
A Novel Enumeration Strategy of Maximal Bicliques from
3-Dimensional Symmetric Adjacency Matrix

Michael Raj Dominic Savio1, Annamalai Sankar2
and Nataraj Ramaiya Vijayarajan3

1Department of Applied Mathematics & Computational Sciences,

 PSG College of Technology, Peelamedu, Coimbatore 641004, Tamil Nadu, India;
E-mail: mds@ity.psgtech.ac.in

2Department of Computer Applications,

 PSG College of Technology, Peelamedu, Coimbatore 641004, Tamil Nadu, India;
E-mail: dras@mca.psgtech.ac.in

3Department of Information Technology,

Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India;
 E-mail: RV.NATARAJ@bitsathy.ac.in

ABSTRACT

Several algorithms are available in the literature to find all maximal bicliques from an adjacency
matrix. If these algorithms are applied directly on a symmetric adjacency matrix, all maximal
bicliques will be generated twice. We propose a novel algorithm, S-Datapeeler, to enumerate
all maximal bicliques only once in the context of 3-dimensional symmetric adjacency matrix i.e.
zero duplicate patterns are generated. We have compared our results with DataPeeler in 3-D
context. The DataPeeler algorithm generates all duplicate patterns, whereas the proposed
algorithm completely eliminates all duplicate maximal bicliques. The proposed methodology
results in 50% reduction in search space and thereby running time of S-Datapeeler is better for
3-D symmetric datasets.

Keywords: Data Mining, Maximal Bicliques, Symmetric matrix, Algorithms

Mathematics Subject Classification 2000: 68T01

1. INTRODUCTION

Real-life applications can be modeled by maximal bicliques. Online social networks have connected
many people. The communities in these networks may be found by identifying maximal bicliques.
The social network can be represented as a 2-dimensional dataset (Li et al., 2007). Interaction
between the users is denoted by an edge and the interacting users are denoted by vertices. If one
more dimension like week or month or year is added to the existing 2D dataset, that becomes 3-
dimensional dataset, then we will be able to extract pattern of communication between these social
communities with respect to time, which will be commercially more useful (Selvan et al., 2010).
Similar maximal biclique pattern extractions can be performed on telecommunication network users
also. Extensive study has been carried out to enumerate maximal bicliques from boolean adjacency
matrix in DCI-Closed (Lucchese et al., 2006), DMiner (Besson et al., 2005), LCM (Uno et al., 2004),
Bimax (Prelic et al., 2006), and Closet+ (Wang et al., 2003) algorithms. Madeira et al., 2004,
discusses about biclustering algorithms to enumerate maximal bicliques from an adjacency matrix,
where the dataset is in real value context that represent gene expression matrix. Enumerating
maximal bicliques is a highly challenging task and the running time of the algorithm increases

International Journal of Artificial Intelligence,
ISSN 0974-0635; Int. J. Artif. Intell.
Autumn (October): 2014, Volume 12, Issue Number 2
Copyright © 2014 by IJAI (CESER PUBLICATIONS)

www.ceser.in/ijai.html
www.ceserp.com/cp-jour
www.ceserpublications.com

exponentially with respect to the number of vertices (Peeters, 2003). Apriori Algorithm (Agrawal et al.,
1994) and FP-Growth methodology (Han et al., 2004), find bicliques from a bipartite graph. DCI-
Closed (Lucchese et al., 2006) algorithm enumerates all maximal bicliques from an adjacency matrix
in a depth first manner. DataPeeler (Cerf et al., 2009) algorithm extracts all maximal bicliques from n-
D dataset with user specified size constraints. LCM-MBC algorithm (Li et al., 2007) generates
maximal bicliques twice from a symmetric matrix and discards the duplicates later. Twinblade
algorithm (Savio et al., 2012) generates all the maximal bicliques only once but works only on 2-D
symmetric dataset. Cubeminer (Selvan et al., 2010) algorithm was designed to find all maximal
bicliques from an 3-D adjacency matrix. When the same algorithm is used for the 3-D symmetric
adjacency matrix, it generates the maximal biclique patterns twice, and one among the two patterns is
called as duplicate pattern. In order to remove these duplicate patterns, Cubeminer-MBC algorithm
(Ji et al., 2006), that extends Cubeminer, introduced subtree pruning strategies which were based on
the symmetric nature of the dataset. Even after introducing these pruning strategies, Cubeminer-
MBC removed these duplicate patterns completely for selective datasets. For the rest of the datasets,
it removed only to a certain extent. We have extended Datapeeler instead of Cubeminer, because
Datapeeler algorithm’s performance is better than Cubeminer. The proposed method extends the
Datapeeler algorithm by combining a novel element selection technique and subtree pruning strategy.
To our knowledge in the literature, no algorithm exists in 3-dimensional context to eliminate all
duplicate patterns. Hence, we address the problem of mining maximal bicliques only once from 3-
dimensional symmetric adjacency matrix with no self loops.
A dynamic convex hull based clustering algorithm (Theljani et al., 2013) is used for classification,
which deals with the data that appear in sequential. An improved clustering algorithm (Yazdani et al.,
2013) clusters the data based on particle swarm optimization technique. A novel GSA-based
algorithm (Purcaru et al., 2013) generates an optimal path for a robot travelling in partially unknown
environment in the presence of multiple obstacles and its performance is compared with a well-known
particle swarm based algorithm. These algorithms either concentrate on clustering or classification.
We concentrate on triclustering.
In this paper, we propose an efficient algorithm S-Datapeeler in 3-dimensional context, inspired by
DataPeeler (Cerf et al., 2009), to enumerate all maximal bicliques without generating duplicates. The
major challenge lies in the elimination of all duplicate patterns and it is accomplished with the help of a
novel element selection technique. In 3-D context, we have compared our algorithm with DataPeeler
(Cerf et al., 2009) algorithm on synthetic datasets.
The rest of the paper is organized as follows. Section 2 details the preliminaries and section 3
discusses the novel methodology adopted, algorithm and a working example. In section 4, we
analyze the experimental results and section 5 concludes the paper.

2. PRELIMINARIES

In this section, we present the basic definitions required for further analysis of the paper, with the
problem definition. Let A= (H, R, C) be a 3-dimensional symmetric matrix. Let C = {c1, c2, c3, . . . , cm}
be set of column vertices and R = {r1, r2, r3, . . . , rm} be set of row vertices and where ri = ci, 1 � i � m.
Let H= {h1, h2, . . . , hs}, represents the height set or third dimension, where each hi is a symmetric
adjacency matrix (R, C) with diagonal elements ‘0’, indicating there are no self loops. Each cell is
represented by either ‘0’ or ‘1’, where ’0’ represents no interaction, and ‘1’ represents interaction
between the corresponding row vertex and the column vertex. Each adjacency matrix (R, C)
represents an undirected graph with no self loops. Let |H| refers to cardinality of the H. We now

International Journal of Artificial Intelligence

43

provide the definitions of bicliques and maximal bicliques in 3-D context.
Definition 1. Let (H, R, C) be a 3-dimensional symmetric matrix, where H represents the set of height
elements, R represents the set of row elements, and C represents the set of column elements. Let
(HS, RS, CS) be a subset of (H, R, C) such that HS � H, RS � R and CS � C. (HS, RS, CS) is defined as a
3-dimensional biclique iff � h � HS, � r � RS, � c � CS, h x r x c is ‘1’ and RS � CS is empty.
In Table 1, we have an example of 3-D symmetric adjacency matrix (h1, h2, h3: r1, r2, r3, r4, r5 : c1, c2, c3,
c4, c5). (h1, h2, h3: r2, r5 : c4) is a biclique, whereas (h1, h2, h3: r2, r5 : c3, c4) is not a biclique, because
h3:r5:c3 contains ‘0’.
Definition 2. Let (HS, RS, CS) be a 3-dimensional biclique of a 3-dimensional matrix (H, R, C). A 3-
dimensional biclique (HS, RS, CS) is defined as a 3-dimensional maximal biclique, iff �� h � H\HS,
such that (h, RS, CS) is a 3-D biclique, �� r � R\RS, such that (HS, r, CS) is a 3-D biclique, and �� c �
C\CS, such that (HS, RS, c) is a 3-D biclique.
In other words, a 3-dimensional biclique (HS, RS, CS) is said to be maximal, iff �� h � H\HS, such that
� r � RS, � c � CS, h x r x c is ‘1’, �� r � R\RS, such that � h � HS, � c � CS, h x r x c is ‘1’, and �� c
� C\CS, such that � h � HS, � r � RS, h x r x c is ‘1’. In simple, a 3-D biclique (HS, RS, CS) is maximal,
iff no proper superset of (HS, RS, CS) is 3-D biclique. Continuing with the example, (h1, h2, h3: r1, r2, r5 :
c4) is a maximal biclique. (h1, h2 : r1, r2 : c3, c4) is a biclique, but not maximal because there is an
element r5 such that (h1, h2 : r1, r2, r5: c3, c4) form a biclique. Since the input is a symmetric matrix,
each maximal biclique will be generated twice. One among the two is a duplicate pattern. In this
paper, we define a duplicate pattern as follows: a 3-D maximal biclique (HS, RS, CS) is a duplicate
pattern if minimum (RS) > minimum (CS). For example, (h1, h2 : r3, r4 : c1, c2, c5) is a duplicate pattern
of the maximal biclique (h1, h2 : r1, r2, r5: c3, c4), since minimum(r3, r4) = r3, minimum(c1, c2, c5) = c1, and
r3 > c1.
In order to include user specified constraints, we include the following definition w.r.t. maximal
biclique, with an assumption that p � q always hold: A 3-D maximal biclique (HS, RS, CS) is said to be
(w,p,q)-large if |HS|� w, and |RS|� p or |CS|� p, and the other is atleast q.

Problem Definition. Our problem is to enumerate all (w,p,q)-large maximal bicliques from 3-
dimensional symmetric matrix without generating duplicates, where w, p and q are user defined
constraints such that |HS|� w, and |RS|� p or |CS|� p, and the other is atleast q for any such 3-D
maximal biclique (HS, RS, CS).

Here, we discuss briefly the working principle of Datapeeler, since S-Datapeeler extends it. It starts
with a root node containing two n-sets (X, Y), where X is initially empty and Y contains all the n-sets.
It generates a binary tree and explores it in DFS manner. The element p to be used for enumeration
is selected from Y only if it forms a biclique with X. The elements of Y which failed to form a biclique
during selection process are obviously removed from Y. After selecting the element p, the left child
and right child nodes are generated. The left child node is generated by appending p to X and
removing p and O from Y, i.e., (X � p, Y \ (p � O)), where O� Y such that (X � p � O) is not biclique.
The right child node is generated as (X, Y\p). Maximality check and anti-monotone property is
performed at every recursive call of the algorithm. Maximality check is performed using the stack S,
which contains the selected element p associated with right branches of the path from the root node.
For any node, if there is an element s in S, such that (X � s � Y) is biclique, then the node is
discarded. Anti-monotone property states that: if a biclique is not frequent, none of its superset is
frequent. It is used to prune the search space, i.e., helps to enumerate (w,p,q)-large maximal
bicliques only. If both maximality check and anti-monotone check are true, then it is output as a

International Journal of Artificial Intelligence

44

maximal biclique, provided Y is empty. For example let us consider the 3-D dataset given in Table 1.
The root node is denoted by (:	:) (h1, h2, h3 : r1, r2, r3, r4, r5 : c1, c2, c3, c4, c5). If the selected
element is h1, then the left child node is (h1 :	:) (h2, h3 : r1, r2, r3, r4, r5 : c1, c2, c3, c4, c5) and the right
child node is (:	:)(h2, h3 : r1, r2, r3, r4, r5 : c1, c2, c3, c4, c5). In this way, it proceeds selecting
elements one by one and arrives at finding all maximal bicliques. When the dataset is symmetric, if
Datapeeler is applied, the maximal bicliques are generated twice. In order to generate the maximal
bicliques only once, we discuss the new methodology in the next section in 3-D context.

Table 1: An Example for 3-D Symmetric Matrix

h1

h2

h3

 c1 c2 c3 c4 c5
r1 0 0 1 1 0
r2 0 0 1 1 0
r3 1 1 0 0 1
r4 1 1 0 0 1
r5 0 0 1 1 0

 c1 c2 c3 c4 c5
r1 0 1 1 1 0
r2 1 0 1 1 1
r3 1 1 0 1 1
r4 1 1 1 0 1
r5 0 1 1 1 0

 c1 c2 c3 c4 c5
r1 0 1 0 1 1
r2 1 0 1 1 1
r3 0 1 0 1 0
r4 1 1 1 0 1
r5 1 1 0 1 0

3. 3-D MAXIMAL BICLIQUE ENUMERATION ALGORITHM

This section discusses a novel selection strategy to achieve zero duplicate enumeration adopted in S-
Datapeeler. We strictly follow the elements in its lexicographic order while selecting the element
particularly from R and C (Dias et al., 2005). While selecting the elements, we select row element
and its corresponding column element alternatively on the right path only from the root. Height
element is not selected at all, on this right path only from the root. The maximal bicliques generated
in the left subtree of column element selection are duplicates w.r.t. the maximal bicliques generated in
the left subtree of row element selection. Hence, we do not generate or process the left subtree,
whenever a column element is selected on the right path only from the root. Due to this subtree
pruning technique, the complete set of duplicate maximal bicliques is eliminated. In the rest of the
nodes, i.e., nodes other than right path only from the root, any element may be selected.
Consider the data given in Table 1 and Figure 1. (:	:) (h1, h2, h3: r1, r2, r3, r4, r5 : c1, c2, c3, c4, c5) is
the root node. We select the element r1 to generate left child node (: r1 :) (h1, h2, h3: r2, r3, r4, r5 :
c1, c2, c3, c4, c5) and the right child node (:	:)(h1, h2, h3: r2, r3, r4, r5 : c1, c2, c3, c4, c5) as shown in
Figure 1. From the right node of the root, element c1 is selected. The left subtree of the root will
generate all maximal bicliques that contain r1.
Figure 1 depicts the binary tree enumeration on the right path only by selecting the elements r1, c1, r2,

International Journal of Artificial Intelligence

45

c2, r3, and c3 in the order specified respectively. Whenever r1, r2 and r3 are selected, we say odd left
child nodes. When c1, c2, and c3 are selected, we say even left child nodes. Here r1=c1, r2=c2 and
r3=c3 respectively. The maximal bicliques enumerated from the even left child node will be the
duplicate pattern of maximal bicliques enumerated from immediate previous odd left child node. The
maximal bicliques enumerated from the even left child node when c1 is selected will be the duplicate
pattern of maximal bicliques enumerated from odd left child node when r1 is selected. Obviously it
holds for r2 & c2, and r3 & c3. Therefore, the crossed nodes are pruned, which leads to zero duplicate
pattern generation. We denote maximal bicliques enumerated from odd left child node (encircled 1, 3
and 5 in Figure 1) by ODD_MBC(ri) and maximal bicliques enumerated from even left child node
(encircled 2, 4 and 6 in Figure 1) by EVEN_MBC(ci) respectively, where 1� i �m.

Lemma 1. Let (H, R, C) be a 3-dimensional symmetric matrix. Let (:	:)(H : R : C) be the root

node. If ri � R is selected from the root to generate left and right child nodes, then all maximal
bicliques of left subtree will contain ri.

Proof. Let (:	:) (H : R : C) be a root node, where r1, r2, r3, . . . , rm � R be set of row vertices and
c1, c2, c3, . . . , cm � C be set of column vertices. Since ri is selected, left child node is generated as
(: ri :) (H : R\ri :C) and the right child node is generated as (:	:)(H : R\ri :C). If right child
node is considered, right child node does not contain ri, since it is removed. Therefore, the
maximal bicliques generated from the right subtree will not contain ri. Considering the left child
node, whenever an element is added, it is going to prevail in the entire subtree. Therefore, all the
maximal bicliques generated from the left subtree of the root will contain ri.
�

Consider the dataset given in Table 1. If r1 is selected from the root node, maximal bicliques
enumerated from the left subtree of the root will contain r1. According to lemma 1, (h1, h2, h3: r1, r2, r5 :
c4), (h1, h2 : r1, r2, r5: c3, c4), (h2, h3: r1, r3, r5 : c2, c4) and (h3: r1, r2 : c4, c5) are such maximal bicliques
that contain r1.

Lemma 2. Let (H, R, C) be a 3-dimensional symmetric matrix. Let (:	:)(H : R : C) be the root
node. If ri � R is selected from the root to generate left child node XL and right child node XR, and
ci is selected from XR to generate its left child node XRL and right child node XRR respectively, then
the maximal bicliques enumerated from subtree of XRL are duplicates w.r.t. XL.

Proof. Since ri is selected from the root, as per lemma 1, all the maximal bicliques enumerated in the
left subtree of root contain ri. The right child node of the root node is XR = (:	:)(H : R\ri : C).
Now the column element ci is selected from XR, where ci = ri . Left child node of XR is generated as
XRL = (:	: ci) (H : R\ri : C\ci), and the right child node as XRR = (:	:) (H : R\ri : C\ci). If XRR is
considered, it does not contain ci, since it is removed. Therefore, the maximal bicliques
enumerated from XRR will not contain ci. Now all the maximal bicliques enumerated on the left
subtree of XR will contain ci, since the remaining elements are selected if only they form biclique
with respect to ci. Obviously, it will not contain ri because it has already been removed. Hence,
maximal bicliques enumerated from subtree of XRL are duplicates w.r.t. XL.
�

International Journal of Artificial Intelligence

46

Figure1. Binary tree diagram depicting the element selection on the right path only from the root for
the dataset given in Table 1, where alternatively ri and ci are selected where ri = ci, 1 � i � 3

Consider the dataset given in Table 1. If c1 is selected from the right child of the root node, maximal
bicliques enumerated from the left subtree will contain c1. (h1, h2, h3: r4 : c1, c2, c5), (h1, h2 : r3, r4 : c1,
c2, c5), (h2, h3 : r2, r4 : c1, c3, c5), and (h3: r4, r5 : c1, c2) are such maximal bicliques that contain c1.
According to lemma 2, we can observe that these are duplicate patterns of maximal bicliques
enumerated from the odd left subtree of the root where r1= c1. Hence left child node is pruned when
c1 is selected.

Theorem 1. Let (H, R, C) be a 3-dimensional symmetric matrix. Let (:	:)(H : R : C) be the root

node. Considering only the right path from the root, alternatively select ri and ci, where 1� i � m
and always ri = ci, to generate left child and right child nodes. Each ri � R selected, leads to

International Journal of Artificial Intelligence

47

ODD_MBC(ri) and each ci �A1 leads to EVEN_MBC(ci). EVEN_MBC(ci) are duplicate patterns of
ODD_MBC(ri), where ri = ci.

Proof. Let (:	:)(H : R : C) be the root node. On the right path only from the root, alternatively ri
and ci are selected in order to generate left and right nodes respectively, where each ri = ci, 1 � i �
m. Each ri� R selected, leads to enumeration of maximal bicliques that contain ri (according to

lemma 1) i.e., ODD_MBC(ri). Similarly, each ci � C selected leads to enumeration of maximal
bicliques that contain ci i.e., EVEN_MBC(ci). Since, alternatively ri and ci are selected and ri = ci,
according to lemma 2, EVEN_MBC (ci) are duplicate patterns of ODD_MBC(ri), where 1 � i � m.
 �

Consider the dataset given in Table 1. On the right path only if r2 is selected, one of the maximal
bicliques enumerated from the odd left subtree is (h1, h2, h3: r2 : c3, c4) and contains r2. According to
lemma 3, (h1, h2, h3: r3, r4: c2) is a duplicate pattern enumerated from the even left subtree, when c2 is
selected immediately on the right path only after r2, where c2 = r2. Hence in our algorithm, left child
node is pruned whenever a column element is selected on the right path only from the root. This
leads to complete elimination of duplicate patterns.

3.1 Algorithm S-Datapeeler

INPUT: 3-dimensional symmetric adjacency matrix
OUTPUT: set of all 3-D maximal bicliques with zero duplicates
1. X= null : null : null
2. Y = H : R : C
3. S = null (refers to stack used for pruning bicliques that are subpatterns)
4. Call S-Datapeeler(X, Y, S)

5. S-Datapeeler(X, Y, S)
6. {
7. If (X, Y) is maximal w.r.t. S AND (X, Y)C
8. If Y is null
9. Output X as 3-D maximal biclique
10. Else
11. While((X � (e = select(Y))) is not biclique)
12. Y = Y \ e
13. If !(X is null AND e �Y:C) //theorem 1
14. S-Datapeeler(X � e, Y \ (e � O), S)
15. S-Datapeeler(X, Y \ e, S � e)
16. }

The S-Datapeeler algorithm starts with root node containing X as null and Y with entire 3-D symmetric
dataset. It works in a depth first manner, where the expansion takes place in binary fashion. Initially,
we describe how the select(Y) function works (line no. 11). The row and the column elements are
chosen alternatively in lexicographic order from the root on its right path only, where each row
element is equal to the consecutive column element. The rest of the node elements can be chosen
from any dimension. Whenever an element is chosen, it is verified whether it will form a biclique, if
not, it is discarded or removed from Y (line no. 10). This process continues until a chosen element

International Journal of Artificial Intelligence

48

forms a biclique.
Whenever a recursive call is made, the (X, Y) is verified whether it is maximal with the help of the
stack S, which contains all removed elements associated with right branches of the path from the root
(line no. 7). If there exists at least one element s in stack S, such that (X ��s � Y) form a biclique,
then X is not maximal biclique. (X, Y)C is used to check whether the maximal biclique will be of
(w,p,q)-large and if not, the node is pruned so that none of its superset is (w,p,q)-large, which takes
care of antimonotone property. Otherwise, X is output as maximal biclique, provided Y needs to be
empty (line nos. 8 & 9). User defined constraints i.e., (w,p,q)-large check is incorporated in the
following way:

If (|X.H|+|Y.H| � w)
 If (((|X.R|+|Y.R| � q) AND (|X.C|+|Y.C| � p)) OR ((|X.R|+|Y.R| � p) AND (|X.C|+|Y.C| � q)

))
 //continue… check Y is null and proceed
Line nos. 14 & 15 are used to generate both left and right child nodes respectively. The left node is
generated by appending e to X and removing e and O from Y, i.e., (X � e, Y \ (e � O)), where O� Y
such that (X � e � O) is not biclique. Right child node is generated by keeping X as it is, and by
removing the selected element from Y and the stack S is appended with the removed element. When
the right path only from the root is considered, it is observed that the right node generation does not
update X. X is null at the root node and hence, X is null at all the nodes which fall on right path only
from the root. Line no. 13 does verification whether it is a right only path from the root by checking if
X is null. Pruning of nodes is done as follows: if the selected element e belongs to the column set,
and X being null, no left child node is generated, i.e., even left subtree of the nodes on the right path
only from the root is not allowed to generate. This pruning has led to removal of all duplicate bicliques
completely and is supported by theorem 1. Therefore, our algorithm enumerates all maximal bicliques
with zero duplicate patterns.

3.2 Pseudo-code of Algorithm S-Datapeeler

A pseudo-code of implementation is provided below. Most of the parts are self explanatory and
wherever necessary required comments are provided. A brief description is also provided
immediately after the pseudo-code.

Node structure is defined as :

struct dnode {
 int *rs_x; int *cs_x; int *hs_x; // X part
 int *rs_y; int *cs_y; int *hs_y; // Y part
 int *rstack; int *cstack; int *hstack; // S part
 struct node *next;

 };

Few declarations and initializations:

International Journal of Artificial Intelligence

49

int *hstack, *rstack, *cstack, *hs_x, *rs_x, *cs_x, *rs_y, *cs_y, *hs_y;
bool ***e; // e is used to store the 3-dimensional matrix.
int ww, pp, qq; // user defined constraints – got from the user at run time
int Maximalbicliquecount;
struct dnode *new;
struct dnode *STACK;

 Initializations
*hs_y, *rs_y, *cs_y – contains all height, row, and column elements (Y part)
*hs_x, *rs_x, *cs_x – contains null, null, null (X part)
*hstack, *rstack, *cstack - contains null, null, null (S part)
Maximalbicliquecount = 0
STACK – null

Step 1

Dynamically each(heights) 2-D symmetric matrix stored as text file is transformed into 3-D symmetric
matrix (represent by e)

Step 2
Initially generate the right only path, and on this path store row selected left node alone in

STACK.
Whenever a column element is selected no left node is generated. (as shown in Figure 1)

ODD_flag = true
Do {
 If (ODD_flag == true)//row element is selected
 {

r = minimum(*rs_y)
//Generate left child node and push inside stack
PUSH(*hs_x, *rs_x � r, *cs_x, *hs_y, *rs_y \ r, *cs_y, Stack) into STACK
//Generate right child node by modifying its parent
*rs_y = *rs_y \ r
*rstack = *rstack � r
ODD_flag = false

 }
 Else // column element is selected
 {

c = minimum(*cs_y)
//Left child node is not generated – subtree pruning strategy
//Generate right child node by modifying its parent
*cs_y = *cs_y \ c
*cstack = *cstack � c
ODD_flag = true

 }
} Until(*cs_y is empty)

Step 3

POP top of STACK into *hs_x, *rs_x, *cs_x, *rs_y, *cs_y, *hs_y, *hstack, *rstack, *cstack

International Journal of Artificial Intelligence

50

Step 4
while (true)
{

initially maximality check is done, and if it fails, goto POP_STACK
 //User specified constraint check

If (|*hs_x|+|*hs_y| � ww)
 If (((|*rs_x|+|*rs_y| � qq) AND (|*cs_x|+|*cs_y| � pp)) OR
 ((|*rs_x|+|*rs_y| � pp) AND (|*cs_x|+|*cs_y| � qq)))

 select an element from Y

if no element is selected from Y, goto POP_STACK

if height element h is selected from hs_y (provided hs_y is not empty)
{

//right node generation
create a new node dynamically to store right – call it as new
copy X into new.X //copy *hs_x, *rs_x, *cs_x into new.*hs_x, new.*rs_x, new.*cs_
copy *hs_y \ h, *rs_y, *cs_y into new. *hs_y, new.*rs_y, new.*cs_y
copy *hstack � h, *rstack, *cstack into new.*hstack, new.*rstack, new.*cstack
PUSH new into STACK

//left node generation is got by modifying the some parts of node
*hs_x = *hs_x � h
*hs_y = *hs_y \ h
w.r.t. c � *cs_y, if !(� r � rs_x, h x r x c = true) then *cs_y = *cs_y\c

}
else if row element r is selected from rs_y (provided rs_y is not empty)
{

//right node generation
create a new node dynamically to store right – call it as new
copy X into new.X
copy *hs_, *rs_y \ r, *cs_y into new. *hs_y, new.*rs_y, new.*cs_y
copy *hstack, *rstack � r, *cstack into new.*hstack, new.*rstack, new.*cstack
PUSH new into STACK

//left node generation is got by modifying some parts of the node
*rs_x = *rs_x � r ; *rs_y = *rs_y \ r
w.r.t. c � *cs_y, if !(� h � hs_x, h x r x c = true) then *cs_y = *cs_y\c

}
else if column element c is selected from cs_y (provided cs_y is not empty)

move *cs_y into *cs_x
else if (*cs_y empty)
{

OUTPUT *hs_x, *rs_x, *cs_x as MAXIMAL BICLIQUE
Maximalbicliquecount++

International Journal of Artificial Intelligence

51

POP_STACK: if(STACK ! empty)
 Copy top of STACK into *hs_x, *rs_x, *cs_x,
 *rs_y, *cs_y, *hs_y, *hstack, *rstack,*cstack

 else break;

}

}
OUTPUT Maximalbicliquecount

The pseudo-code of the algorithm above shows the implementation details with computational
parameters. The algorithm was implemented non-recursively using stack, i.e., DFS technique is
adopted.

Initially the node structure and the computational parameters with their initial values are mentioned.
In the node structure, hs - refers to height set, rs – row set, cs – column set, rstack – row stack, cstack
– column stack, and hstack – height stack respectively. The inputs are given as follows:
X part : null - initially, Y part : contains all height elements, all row elements and all column elements
which are stored as integers, and STACK part – initially NULL
ww – minimum height elements, pp & qq – minimum row and column elements or vice versa

Step 1
Each height represents a 2-D symmetric matrix, and is stored as a text file. Based on the number of
heights, dynamically each text file (2-D symmetric matrix) is transformed into 3-D symmetric matrix
(denoted by e).

Step 2
This step deals with our contribution of a novel element selection technique and new subtree pruning
strategy. Novel element selection technique: On the right path only from the root, alternatively row
element and its corresponding column element are selected from Y and added to X on the left node
enumeration. New subtree pruning strategy: W.r.t. the novel element selection technique, when row
element is selected, the left child node is enumerated and pushed inside STACK. Whenever column
element is selected, the left child node is pruned, i.e, not generated. These concepts are depicted by
an example in Figure 1. These concepts have led to generation of zero duplicate patterns, thereby
reduces the search space by 50%, which increases the performance in terms of running time of S-
DataPeeler algorithm over the other.

Step 3
The STACK contains elements that are pushed during Step 2. The top of STACK is popped in to X, Y
and stack part S.

International Journal of Artificial Intelligence

52

Step 4
Initially maximality check is done with respect to the stack part S, and if it fails, top of STACK is
popped and continued, and otherwise, user defined constraint check is performed and if it fails, top of
STACK is popped and continued. Left node generation and right node generation pseudo-codes are
written w.r.t. the element selected from Y part (either height or row or column element). If the column
element of Y part is empty, it is reported as maximal biclique. Step 4 is continued until the STACK
becomes empty. Obviously, the total numbers of patterns generated and the running time are
calculated.

4. EXPERIMENTAL RESULTS AND ANALYSIS

We have implemented and compiled both Datapeeler and S-Datapeeler algorithms using 32-bit
Microsoft VC++ compiler, with Windows 7 operating system, in 3 GB RAM and Intel Core i3 processor
environment. The datasets were created with home grown random data generator program. The time
complexity of the algorithm is directly proportional to the number of patterns generated. Maximal
Biclique generation is known to be in the class of NP-Complete (Peeters, 2003).

Figure 2. Comparing the running time of S-Datapeeler and Datapeeler with different heights from 6 to

66 and fixing each height with 153 x 153 symmetric dataset

The dataset for 153 people interacting with each other through an online social network have been
generated. Density has been kept at 14.99% for each month (height). We make the number of
heights vary from 6 to 66, and every maximal biclique pattern is generated with constraints minimum 2
months and 2 persons with any other 2 persons. Comparison has been done between S-Datapeeler
and Datapeeler algorithms and the results are shown in Figure 2. When the heights are less (for
example 6) there is no difference in running time. Gradually if the heights are increased S-Datapeeler
takes only half the running time that of Datapeeler. For example, considering the data for 54 months,
Datapeeler takes 14.0 seconds to compute 45070 maximal biclique patterns, whereas, S-Datapeeler
takes only 7.2 seconds to compute 22535 patterns.

International Journal of Artificial Intelligence

53

Figure 3. Comparing the running time of S-Datapeeler and Datapeeler with different minimal heights

from 3 to 33 on 36 x 300 x 300 symmetric dataset

In the next synthetic dataset, we created 36 x 300 x 300 data with 300 persons interacting with each
other on a social online network for 36 months. Each month (height) has a density of 14.99%. We
make the minimum number of heights to vary from 3 to 33, and minimum 2 persons should have
complete interaction with the other 2 persons. Comparison has been done between Datapeeler and
S-Datapeeler, the running time was calculated and the results are shown in Figure 3. It is observed
that, performance of S-Datapeeler is comparatively better than Datapeeler. For example, when the
minimum height is set to 24, Datapeeler takes 0.633 seconds, while S-Datapeeler takes 0.437. When
the minimum height is set to 3, S-Datapeeler takes 14.4 seconds to compute 914 maximal biclique
patterns, whereas, the other takes 23.8 seconds to compute 1828 patterns.
We created a 333 x 33 x 33 symmetric matrix dataset representing 333 weeks, and 33 persons
connected with one another via online social network. We made the density of connection per week
to be 9.8%. We generated 3D maximal bicliques with user specified constraints as minimum 2 weeks
and 2 persons should have complete communication with other 2 persons. It took 8.2 seconds to
compute 68 patterns for S-Datapeeler algorithm, while Datapeeler took 22.2 seconds to compute 134
patterns.
It is clear that the Datapeeler always generates the pattern twice, due to the symmetric nature of the
dataset. If p and q varies, the total number of patterns may be uneven. For example after setting w
as 1, p as 1 and q as 2, on the dataset given in Table 1, S-Datapeeler generates 10 patterns while
Datapeeler generates 19 patterns.

5. CONCLUSION
�

We have introduced a new algorithm S-Datapeeler, inspired by DataPeeler, to completely prune the
duplicate maximal bicliques in 3-D symmetric context. Therefore, 100% elimination of duplicate
patterns is achieved with the new element selection strategy proposed in this paper. This pruning has
led to fifty percent reduction in search space, and thus performance of S-Datapeeler is better than
Datapeeler symmetric datasets. In this paper, S-Datapeeler is discussed in 3-D context, which may
also be extended in n-dimensional context.

International Journal of Artificial Intelligence

54

REFERENCES

Agrawal R., Srikant R., Sept. 1994, Fast algorithms for mining association rules, Proceedings of
International Conference on Very Large Data Bases, pp. 487-499, Santiago, Chile.

Besson J., Robardet C., Boulicaut J.F., Rome S., 2005 ,Constraint Based Concept Mining and its
Application to Microarray Data Analysis, Journal of Intelligent Data Analysis, vol. 9, no. 1, pp. 59-
82.

Cerf L., Besson J., Robardet C., Boulicaut J.F., 2009, Closed patterns meet n-ary relations, ACM
Transactions on Knowledge Discovery from Data, vol. 3, no. 1, pp. 1-36.

Dias V.M., de Figueiredo C.M., Szwarcfiter J.L., 2005, Generating bicliques of a graph in
lexicographic order, Journal of Theoretical Computer Science, vol. 337, pp. 240–248.

Han J., Pei J., Yin Y., Mao R., 2004, Mining Frequent Pattern without candidate Generation: A
Frequent Pattern Approach, Journal of Data Mining and Knowledge Discovery, vol. 8, no. 1, pp.
53-87.

Ji L., Tan K.L., Tung A.K.H., 2006, Mining Frequent Closed Cubes in 3D datasets, Proceedings of
32nd International Conference on Very Large Data-bases, pp. 811-822, Seoul, Korea.

Li J., Liu G., Li H., Wong L., 2007, Maximal Biclique Subgraphs and Closed Pattern Pairs of the
Adjacency Matrix: A One-to-One Correspondence and Mining Algorithms, IEEE Transactions on
Knowledge and Data Engineering, vol. 19, no. 12, pp. 1625-1637.

Lucchese C., Orlando S., Perego R., 2006, Fast and Memory Efficient Mining of Frequent Closed
Itemsets, IEEE Transactions on Knowledge and Data Engineering, vol. 18, no. 1, pp. 21-36.

Madeira S.C., Oliveira A.L., 2004, Biclustering Algorithms for Biological Data Analysis: A Survey,
IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 1 no. 1, pp. 24-45.

Peeters R., 2003, The maximum edge biclique problem is NP-complete, Discrete Applied
Mathematics, vol. 131, no. 3, pp. 651-654.

Prelic A., Bleuler S., Zimmermann P., Wille A., Buhlmann P., Gruissem W., Hennig L., Thiele L.,
and Zitzler E., 2006, A Systematic Comparison and Evaluation of Biclustering Methods for Gene
Expression Data, Bioinformatics, vol. 22, no. 9, pp. 1122-1129.

Purcaru C., Precup R.-E., Iercan D., Fedorovici L.-O., David R.-C., and Dragan F., 2013, Optimal
robot path planning using gravitational search algorithm, International Journal of Artificial
Intelligence, vol. 10, no.S13, pp. 1-20.

Savio M.D., Sankar A., Nataraj R.V., Nov. 2012, A Novel Algorithm to Enumerate Maximal
Bicliques from a Symmetric Matrix, Proc. of 3rd International Conference on Emerging
Applications of Information Technology, Kolkata, India, pp. 456-467.

International Journal of Artificial Intelligence

55

Selvan S., Nataraj R.V., 2010, Efficient Mining of Large Maximal Bicliques from 3D Symmetric
Adjacency Matrix, IEEE Transactions on Knowledge and Data Engineering, vol. 22, no. 12, pp.
1797-1802.

Theljani F., Laabidi K., Zidi S., Ksouri M., 2013, Convex hull based clustering algorithm,
International Journal of Artificial Intelligence, vol. 10, no. S13, pp. 51-70.

Uno T., Kiyomi M., and Arimura H., 2004, LCM ver.2: Ef�cient mining algorithms for
frequent/closed/maximal itemsets, Proceedings of IEEE ICDM’04 Workshop FIMI’04, Brighton,
UK.

Wang J., Han J., Pei J., 2003, CLOSET+: Searching for the best strategies for mining frequent
closed itemsets, Proceedings of 9th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 236-245, Washington, DC, USA.

Yazdani D., Saman B., Sepas-Moghaddam A., Mohammad-Kazemi F., Meybodi M.R., 2013, A
New Algorithm Based on Improved Artificial Fish Swarm Algorithm for Data Clustering,
International Journal of Artificial Intelligence, vol. 10, no. A13, pp. 193-221.

International Journal of Artificial Intelligence

56

