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Abstract
The most significant issue today is electricity theft (ET) which causes much loss to electricity boards. The development of
smart grids (SGs) is crucial for ET detection (ETD) because these systems produce enormous amounts of data, including
information on customer consumption, which can be used to identify ET using machine learning and deep learning (DL)
techniques. However, the existing models majorly suffers with lower prediction accuracy because of over-fitting and dataset
imbalancing issues. Therefore, to overcome these shortcomings, this paper proposes a novel DL approach for ETD in the
Internet of Things-based SGs using parameter-tuned bidirectional long short-term memory (PTBiLSTM) with pre-trained
feature learningmodel. The proposed systemmainly comprises ’4’ phases: preprocessing, dataset balancing, feature selection,
and ETD. Initially, the consumers’ electricity consumption data are collected from the theft detection dataset 2022 (TDD2022)
dataset. Then, the data balancing is carried out by usingGaussian distribution, including fuzzy C-means approach to handle the
imbalance data. Afterward, the meaningful features from the balanced dataset are extracted using the hard swish and dropout
layer included residual neural network-50 (ResNet-50) model. Finally, the ETD is done, which utilizes a PTBiLSTM. The
proposed models’ performance is evaluated using different performance metrics like accuracy, precision, recall, f-measure,
the area under the curve, and kappa. The outcomes proved the efficiency of the proposed method over other related schemes
in the ETD of SGs.

Keywords Internet of things · Smart grids · Machine learning · Deep learning · Theft detection dataset · ResNet-50 · Fuzzy
C-means · Bidirectional long short-term memory · Electricity theft

1 Introduction

The IoT is a system of interconnected intelligent devices
that can exchange data between different sources for various
applications. The word "thing" describes an actual object
allotted an internet protocol address and the capability to
gather and send information through a network without such
support of a human or other activity [1]. The IoT is increas-
ingly utilized for intelligent energy monitoring, industrial
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automation, andother applications. IoTdevices are employed
in various stages of the smart grid (SG) to track and govern
grid statistics to provide reliable and efficient electricity dis-
tribution [2]. An SG is an electricity network enhanced with
modern digital technology, such as sensors and electronic
meters, to improve two-way communication [3]. They allow
energy firms to acquire real-time voltage, electricity, active
and reactive power, EC, and many other readings from smart
meters installed at user residences when coupled with the
advanced metering infrastructure (AMI) [4, 5]. Please check
the edits made in article title. Technical losses (TLs) and non-
technical losses (NTLs) are both engaged in the transmission
and distribution of power in an SG [6]. The former includes
energy dissipation owing to the Joules action, which is trig-
gered by the electrons being emitted because of heat. The
estimate of TLs is required for the tracking of NTLs. ET is a
deliberate act of illegal electricity usage, a significant source
of NTLs [7, 8]. The ET severely threatens SGs because it

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00202-024-02342-7&domain=pdf


5988 Electrical Engineering (2024) 106:5987–6001

causes monetary losses. For example, yearly losses can reach
$6 billion in the US and Canada. Furthermore, because ET
overloads the power infrastructure, it hurts its performance
[9].

The ET is vulnerable to cyber and physical attacks, in
which an illegal client can physically attack the network
through bypassing, tampering or hacking with the AMIs,
where a third party can attack the system through a cyber-
attack [10]. As a result, reducing ET is a central objective for
electrical distribution businesses to secure substantial quan-
tities of total energy losses and income [11]. ETD aims to
identify unusual behavior in an SG meter’s electricity usage
(or simply a smart meter). Checking for anomalies in the
user’s EC patterns can help to identify theft [12]. Further-
more, it is difficult for utilities to discover and confirm ET in
residential, commercial, and industrial establishments, rural
regions, and big cities via on-site investigations, an inef-
fective and pricy manual system [13]. In the past, various
ML classification algorithms [14], such as support vector
machine (SVM), gradient boosting (GB), naive bayes (NB),
random forest (RF), decision tree (DT), and others, were used
to identify ET. These theft detection techniques have proven
to be less expensive [15]. However, only if suitable variables
are generated from raw meter readings will the performance
of these classification methods be suboptimal [16], and these
techniques only consider time-domain features, limiting their
performance.

After several decades,much has been accomplished inML
to combat these limitations. DL has been explored in many
areas of study due to its capability as a recently introduced
part of ML [17]. DL methods are additionally utilized to
create models to deal with the enormous quantities of infor-
mation generated by smart meters [18]. They can learn from
vast quantities of information and improve feature extraction
and classification processes [19]. Several studies surveyed
in the literature includes both ML and DL models [21 to
30] for ET detection in IoT-based smart grids. The problems
faced by the existing models are comprehensively studied in
Sect. 2.1, that concludes that there is still a lot to be performed
to enhance the detection performance of the algorithm.Many
vital aspects of a detection algorithm require more subtlety,
excluding dealing with missing values, high-dimensional
features, and actual malicious behaviors and carrying highly
imbalanced datasets. In the existing studies, the convolu-
tion neural network (CNN) and long short-term memory
(LSTM) combinations of schemes provide better classifica-
tion outcomes than the otherDL andMLmodels. Because the
CNN-based system learns the features automatically with-
out any human interventions, that makes the prediction more
accurate.Also, the LSTM is utilized to understand the tempo-
ral information from the extracted feature maps and classify
the different kinds of theftsmore effectively by learning long-
term dependencies between the electronic data. Taking this

advantage in mind, we are using advanced variants of CNN
and LSTM in our work. We are using a modified version of
ResNet-50, a pre-trained CNN model that works better than
CNN with faster training and BiLSTM, that can read data in
both forward and backward directions, producingmore accu-
rate results and also being more suitable for large datasets
than the LSTM. However, the existing related schemes of
ETD using ML and DL frameworks need to be improved in
the availability of theft data relative to benign data, a failure
to consider dimensionality reduction, the use of standalone
(single) ET detectors, etc.

Considering all the above in mind, we develop a novel
PTBiLSTM to detect the ET in IoT-based SGs with efficient
feature extraction and oversampling techniques. Next, the
preprocessing was performed on the dataset. After that, the
feature selection is made with the help of a HDResNet-50.
The main contributions of the proposed work are as follows:

• To perform efficient preprocessing operations such as
missing values imputation, removing outliers and anoma-
lies, and data normalization to enhance the classifier’s
performance.

• To present an HDResNet-50 model to select essential fea-
tures from high-dimensional electricity consumer data,
thereby improving prediction performance and avoiding
over-fitting issues.

• To propose GFCM to solve the data imbalance problem,
reducing misclassification errors.

• To propose PTBiLSTM to detect the ET in SGs with
chaos and inertia-basedmothflameoptimization (CIMFO)
algorithm-based parameter tuning to avoid higher training
time and misleading results.

The remaining phases of the research paper are structured
as follows: a survey of recent methodologies related to ET
in SG is presented as phase 2. A brief and detailed expla-
nation of the proposed research model is given in phase 3.
The implementation outcomes of the proposed method and
their comparative analysis with existing works are presented
in phase 4. Finally, in phase 5, the conclusion and future
studies of the paper are discussed.

2 Related work

This section surveys the recently developed methodologies
forETD inSGs.The techniques are surveyed regardingmeth-
ods used, results achieved, and the limitations they faced.
The solutions drawn by the proposed method to overcome
the existing limitations are also given. Asif Nawaz et al.
[20] presented an ETD approach in SGs using a convolu-
tion neural network (CNN) and extreme GB (XGB). Once
collecting data from the dataset, preprocessing was done on
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the collected dataset using linear interpolation. The essen-
tial features from the preprocessed dataset were extracted
using CNN, and then the data were classified using the XGB
model. The presented scheme achieved an ACY of 92% for
ETD when tested on the State Grid Corporation of China
(SGCC) dataset. Ashraf Ullah et al. [21] suggested a hybrid
DL approach for ETD in SGs. The suggested approach ini-
tially collected the data from the SGCC dataset, which was
available publicly. The data augmentation was carried out
on the collected data to remove redundant and irrelevant
data from the dataset. The features were then extracted using
CNN.Finally, ET classificationwas done using the optimized
gated recurrent unit (GRU) classifier, in which the parame-
ters of the GRU were optimized using the particle swarm
optimization (PSO) algorithm. The method attained an ACY
of 93%, which was higher than the existing related schemes.

Farah Mohammad et al. [22] presented an ensemble ML-
based classification system for ETD in the SG platform. The
suggested model collected the data from the Open Energy
Data Initiative (OEDI) dataset. The data cleaning was per-
formed on the collected dataset. The suggested research
model used four ML classifiers, such as k-nearest neigh-
bor (KNN), XGB, RF, and multi-layer perceptron (MLP),
as an ensemble framework for ETD. The model attained the
ACYofETDbetween88–94%for different attacks on known
and unknown consumers. Guoying Lin et al. [23] recom-
mended an ETD approach in SGs using under-sampling and
re-sampling-based RF (UaRe-RF) and stacked auto-encoder
(SAE). The method used two different datasets for data col-
lection, such as the Irish CER Smart Metering Project and
actual EC data of unique transformer users in the distribution
network of a particular area in China. Once the data were
collected, the SAE model was trained to extract the elec-
trical consumption features from the collected data, which
were more suitable for theft detection. Finally, UaRe-RFwas
used to imbalance the dataset and performed the ETD. The
method achieved relatively better performance than the exist-
ing related schemes.

Salah Zidi et al. [24] suggested ML classifiers for ETD
in the SG environment. Once data were collected from
the OEDI dataset, the five ML approaches, say DT, KNN,
RF, artificial neural network (ANN), and bagging ensem-
ble (BE), were trained to detect the ET in SG. The outcomes
showed that the RF classifier attained higher prediction ACY
than the other presented schemes. Shoaib Munawar et al.
[25] introduced a hybrid classification approach for ETD
using bidirectional long short-termmemory and bidirectional
gated recurrent unit. The method collected the data from the
SGCC dataset and then augmented the raw data into a usable
format. Then, the class imbalance problem of the augmented
dataset was solved using the k-means minority oversampling
technique. Then abstract features were extracted using the

stochastic feature extraction technique. Finally, the classi-
fication was done using a hybrid approach to the extracted
feature set. The approach achieved an AUC score of 0.93,
which was entirely satisfactory.

SudeepTanwar et al. [26] presented a deepML framework
for ETD. Based on smart meter data, the system initially pre-
dicted the EC using long short-term memory (LSTM) and a
threshold calculator. The predicted EC values were given to
the SVM for ETD that classified the energy loss as techni-
cal, non-technical, and regular consumption. Md. Nazmul
Hasan et al. [27] suggested a CNN-LSTM-based DL for
ETD in SGs. The method used the data gathered from the
SGCC dataset. The dataset was preprocessed initially, and
then the dataset was balanced using a synthetics data gen-
eration scheme. Finally, the data were classified using the
CNN-LSTM model, which classified the data as normal and
ET users with higher ACY.

SravanKumar Gunturia andDipuSarkar [28] presented an
ETD approach in SGs using an ensemble of ML classifiers.
The system consists of three major phases: preprocessing,
data imbalance, and classification for ETD. The dataset
imbalance problem was solved using the synthetic minor-
ity oversampling technique (SMOTE). The balanced data
were trained using classifiers such as light boosting, adaptive
boosting, extreme boosting, categorical boosting, RF, and
extra trees (ETR) to categorize normal and ET users in SG.
The results proved that theRF andETRperformed better than
the other classifierswith better ACY. Leloko J. Lepolesa et al.
[29] suggested a deep neural network (DNN) for ETD in SG.
Initially, to extract essential features from the dataset, a mini-
mumredundancymaximumrelevance schemewas utilized to
extract time and frequency domain features from the dataset.
The principal component analysis was used to reduce the
dimensions of the extracted feature set. Lastly, the detection
of ET was done using DNN. The method attained a higher
AUC of 0.90 when tested on the SGCC dataset.

2.1 Problem statement

The survey shows that several machine and DL models of
ETD in SGs attained satisfactory performance on the several
applied energy consumption datasets. However, they did not
provide optimal results for the following reasons:

• The EC data obtained via the dataset are typically exten-
sive, and they are primarily noisy because of daily data
recordings. So, it is difficult for the ML models [23, 24,
25, and 29] to handle this massive quantity of data because
they use amanual feature extraction process that consumes
too much time to process the data. As a result, their perfor-
mance could be improved to large quantities of time series
data.
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• Some of the existing works face the dataset imbalance
problem in ETD. The dimensionality and diversity of the
data are increased because of the tremendous amount of
data in the dataset. As a result, a data imbalance prob-
lem occurred in the dataset [21, 23, 25, and 27]. Some
[22, 24, 26, 28, and 30] use random under-sampling tech-
niques to solve this class imbalance problem. However,
they randomly remove the majority of class elements from
the dataset and lose the vital information from the dataset,
which causes the problem of under-fitting in classification.

• In [28], the authors used SMOTE oversampling approach
to get a balanced dataset. However, SMOTE did not
consider neighboring examples of the other class labels,
increasing the class overlapping problem in the dataset
with additional noise. In addition, the approach could be
more suitable for practical applications of higher dimen-
sional EC data.

• Some authors presented DL models [21, 22, 26, 27, 28,
and 30] to work on the large quantity of data for ETD effi-
ciently. They provide better detection ACY. However, in
[21, 25] author used a hybridDLapproach that takes higher
execution time compared to a single DL model. Gener-
ally, most of the existing works uses CNN for extracting
features from the input, but they are computationally
expensive and requires large amount of training data.

• In addition, the existing classification schemes fails to
focus on parameter tuning, which does not provide the
generalization ability of the model that leads to misclassi-
fication errors in ETD.

• Most of the works use the SGCC dataset for ETD that
only detects normal and theft users, and it does not cover
different theft types that occurred in SGs. The methods
developed in [22, 24] focused on identifying different elec-
tric theft types in SGs. However, they failed to achieve data
balancing, dimensionality reduction and parameter tuning
in ETD, which degrades the prediction performance of the
classifier.

From the survey, it is clear that the existing research is
limited to the following issues: data imbalance, parame-
ter tuning, over-fitting, and dimensionality reduction. This
motivates us to develop a novel DL approach for ETD with
efficient feature extraction and oversampling techniques that
provide superior results. The primary goal of the proposed
system is given as follows:

• The system proposes GFCM to solve the data imbalance
problem in the electronic theft data, whichmakes the train-
ingmodel easier andprevents the system frombeing biased
toward one class.

• To effectively learn the features from the balanced dataset,
a CNN pre-trained model, namely HDResNet-50, is pro-
posed, which learns meaningful information from high-
dimensional electricity consumer data and reduces the
dimension of the extracted feature maps to a lower dimen-
sion using its pooling layers, thereby improving prediction
performance and avoiding over-fitting issues. The pre-
trained model is better than CNN, which speeds up and
simplifies the training process with limited data to con-
verge.

• The system proposes PTBiLSTM to detect the ET in SGs,
which helps to learn the temporal information from the
extracted feature maps by achieving higher accuracy. The
chaos and inertia-basedmothflameoptimization (CIMFO)
algorithm-based parameter tuning is performed to make
the model more generalizable by avoiding higher training
times and misleading results. Also, our work uses the theft
detection dataset 2022 (TDD2022), which contains more
ET than previously used datasets. So, this is the first study
which identifies different kinds of ETs by addressing all
of the problems mentioned above.

3 Proposedmethodology

This paper proposes a PTBiLSTM to detect ET in IoT-based
SGs. Initially, the data are collected from the publicly avail-
able database, namely the TDD2022 for ETD. Then, the
collected dataset was preprocessed by performing missing
value imputation, removing outliers and anomalies, and data
normalization. After that, the dataset imbalance problem is
solved by GFCM oversampling technique, which balances
the dataset by preventing the network from being toward
one class. Then, features from the preprocessed balanced
dataset were selected using the HDResNet-50-based convo-
lution neural network that selects the most relevant features
for ETD and changes the higher dimension features in the
dataset into the lower dimension to reduce over-fitting issues
in the classification process. Finally, the classification of the
ET is done using the PTBiLSTM network, in which hyper-
parameters of the BiLSTM are tuned using the CIMFO. A
brief explanation of each of the proposed method’s phases
is presented in the sub-sections below. Figure 1 shows the
structural framework of the proposed research model.

3.1 Preprocessing

Initially, the proposed system collects the data from the
TDD2022 dataset containing consumers’ EC data. EC data
are typically collected via smart meters or other sensors
installed at the consumer end. This scenario has a chance of
smart meter failure, sensor malfunction, or data transmission
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Fig. 1 Structural framework of
the proposed research model

and storage server faults. Thepresence ofmissingor incorrect
data in energy consumption datasets is unavoidable. If those
missing cases are discarded, the dataset shrinks significantly,
making accurate analysis easy. Furthermore, the collected
dataset frequently includes noisy values. Anomalies, missing
records, outliers, redundant and overlapping records, incon-
sistent EC readings, and other types of noise can be found in
EC data.

These noises must be managed, or the proposed ETD sys-
tem provides incorrect predictions and enhances the FPR.
The proposed system uses ’3’ preprocessing techniques to
avoid downsizing and handling noises in the dataset. Firstly,
outliers or anomalies are dealt with using the three-sigma
rule. Secondly, missing values are imputed using the lin-
ear interpolation (LI) technique; finally, inconsistent data are
managed using the normalization procedure. These stages
are briefly described below:

Step 1: Missing values imputation.
The LI method quickly identifies and fills the missing val-

ues in the dataset. It uses the average of the following and
preceding day’s EC values to fill in missing values in the
dataset. The process is performed as:
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ă2′′

c − ă1′′
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then they are replaced by zero; otherwise, missing values are
replaced using Eq. (1).

Step 2: Removing outliers and anomalies.
There are multiple anomalies and outliers in the dataset

because of data skewing that makes the training process

of the system more complex and causes over-fitting issues
when performing classification. So, to prevent over-fitting
and makes the training process easier, these outliers must
be recognized and eliminated. These outliers show the
peak electricity consumption that occurs during non-working
days. The three-sigma rule identifies and restores anomalies
and outliers using the following Eq. (2).
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, σ is the stan-

dard deviation,
↔
E (m(n)) indicates the EC at a current time n ,

and m refers to the consumer number.
Step 3: Data normalization.
The neural networks are susceptible to diverse data, so

the dataset must be standardized or normalized into a spe-
cific range once missing values and outliers are removed.
A min–max normalization technique was used to scale the
dataset according to Eq. (3). The data are scaled from 0 to 1
during the normalization procedure.
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where
↔
E (m(n)) indicates the EC at a current time n, m refers

to the consumer number, min
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E

)
denotes the least EC, and

max
(↔
E

)
signifies the highest EC. With this normalization

process, the value ranges of the data became more evident.
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3.2 Dataset balancing

The typical ETD using ML and DL classifiers mainly faces
the class imbalance problem in the collected dataset, because
the dataset only contains fewer class samples or labels of ET
users than the normal users. So, if the data obtained from
the dataset are classified directly through the classifier, it
leads to the possibility of identifying ET users as normal.
Therefore, the dataset samples must be balanced before pro-
ceeding into the classification phase. Generally, many kinds
of random oversampling and under-sampling techniques like
SMOTE are developed to deal with these issues. However,
when applied to the neural networks, they came with the
limitations of over-fitting, under-fitting, and computational
overhead. So, this paper proposes GFCM to resolve the prob-
lem of class imbalance data.

Fuzzy c-means (FCM) clustering is a popular cluster-
ing model that groups similar data points in the dataset to
form a cluster according to the distance between the data
objects by maximizing the objective function. The cluster-
ing process is terminated when the maximum number of
iterations is reached or when the objective function improve-
ment between two successive iterations is smaller than the
minimum amount of improvement specified. It proficiently
balances the dataset; however, the size of theminority classes
is large, so it takes more time to balance the dataset, and
sometimes, an error will happen. Consequently, the pro-
posed system employs the Gaussian distribution strategy,
which seeks to achieve balance across all classes by modify-
ing minority class distributions so that the size of their data
does not vary markedly compared to the majority class. This
Gaussian distribution incorporation in the traditional FCM
algorithm is named the GFCM algorithm. The procedures
involved in the GFCM algorithm are as follows:

Step 1: Select a minority category from the dataset to be
oversampled. The minority class is analyzed further so the
dataset can be balancedwell before any classificationmethod
is implemented.

Step 2: Fed theminority class to the FCM clustering algo-
rithm to partition the minority class into several groups or
clusters further based on the underlying clusters and hidden
features in the minority class. The goal of FCM here is to
maximize the objective function listed below.

M∩′′
h �

I∑
g�1

V∑
v�1

χh
gv‖OFg − yv‖2 (4)

where M∩′′
h denotes the objective function, χ

h
gv refers to the

degree of membership of OFg in the v−th cluster, OFg indi-
cates g−th selected feature, yv signifies the cluster centroid
of the v−th cluster, I represents the total selected features
from the dataset, and V denotes the number of clusters.

Step 3: Compute the mean (μ) and standard deviation(
σ 2

)
of each feature in the formed clusters using Eqs. (5)

and (6).

μ �
∑J
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∩
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J
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(
∩
R j − ∩

R

)2

J − 1
(6)

where
∩
R denotes the random variable and J indicates the

number of elements in the sample.
Step 4:Select the ratio size randomly to generate the num-

ber of samples. The best ratio is selected by assigning each
instance in the test dataset for the classification. A numerical
model is generated to optimize the minority classes’ ratio
once the sample sizes are selected randomly.

Step 5: Recognize the necessitated samples in each clus-
ter. The samples are selected based on the selected ratio size
from step 4 to balance the data in each cluster.

Step 6: Generate synthetic samples in each cluster by
applyingGaussian distribution (GD). TheGD produces sam-
ples based on the mean and variance of the minority class
distributionwithout knowing the actual data distribution. The
primary benefit ofGD is that it generates synthetic datawith a
nearly identical probability distribution to the actualminority
data.

Step 7: Combine the newly generated synthetic data with
the original dataset. Following the random generation of all
the necessary samples for balancing data in each cluster, the
synthetic data are combined with the raw data to generate a
new balanced dataset.

In this way, the GFCM clustering process balances the
data samples in the feature-selected dataset. Both theft and
normal classes contain an equal number of records fed into
the ET identification detection stage.

3.3 Feature selection

After dataset balancing, a feature selection process is carried
out to extract more essential features. In most cases, manual
feature selection is carried out to extract the higher dimen-
sional user data from the dataset. However, they are tedious
and time-consuming and selecting higher dimensional fea-
tures in smart meters is more challenging. So, this paper
proposes a CNN-based pre-trained feature selection scheme,
namely HDResNet-50, to effectively select the hidden and
dense features from the consumer’s profiles. ThisHDResNet-
50 automatically selects the more essential features from the
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preprocessed dataset and decreases the noise effects in the
dataset to a low level.

ResNet-50 has 50 weighted layers, and we extracted
features from the last fully connected layer. A residual
connection in a layer means that the output of a layer is a con-
volution of its input plus its input. The traditional ResNet-50
uses the activation function of ReLU for its feature selection
processes.However, the neurons ofReLUare fragile, so some
of the inputs fall into the challenging saturation area, resulting
in irreversible neuronal death and the inability to update the
input’s weight. Furthermore, the ReLU function sets the por-
tion of the neuron output to zero, which outputs themigration
event. Due to this behavior, it is challenging to understand
the valuable features. As a result, the classifier’s learning
performance gets decreased. In addition, extreme sparsity
of ReLU leads to higher error rates and a reduction in the
model’s productive capacity. So, this paper proposes replaces
the ReLU with a hard swish (HS) activation function that
carefully selects the number of hidden neurons because too
many neurons result in over-fitting. In addition, once convo-
lution and pooling operations are performed, a dropout layer
(DLY) is included in the fully connected layer of ResNet-50
to prevent the network from over-fitting. These improve-
ments in traditional ResNet-50 using HS andDLY are named
HDResNet-50. The architecture diagram of HDResNet-50 is
shown in Fig. 2.

The ResNet-50 system works by skipping connections on
two to three layers of architectures that incorporate activa-
tion functions. Residual blocks on ResNet can be obtained if
the input and output data dimensions are equal. The input-
balanced data were passed to HDResNet-50 network that
consists of 5 stages each of which combines convolution and
identity block.

• Stage 1 comprises a 2D convolution with 64 filters with a
stride of (2, 2) and a shape size of (7 × 7). The activation
functionHS and batch normalization complete the channel
axis standardization. Finally, a stride of (2, 2) max pooling
is included.

• Stage 2 consists of two identity blocks and one 2D con-
volutional block, each with three filters [64, 64, 256], a
kernel size of 3 × 3, and a stride of 1.

• Step 3 is composed of three identity blocks and one con-
volutional block. Each of these blocks uses three sets of
filters [128, 128, 512], has a stride of (2, 2), and has a shape
size of (3 × 3).

• Step4 comprisesfive identity blocks andone convolutional
block. These blocks employ three sets of filters [256, 256,
1024] with a stride of (2, 2) and a size of (3 × 3).

• Stage 5 comprises two identity blocks and one convolu-
tional block. These blocks employ three sets of filters [512,
512, 2048] with a stride of (2, 2) and a shape size of (3 ×
3).

• In Stage 6, 2 × 2 average pooling is used. The output is
then flattened and sent to the fully connected dropout layer,
which reduces the input to the number of classes using a
"SoftMax" activation.

The convolution, pooling, and fully connected layers are
the components of the ResNet-50 network. The explanation
of each component of the network is given below:

3.3.1 Convolution layer

Convolution is the first layer of CNN that extracts relevant
features from the input layer by locating local connections
among data samples. The convolution operation performed
in the network is expressed using Eq. (4).

FeatureVector �
∑(∩

I
′′
d×d +

∩
W

′′
d×d

)
+ Biasval (7)

where
∩
I
′′
d×d refers to the local receptive field of the input data,

∩
W

′′
d×d indicates the filter weights, d− denotes the kernel

size, and Biasval signifies the filter bias of the convolution
operation, respectively. The output vector attained using the
convolution function is fed into the activation layer for further
processes.

3.3.2 Activation function

The activation function is applied to the extracted feature
set of the convolution layer. The proposed system uses HS
activation function that performs better than ReLU. HS is
a novel function closely related to swish. However, it does
not fall into the vanishing gradient and saturation prob-
lem, and the computation process is also more accessible
than other related activation functions. The HS function pre-
vents the weight of the network effectively from changing its
value. Thus, the gradient is slightly vanishing, which avoids
the problem of network saturation while performing feature
selection. It is mathematically expressed as follows:

φ � 2 ∗ fx ∗ ∩
η
(
α f x

)
(8)

∩
η � max(0, min(1, ( fx ∗ 0.2 + 0.5))) (9)

where fx indicates a feature vector and α may be a trainable
parameter or constant.

3.3.3 Pooling layer

In the max-pooling layer, the feature map obtained via the
convolution layer is partitioned into several non-overlapping
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Fig. 2 HDResNet-50 model structure

pooling kernels. From there, the layer considers the maxi-
mum value of each pooling kernel and passes it on to the
next layer. The primary goal of the pooling layer is to reduce
the dimension or size of the convolution data for the next
layer. It does not learn anything from the data, but it is used
to minimize the computational burden of the network. At the
output layer, average pooling is used to determine the average
of the elements in the filter-covered feature maps. So, using
max pooling, the most prominent features were outputted,
and using average pooling, the average of the features was
output from the given patch of the feature maps.

3.3.4 Dropout layer

After convolution and pooling operations are completed, a
DLY is added to the ResNet-50 network’s fully connected
layer to protect the network from over-fitting. Dropout is
a simple but efficient regularization method for neural net-
works. The primary benefit of this approach is that it keeps
all neurons in a layer from synchronizing their weights. This
adaptation, performed in randomgroups, prevents all neurons
from convergent on the same objective, thereby decorrelat-
ing the weights. Dropout, in other words, deactivates some
neurons in the hidden layers of the network to solve over-
fitting and poor generalization problems. Suppose neurons
are randomly dropped from the network during training. In
that case, other neurons must perform the modeling to fore-
cast the missing neurons, which results in learning numerous
independent internal representations in the network. So, the
system has become less susceptible to the particular weights
of neurons. Consequently, the network is more generalizable
and less likely to over-fit the training data.

3.3.5 Fully connected layer

The fully connected layer (FCL) is the final network layer
of ResNet-50. It connects the output of the DL to neurons
from subsequent layers. Furthermore, it extracts global fea-
tures from the final feature map obtained from DLY. The
mathematical expression of FCL is given in Eq. (10).

FCL
′′
S0×1 � ∩

w
′′
S0×Sk .

∩
i
′′
Si×1 + BiasS0×1 (10)

where So and Sk refers to the vector size of the input and
output data and FCL

′′
indicates the FCL’s final output. The

obtained final feature
(
OFg

)
vector using HDResNet-50 is

mathematically modeled as follows,

OFg � {of1, of2, of3, ........ofI } (11)

where I refers to the total number of optimally selected fea-
tures from the dataset.

3.4 Electricity theft detection using PTBiLSTM

For the classification of ET users and normal consumers,
the proposed system utilizes PTBiLSTM. The bidirectional
long short-term memory (BiLSTM) is an improved version
of conventional LSTMs that enhances the network’s classifi-
cation performance by extracting hidden time series features
from the input data. The BiLSTM combines two LSTM net-
works in forward and backward directions to perform feature
learning effectively. The forward LSTM layer is a forward
computation from the start time to the last time, and the back-
ward LSTM layer is a backward computation from the last
time to the start time. Each LSTM network contains two hid-
den layers and one output layer. The outputs of the forward

(
−→∩
H t ) and backward layer (

←−∩
H t ) at each moment are com-

bined to obtain the final classification output. The BiLSTM
effectively classifies normal and theft users in SGs; how-
ever, random initialization of weights and bias of BiLSTM
causes the network to get stuck into a local point, linear learn-
ing, thereby decreasing the prediction ACY. It also increases
the execution time of the network when generating random
weight and bias values in each iteration. Optimizing the
weight and bias values in the network is critical to reduc-
ing training errors and improving prediction performance. If
the weight and bias of the neurons are optimal, the network
output will be more precise.

So, the proposed research model uses the CIMFO algo-
rithm to optimize the weight and bias values in BiLSTM. In
addition, the traditional usage of sigmoid activation in the
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Fig. 3 General diagram of
BiLSTM

BiLSTM is replaced with the proposed ER function used
in the feature extraction stage, which prevents the network
from gradient saturation problems and improves the classi-
fication ACY. This parameter tuning in traditional BiLSTM
is called PTBiLSTM. The processing steps of BiLSTM are
given below, and the architecture of the BiLSTM is shown
in Fig. 3.

Step 1: The network has three gates: the input gate
∩
X

′′
t ,

the forget gate
∩
Y

′′
t , and the output gate

∩
O

′′
t . The forget gate

takes the information of the preceding hidden state
∩
Ht−1 and

current input (features of the balanced dataset)

(∩
dt

)
through

a point-wise multiplication operation and decides to retain
the information from the cell state. By setting the parameters
of the three control gates reasonably, the memory function
of LSTM can be realized. The core calculation formula is as
follows.

∩
Y

′′
t �

(
ŵ∩
Y

′′ .

[ ∩
Ht−1,

∩
dt

]
+ B̃∩

Y
′′
)

(12)

∩
X

′′
t � φ

(
ŵ′′

∩
X
.

[ ∩
Ht−1,

∩
dt

]
+ B̃ ′′

∩
X

)
(13)

∩
O

′′
t � φ

(
ŵ ∩

O
′′ .

[ ∩
Ht−1,

∩
dt

]
+ B̃ ∩

O
′′
)

(14)

where ŵ∩
Y

′′ , ŵ∩
X

′′ , andŵ ∩
O

′′ and B̃∩
Y

′′ , B̃∩
dX

′′ , and B̃ ∩
O

′′ repre-

sent the weight and bias values of the forget

( ∩
Y

′′
t

)
, input

( ∩
X

′′
t

)
, and output

( ∩
O

′′
t

)
gates at the time stamp t , respec-

tively, and φ denotes the HS activation function, calculated
using Eq. (5). The networks’ weight and bias are considered
hyper-parameters and randomly chosen between 0 to n-1.
In the proposed system, these parameters are tuned using
the CIMFO algorithm to obtain optimal weight and bias for
BiLSTM to enhance the prediction ACY of the classifier.
The weight and bias of the networks are considered as hyper-
parameters and they are chosen randomly between the ranges

0 to n-1. In the proposed system, these parameters are tuned
using CIMFO algorithm to obtain optimal weight and bias
for BiLSTM to enhance the prediction ACY of the classifier.

Step 2: Optimize weight and bias values using CIMFO.
Moth flame optimization (MFO) is a swarm intelligence

algorithm that deals with complex real-world optimization
issues. It has the advantages of having few setting parameters
and being easy to understand and implement. Nonetheless,
the conventional MFO suffers from slow convergence and
poor ACY. It is also possible to become trapped in a locally
optimal solution. Furthermore, MFO and its variations can-
not solve higher dimensional optimization issues well. So,
a novel improved version of MFO is proposed in this paper
with joint search mechanisms to address the shortcomings
mentioned above. Firstly, the algorithm employs a logistic
tent chaotic map to maintain the diversity of the initial pop-
ulation to attain effective global search. Secondly, a novel
adaptive inertia weight function is adopted to improve con-
vergence speed and ACY and escape from the local optimal
solutions. These improvements with chaos and inertia mech-
anism in traditional MFO for enhancing performance are
named CIMFO.

Chaotic logistic systems are mathematical systems that
define a dynamic deterministic procedure susceptible to ini-
tial conditions. They have been used to substitute the random
components of the optimization algorithm to improve conver-
gence and mitigate the problem of local minima by moving
closer to the optimal solution position. Firstly, the population
of moth flame (random weight values and bias) is initialized
using a chaotic tent map. It is mathematically expressed as
follows:

∩
Z

τ+1

l � α
∩
Z0(1 − Zl), 0 ≤ Z0 ≤ 1 (15)

where
∩
Z

τ+1

l indicates the logistic chaos of l−th moth flame,

α refers to the constant, and
∩
Z0 denotes the initial moth

flame generated randomly between 0 and 1. Next, each indi-
vidual’s fitness Fit Ness(Zl) in the population is computed
usingEq. (16), which aims tominimize the individuals’mean
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square error (MSE) to provide a higher classification ACY.

FitNess

(∩
Zl

)
� min(MSE) (16)

The MSE serves as the simplest form of the loss function.
It squares the difference between the predicted output and the
ground truth value and averages it across all samples. It is
calculated as:

MSE �
ν∑

p�1

(
RO

r
p − OTr

p

)2
(17)

where ν refers to the number of samples (number of random
weights and bias), RO

r
p indicates the actual output of p−th

input unit in cases where the r−th sample is observed in the
input, and OTr

p represents the optimal output of p−th input

unit in caseswhere the r−th sample is utilized. The individual
obtaining lower MSE is chosen as the fittest individuals for
the current population. Then, the position updating of the
selected individuals is carried out concerning the flame using
Eq. (18):

∩
Zl � δ

(∩
Zl ,

∩
T e

)
. κweight (18)

where
∩
Zl denotes the l−th moth,

∩
T l refers to the e−th flame,

and δ signifies the spiral function. Themoth’s primary update

process is a logarithmic spiral function, which is expressed
as

δ

(∩
Zl ,

∩
T e

)
� λl .e

cs.βcos(2πβ) +
∩
T e (19)

λl �
∣∣∣∣

∩
T e − ∩

Zl

∣∣∣∣ (20)

where λl refers to the distance between the l−th moth
and the e−th flame, cs refers to a constant which defines
the shape of the spiral, and β signifies a random number.
In Eq. (19), κweight represents adaptive inertia weight that
balances the exploration and exploitation capabilities of the
MFO rationally, which is estimated as

κweight �
(
κminmax

e(−q/Q)

+ κmin

)
(21)

where κmax and κmin represent the maximum and minimum
value of inertia weight and qandQ refers to the current and
maximum counts of iterations performed by the algorithm.
After reducing number of flames in each generation, the cor-
responding moth updates its position according to the worst
flame position.

FNum � Round

(
MaxF − q ∗ MaxF − 1

Q

)
(22)

where MaxF indicates the maximum number of flames in
the population. Based on the above process, the weight and
bias values of the classifier are selected optimally, and the
classification process is carried out. The pseudocode of the
CIMFO algorithm is shown below

Step 3: Update the cell state information

( ∩
C

′′
t

)
by perform-

ing point-wise multiplication between forget gate’s output
and the current cell state. The multiplication will result in
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zero if
∩
Y

′′
t is 0whichmeans the previous value’s total dropout.

Otherwise, it is retained if
∩
Y

′′
t is 1. It is expressed as follows:

∩
C

′′
t �

(
ψ∩
C

′′ .

[ ∩
Ht−1,

∩
dt

]
+ �∩

C
′′
)

(23)

where ψ and � refer to the optimal weight and bias values.

After that, update the current cell state’s information

(
∩
C

′′
t

)

using point-wise addition operation.

∩
C

′′
t �

( ∩
Y

′′
t ×

( ∩
C

′′
t

))
+

( ∩
X

′′
t ×

( ∩
Y

′′
t

))
(24)

∩
Ht � ∩

O
′′
t ∗ φ

(
∩
C

′′
t

)
(25)

Thus, this hidden layer state
∩
Ht of BiLSTM at the time

t− contains forward
−→∩
H t and backward

←−∩
H t layers. Finally,

the proposed PTBiLSTM generates an output vector
∩
Gt by

using the following equation,

∩
Gt � ξ

(−→∩
H t ,

←−∩
H t

)
(26)

where ξ describes the function that combines two output
sequences. The function ξ can be a summation, concatena-
tion, multiplication, or average function.

4 Results and discussion

This section presents and discusses the results obtained by the
proposed PTBiLSTM for ETD in IoT-based SGs. The pro-
posed method performs training of the ETD system using the
TDD2022 dataset. The analysis of the proposed and existing
models is also done to prove the performance effectiveness
of the proposed approach. The proposed method is imple-
mented in Python with an Intel Core i7-97580H CPU and
16.0 GB of RAM. The detailed explanation is as follows.

4.1 Descriptions of the dataset

The proposed system uses a TDD2022 dataset which is pub-
licly available and is obtained from the OEDI platform. It
is a central database of valuable energy research data from
the US. The original data include measurements of energy
usage of different consumers over a year (12 months), and
the readings are collected every hour. The dataset includes
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Fig. 4 ACY analysis

sixteen different consumer categories, each with a differ-
ent energy usage pattern. The collection consists of ten
numerical features, one category feature, and 12 character-
istics. The dataset has 16 different consumer types, with
35,040 instances of each category. Models with seven out-
put classes and models with six output classes are the two
primary mechanisms tested here. Two supporting mecha-
nisms are also evaluated for each primary mechanism. The
first, referred to as a "known consumer," used input, con-
sumption, and consumer-type attributes. The second option,
"unknown consumer," only employs consumption attributes;
the list of features omits the consumer type in this case. They
are "7 classes (Q7)—known consumer (KC)," "7 classes
(Q7)—unknownconsumer (UKC)," "6 classes (Q6)—known
consumer (KC)," and "6 classes (Q6)—unknown consumer
(UKC)."

4.2 Performance analysis of the proposed PTBiLSTM

The performance effectiveness of the proposed PTBiLSTM
is weighted against the existing deep neural network (DNN),
LSTM, RF, and DT algorithms. The proposed system uses
some commonly used metrics, namely, ACY, PN, RL, FE,
AUC, and kappa metrics, to analyze the model’s perfor-
mance.

4.3 Accuracy analysis

The percentage of accurate forecasts over all other predic-
tions is known as ACY. Here, the results of proposed and
existing classifiers are compared for the several classes of
known and unknown consumers, which is shown in Fig. 4.
Figure 4 indicates that the proposed PTBiLSTM achieves a
higher level of ACY than the conventional methodologies.
Deeply, for Q7, the existing DT offers 82.78% of ACY in
KC and 82.46% of ACY in UKC categories, and for Q6, the
existing DT achieves 88.32% of ACY for known consumers
and 88.07% of ACY for unknown consumers. Comparing all
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methods, the DT model obtains the lower performance for
ETD. However, the proposed one achieves ACY of 94.67%
for KC with Q7, 94.34% for UKC with Q7, 98.47% for KC
with Q6, and 98.12% for UKC with Q6, which is higher
when compared to the existing DT. Also, the proposed sys-
tem attained higher ACY than the existing LSTM, DNN,
and RF classifiers. Thus, results based on ACY show that
the proposed work is very competitive against other methods
recently undertaken.

4.3.1 Precision and recall analysis

Here, the PNandRLof the classifiers for ETDare carried out,
and the results are tabulated in Table 1. The results indicate
that the proposed PTBiLSTM model outperforms the exist-
ing LSTM, DNN, RF, and DT classifiers by obtaining higher
values of PN and RL for ETD. In Table 1(a), the PN results of
the classifiers are tabulated. The PN of an algorithm may be
determined by dividing the number of accurate predictions
by the total amount of positive outcomes. For Q7 classes, the
PN attained by the conventional LSTM, DNN, RF, and DT
is 92.42%, 88.94%, 86.16%, and 82.38% for KC and 92.17,
88.81, 85.94, and 82.08% for UKC, respectively, while the
proposed PTBiLSTM attained better PN of 94.27% for KC
and 93.94% for UKC, respectively.

In addition, for six classes (Q6), the PN achieved by the
conventional LSTM, DNN, RF, and DT are 96.16, 92.83,
90.38, and 87.92% for KC and 97.01, 92.73, 90.05, and
87.77% for UKC, respectively, while the proposed PTBiL-
STM attained better PN of 98.07% for KC and 97.72% for
UKC, respectively. These results show that the proposed
PTBiLSTM performs better than the existing methods. Next,
Table 1(b) compares the RL results obtained by the classi-
fiers. The ratio of true positivemeasures to all actualmeasures
is called RL. When considering the RL metric, the proposed
PTBiLSTM offers higher RL than the conventional methods.
While analyzing the results of seven output classes (Q7), the
proposed PTBiLSTM attained the highest results with an
RL rate of 94.87% for KC and 94.54% for UKC; likewise,
analyzing the results with the six output classes (Q6), the
proposed one also achieves higher RL, 98.67% for KC and
98.32% forUKC, respectively. This is higher RL than the tra-
ditional methods, showing the efficacy of the proposed one
for ETD.

4.3.2 Analysis based on F-measure

Figure 5 shows the FE analysis of the proposed and existing
classifiers, a harmonic mean of the ratio of PN and RL. The
proposed one obtained better FE values for both Q7 and Q6
classes than the conventional methods. The maximum FE
values obtained by the existing LSTM for both KC and UKC
in theQ7 classes are 92.72 and 92.47%, and in theQ6 classes,
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they are 96.46 and 96.06%. However, the proposed method
beats this model by improving the FE value up to 94.65 and
94.24% for KC and UKC in Q7 class and 98.29 and 98.02%
for KC and UKC in Q6 class. Likewise, when comparing the
FE results of the other classifiers with the proposed method,
the proposed PTBiSLTM obtains remarkable performance
for ETD for both classes of known and unknown consumers.

Analysis based on AUC and Kappa In this section, the out-
comes of the proposed and existing classifiers are analyzed in
terms of AUC andKappametrics, which are given in Table 2.
Table 2(a) shows the AUC comparison and Table 2(b) shows
the kappa comparison of themodels. A highAUC for amodel
suggests a better capacity to predict classes. The AUC can
be between 0 and 1, with a value of 0 indicating that the
classifier misclassifies positive data as negative and a value
of 1 showing that it correctly distinguishes between positive
and negative data. From the table, it is known that the out-
comes of the proposed method give better performance than
the conventional methods. Here, the proposed PTBiLSTM
has AUC of 95.67% with Q7 classes including KC, 95.34%
with Q7 classes including UKC, 99.47% with Q6 classes
including KC, and 99.12% with Q6 classes including UKC,
respectively, which is higher than the convention methods.

Since the kappa considers the possibility of coincidental
agreement, it is generally believed to be more trustworthy
than basic ACY. If the classification is perfect, kappa’s per-
centage value is 100; if it is merely the result of coincidence,
kappa is equal to zero. The existing RF classifier has kappa of
84.78% with Q7 classes KC consumer and 93.45% with six
classes including UKC, respectively, which is higher than
the conventional methods. However, the proposed PTBiL-
STM has kappa of 92.87% with Q7 classes including KC,
92.56% with Q7 classes including UKC, 91.47% with Q6
classes including KC, and 91.12%with Q6 classes including
UKC, respectively,which is higher than the conventionmeth-
ods. Also, the proposed one has a higher kappa score than the
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Table 1 Precision and recall
analysis of the classifiers Techniques Q7: KC Q7: UKC Q6: KC Q6: UKC

(a)

Proposed PTBiLSTM 94.27 93.94 98.07 97.72

LSTM 92.42 92.17 96.16 97.01

DNN 88.94 88.81 92.83 92.73

RF 86.16 85.94 90.38 90.05

DT 82.38 82.08 87.92 87.77

(b)

Proposed PTBiLSTM 94.87 94.54 98.67 98.32

LSTM 93.02 92.77 96.76 96.41

DNN 89.54 89.31 93.53 93.33

RF 86.76 86.54 90.98 90.65

DT 82.98 82.66 88.52 88.37

Table 2 AUC and Kappa analysis
Techniques Q7: KC Q7: UKC Q6: KC Q6: UKC

(a)

Proposed PTBiLSTM 95.67 95.34 99.47 99.12

LSTM 93.82 93.57 97.56 97.21

DNN 90.34 90.11 94.23 94.03

RF 87.56 87.34 91.78 91.45

DT 83.78 83.46 89.32 89.07

(b)

Proposed PTBiLSTM 92.87 92.56 91.47 91.12

LSTM 90.64 90.45 89.56 89.21

DNN 87.67 87.34 86.23 86.03

RF 84.78 84.78 83.78 83.45

DT 82.34 82.34 81.32 81.07

Fig. 6 Proposed case 1 and 2
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Fig. 7 Proposed case 3 and 4

existing LSTM, DNN, and DT. Hence, it is evident that the
proposed model is superior to other existing methodologies.

Figures 6 and 7 show the theft analyzation of the proposes
system for the energy usage of the customers. The thefts and
honest consumers are identified based on their power usage
over a period of time. The theft users modify the data from
honest users by multiplying a random integer with the actual
data which results in discontinuity in user’s data consump-
tion. Figure 7 displays that data manipulation of the users
when 1 or 0 is multiplied at randomwith time series data, the
result is either the initial consumption or a consumption of
exactly 0. Between 0 and 1, there is no ramping function with
that fully connected grid load or the cut-off simple ON/OFF
switching action. Totally, four theft users are identified for
the given period of time with the power usage levels from 0
to 40KW. The outcomes clearly indicate that the proposed
system more accurately detects the different kinds of ETs
with minimal loss compared to existing algorithms.

5 Conclusion

This paper proposed a novel PTBiLSTM-basedDL approach
to detect ET in IoT-based SGs, which follow four phases
such as preprocessing, data balancing, feature selection, and
classification to perform its processes. The proposed system
uses the TDD2022 dataset to analyze the effectiveness of
the system. The outcomes of the proposed PTBiLSTM are
compared to the existing LSTM, DNN, RF, and DT clas-
sifiers concerning the ACY, PN, RL, FE, AUC, and kappa
metrics. The classifiers are evaluated based on the following
classification modules: Q7 classes with known and unknown
consumers and Q6 classes with known and unknown con-
sumers. The results show that the proposed PTBiLSTM
performs better than the existing schemes in all known and
unknown consumers. The PTBiLSTM obtained the highest
ACY of 94.67, 94.34, 98.47, and 98.12% with Q7 classes of
KC, Q7 classes of UKC, Q6 classes of KC, and Q6 classes
of UKC, respectively. These best results of PTBiLSTM for

ETD are because of efficient schemes of preprocessing, fea-
ture selection, oversampling, and classification. The efficient
methods used in all phases of the proposed model over-
come the problem of higher dimensionality, over-fitting, data
imbalance, and lower prediction ACY in existing schemes of
ETD. So, from the result analysis, it is concluded that the
proposed PTBiLSTM efficiently detects the various types of
ET in IoT-based SGs with higher prediction ACY and lower
computational overhead than existing related schemes. In the
future, the work will be extended to identify different kinds
of intrusions that occurred in IoT-based SGs networks. Some
cryptographic approacheswill be used to prevent the network
from intrusions.
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