LAMSTAR more suitable for IDs.  
Using the LAMSTAR (Terrran and Brodley, 1999; 
Wenke and Stolfo, 2000) algorithm, different 
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clusters were specified and generated for each output 
class. Simulations were run having 2,4,8,16,32,40,64 
clusters. Clusters were trained until the average 
squared error difference between two epochs was 
less than 1%.  
 
4. RESULTS AND DISCUSSIONS 
 
Tables 22, 23 and 24 show the comparison of the 
detection rate, false positive rate, and cost per 
example for different classifiers using 17-feature, 
12-feature and 13-feature datasets. The results 
obtained show that the detection rate of various 
classifiers, when applied to the different classes of 
three different reduced KDDCUP99 datasets, has 
only a minor variation. The LDA, ICA and PCA 
show almost the same performance when the 
detection rate is considered, whereas there 
 
 

Table 23: Comparison of detection rate, false alarm 
rate, training time and testing time of various 

classifiers (12 features) 
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is a significant change in  training time, testing time, 
cost per example, and false positive values. The 
features selected by Principal Component Analysis, 
when applied to the various classifiers give higher 
performance than the features selected by LDA and 
ICA. The detection rate performance of all the 
classifiers using the 13 features selected by PCA is 
almost the same on the 41-feature dataset, whereas 
the training time and testing time are significantly 
reduced. The performances of the LAMSTAR neural 
network for all the classes are higher when 
compared to other classifiers. The 13-feature dataset 
significantly reduces the training time of the 
LAMSTAR neural network, due to the reduced 
number of computations required, without degrading 
the detection rate. The LAMSTAR IDS gives the 
highest detection rate with the lowest cost per 
example.  
 
 

Table 24: Comparison of detection rate, false alarm 
rate, training time and testing time of various 

classifiers  (13 features) 
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Training time is also significantly reduced when 
PCA is used as a feature reduction technique, hence 
we propose to use the LAMSTAR IDS with PCA for 
our further research. PCA performs well because the 
features selected have high information gain. 
 
5. CONCLUSION 
 
Feature reduction techniques like Principal 
Component Analysis, Independent Component 
Analysis, and Linear Discriminant Analysis are 
applied to the KDDCUP99 data set to reduce its 
features. PCA selects 13 features, ICA selects 12 
features, and LDA selects 17 features. The reduced 
features are used as input to different classifiers and   
the results are compared. The results show that the 
performance with 13 features, 12 features, and 17 
features are comparable to the 41 features’, with 
reduced training and testing times. Comparing these 
three algorithms, PCA gives better detection rate, 
false positive, cost per example, training and testing 
times than ICA and LDA. Comparing the various 
classifiers used, the LAMSTAR neural network 
shows better performance for all the classes with 
comparable training and testing times when 13 
features selected by PCA are used as input data. The 
KDDCUP99 reduced dataset obtained with PCA 
shows promising results. Hence, we propose to 
consider PCA for our further research. To further 
improve performance we propose to reduce the 
numbers of samples in the PCA reduced dataset. 
This is achieved by means of a sample selection 
algorithm, which uses clustering to select the 
samples with high information gain.  
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