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Abstract—Electricity theft detection (ETD) is crucial for 

smart grids to maintain their cost-effectiveness. Current 

approaches for identifying theft struggle with large datasets of 

electricity use owing to problems with missing values, data 

variance, and nonlinear patterns in the data; furthermore, an 

integrated infrastructure to coordinate the study of electricity 

load data is not currently in place.The suggested method trains 

models after feature extraction and stage preprocessing. Data 

normalization, missing value imputation, and data cleansing are 

all components of data preprocessing.  Utility data sets often 

suffer from inconsistent and missing data as a result of manual 

and unsynchronized meter reading and registering processes; 

however, this can be mitigated through the feature extraction 

process.  All the way through training, the proposed approach 

stuck with the NTM paradigm. The average accuracy of this 

state-of-the-art approach is 94.22%, which is higher than RNN 

and ELM. 

Keywords—neural turing machine (NTM), Electricity theft 

detection, extreme learning machine (ELM). 

I. INTRODUCTION 

Technical losses and non-technical losses (NTLs) are the 
two main categories of power loss that affect electricity 
systems. Dissipation of heat during electricity transmission is 
one source of technical losses, but theft of power by malicious 
customers is the leading cause of non-technical losses. This 
results in significant financial losses for the utility companies. 
An innovative step towards a smart grid, advanced metering 
infrastructure (AMI) has just been integrated into the power 
networks. Smart meters installed in the customer's premises 
are essential for AMI to monitor energy usage and generate 
bills. This strategy can decrease the prevalence of more 
conventional types of electrical theft, like tampering with 
meters and line hooking[1]. Numerous software and 
hardware-based methods have been suggested in the literature 
as potential means of detecting cyber-attacks, such as power 
theft. Presently, data-driven approaches are more attractive 
than others due to the abundance of data regarding energy 
usage made available by smart meters.The AMI network 
relies on smart meters put in customers' homes or places of 
business to provide consistent reporting on energy 
consumption. Since unscrupulous consumers can alter their 
own consumption figures by hacking their smart meters, this 
data on energy consumption is vulnerable to these attacks. 
Even though it's not easy to discover these types of breaches, 

automated systems that detect electricity theft could benefit 
from customers' extensive energy consumption data. Several 
automated theft detection approaches have been proposed in 
the literature[2]. Power plants generate and transmit electricity 
to consumers across extensive networks, with losses occurring 
at both ends of the chain. The efficient and safe utilization of 
energy resources should be a component of every nation's 
social and economic development goals due to their scarcity 
and high cost. An alternative to outdated methods of energy 
monitoring, the smart grid (SG) is designed to withstand the 
test of time[3]. The most telling features are likely to be rapid 
drops in power usage (flat spots), unexpected surges during 
off-peak periods, and unpredictable consumption spikes. 
These features were most likely identified using feature 
importance analysis methods, such as feature ranking 
approaches (e.g., SHAP values or permutation importance) or 
by analyzing model performance metrics when specific 
features were removed from the analysis. The second section 
discusses previous research that has addressed the issue of 
electricity theft in the literature. The methodology used in this 
work is detailed in Section III. It begins with an analysis of the 
dataset and efforts to improve its quality. Then, characteristics 
are extracted and classified based on an analysis of the 
customers' load profiles. The results are presented and 
discussed in Section IV.Section V serves as the paper's 
conclusion.The requirement to deal with complicated, non-
linear correlations between electricity usage patterns and 
stealing tendencies drives the use of particular approaches, 
such as neural networks. Neural networks, particularly 
recurrent designs such as NTMs, are ideally adapted to 
processing time-series data, which is critical for power usage 
research. This approach was also chosen for its capacity to 
learn temporal connections and capture long-term patterns in 
consumption data. Furthermore, convolutional layers or other 
techniques may be chosen based on their ability to handle 
spatial dependencies in time-series data, such as repeating 
patterns or anomalies across time. 

II. LITERATURE SURVEY 

The use of ETD algorithms allows for the detection of 
power theft incidents. The existing ETD algorithms found in 
published works are categorized according on whether the 
system uses unsupervised or supervised learning techniques. 
Unsupervised learning is a method for teaching algorithms to 
complete tasks without the use of labels[4]. Then, the 
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proposed approach sends the encrypted aggregated data to the 
system operator. The data imbalance between regular and 
unusual users is a big problem that hinders the effectiveness 
of ML algorithms when it comes to identifying theft[5]. The 
K-nearest neighbor technique is used to fill in the missing 
values. A technique that integrates oversampling and under 
sampling, to rectify the data imbalance [6]. However, the 
suggested theft detection system's automatic hyper parameter 
adjustment is not taken into consideration[7]. Using ensemble 
methods, able to detect cases of power theft in SGs. Light 
boosting, adaptive boosting, XGBoost, extra trees (ET), 
random forest (RF), and CatBoost are the top classifiers 
among the ones mentioned above. When data imbalances 
occur, SMOTE is the tool to use[8]. Using SMOTE for data 
balance unfortunately leads to the over fitting problem. For the 
purpose of detecting power fraud, propose an XGBoost 
classifier. The power business has used AI in a variety of 
applications to address real-world problems. When it comes 
to adding more renewable energy sources to the smart grid, AI 
really shines because of its ability to optimize electricity price 
and make it responsive to power supply swings caused by 
unpredictable weather[9]. In order to lessen the impact of 
cyber-attacks on power theft, machine learning (ML) has been 
used in recent years[10]. Evidence of theft in SGs has been 
detected using DL techniques and supervised and 
unsupervised ML methods. Over fitting can occur as a result 
of DL models being trained on a fixed dataset. Thus, kids stop 
learning to generalize and start learning to recognize specific 
traits and patterns. Secondly, in order to address changes in 
consumption patterns and new cyber-attacks, retraining the 
models with both old and new data is not an appropriate 
solution[11]. Especially for large datasets, this process is 
computationally heavy and time-consuming. The use of 
artificial intelligence to tackle difficult problems has received 
a lot of attention in recent years in Google's AlphaGO and 
AlphaGO Zero. Both AlphaGO and AlphaGO Zero 
demonstrated that reinforcement learning (RL), a type of 
emerging ML, is similar to human learning in that it can adapt 
to its surroundings and learn by exploration and exploitation 
mechanisms [13]. Equally impressive is its ability to mimic an 
agent and, given limited data, determine the optimal action to 
take. When it comes to making decisions, RL is quite skilled 
and possesses many admirable traits [13]. Just like the human 
brain, RL experiments with its surroundings to find out what 
works best for making decisions. A number of factors 
contribute to the suboptimal performance of supervised ML-
based ETD models, including consecutive missing values in 
EC datasets, problems with data class imbalance, incorrect 
hyper parameter tuning of ML models, and so on[14]. ETD 
machine learning models can be assessed with complicated 
performance measures including ROC-AUC, Precision, 
Accuracy, and Matthew's correlation coefficient (MCC). A 
plethora of methods for identifying and eradicating power 
theft via ML-based classifiers have been developed as a result 
of extensive study in this field; a few relevant works are cited 
below[15]. A hybrid deep learning (DL) method is used to 
create a model that can detect instances of electricity theft. 
Near-miss under-sampling (NM) was used to handle data 
imbalance, and bee colony optimization was used to tweak the 
hyper parameters of the adaptive boosting (ADB) 
classifier[16]. A machine-learning pipeline including 
SMOTE, KPCA, and SVM is proposed by the authors. An 
SMOTE-based ETD pipeline to address data class imbalance. 
Then, it employs kernel function and KPCA to glean 
additional relevant characteristics from the dataset. Support 

vector machines (SVMs) exhibit the following characteristics. 
The power theft detection deep learning model proposed, 
integrates a convolutional neural network (CNN) with a long 
short-term memory (LSTM)[17]. Using the local values 
related to the missing data point, this technique determines the 
missing instances. The proposed ETD model uses a 
combination of over-sampling, under-sampling, the kNN 
imputer, and the SMOTE Tomek algorithm to handle data 
class imbalance[18]. The proposed approach trained the 
model using six simulated theft attacks to make sure the data 
samples were balanced. When the number of theft and non-
theft events in an updated dataset are balanced, performance 
assessments with a decreased percentage of false positives are 
achieved[19]. The proposed model performed admirably even 
when the pattern of power use altered as a result of seasonal 
fluctuations. Geographic data sources and weather data are 
examples of non-electricity consumption datasets from which 
model features are derived[20]. The Proposed study 
recommends developing a very efficient ensemble model 
using NTM for discovering smart meter power theft incidents. 
Unlike standard neural networks, TMs feature an external 
memory component that allows them to store and retrieve 
information over long sequences. This capacity allows NTMs 
to handle more complex tasks that necessitate long-term 
memory retention and retrieval, making them suitable for 
evaluating time-series data in which patterns do not 
immediately follow one another but are spaced out over 
time.A new method for detecting electricity theft utilizing 
NTM classification and detailed time-domain characteristics 
is proposed based on the literature. To simplify the training 
process going forward and make sense of the findings, the 
proposed approach use Principal Component Analysis (PCA) 
to conduct classification on a smaller feature space and 
compare it to the results from classification using all input 
features. In order to get better performance overall, the 
proposed system use a Bayesian optimizer to tweak the 
model's hyperparameters. To get the most out of the model 
training time while still getting decent results, it employs an 
NTM to find the ideal ranges for the other critical 
parameters.The work addresses power theft by creating a 
detection system using machine learning algorithms and 
intelligent computing approaches. Traditional solutions, such 
as manual inspection or basic rule-based systems, can be time-
consuming and ineffectual in detecting advanced theft 
schemes. The method uses patterns in consumption data to 
detect anomalies and suspicious activities that may indicate 
theft. It uses data analytics and machine learning models to 
continuously monitor and analyze electrical use in real time, 
making it more reliable and scalable than older techniques. 

III. PROPOSED SYSTEM 

Figure 1 depicts each stage, which may involve data 
collection, pre-processing, feature extraction, model training, 
and detection. Brief descriptions for each step could 
include: Data Collection: The long-term collection of 
electricity usage data from smart meters. Pre-processing 
involves cleaning the data, filling in missing values, and 
normalizing the dataset. Feature Extraction: Identifying 
important patterns, such as peaks in demand or regular drops 
(flat spots), that are associated with thieving habits. Model 
training is the process of using labeled historical data to train 
a machine learning model (such as an NTM). Detection entails 
using the learned model to real-time or new data to identify 
probable theft cases. Each stage contributes by gradually 
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refining the data, preparing it for accurate analysis, and 
eventually enabling reliable theft detection. 

 

Fig. 1. Flowchat for the Identification of Electricity Theft 

A. Data Preprocessing 

At time interval �, the energy consumption for an honest 
customer � and a malevolent customer � are defined as ��,� 

and ��,�∗ , respectively. A threshold of ten missing values may 

be crucial because missing data in power consumption records 
can affect the detecting process. If there are too many missing 
values, the dataset may lack the continuity required for 
accurate detection. Setting a restriction guarantees that the 
data is resilient enough for accurate analysis, preventing errors 
caused by large gaps.What follows is a description of the 
primary methods used for preparing raw electricity data: 

 

1) Data Cleaning: Raw data may contain inaccurate 

values, also called outliers; these correspond to periods of 

high electrical demand, such as holidays and special 

occasions like birthdays and celebrations. High electrical 

demand periods are described as time periods when 

electricity consumption exceeds a set threshold, usually 

during peak usage hours, such as evenings when most 

households and businesses consume considerable amounts of 

power. These times are critical for detecting theft since they 

can disguise unusual consumption patterns. This proposed 

employs the "three-sigma rule of thumb" to retrieve the 

outliers using the following formula: 

�(��,�) = ���(��,�) + 2�(��,�) ��,� > ��,�∗
��,� ����   (1) 

For every time interval that comprises the weekday/time 
pair every month, ��,�∗ is computed using the mean ��(>)and standard deviation �(. ). 

2) Missing Value Imputation:Determining values when 

absent Electricity consumption statistics contain missing 

values for a variety of causes, such as storage problems and 

smart meter malfunction. One kind of missing data is 

continuous missing of many values; when this happens, the 

solution is to remove users from the system if the number of 

missing values is more than 10[21]. A second type, which is 

handled by the formula (2), is missing single data. This is 

found out by looking at the raw data. Because of this, the 

proposed approach may recover the following values: 

�(��,�) = �
��,������,���

� ��,� ∈ !!
��,� ����        (2) 

in where ��,� represents the consumers' electricity usage 

over a period (e.g., an hour); if ��,�  is null, the proposed 

approach display it as NaN. 

3) Data Normalization:Data normalization Due to the 

sensitivity of neural networks, it is necessary to clean up the 

data before using it.One of the numerous methods employed 

for this objective is the min-max normalization calculation, 

which is 

�(��,�) = ��,�"#$%&��,�'
#()&��,�'"#$%&��,�'               (3) 

Where min (. )  represents the lowest value and max (. ) 
represents the highest value for a specific day. 

B. Feature Extraction 

The primary characteristics of a dataset can be extracted 
via features extraction. Because of the reduction in processing 
resources and data dimensionality, the process of 
implementing algorithms becomes easier. The feature 
extraction procedure can help improve utility data sets that 
have inconsistent or missing data due to manual or 
unsynchronized meter reading and registering. The current 
analysis extracts a minimum of fourteen new features from 
each user's consumption data using the R-language packages 
anomalous and Factoextra. This visual representation shows 
not just the retrieved features but also their interrelationships. 
Dark blue represents a very positive correlation between two 
features, while dark red represents a very negative correlation. 
As an example, consider the "entropy" and how it is favorably 
correlated with "lumpiness" and negatively correlated with the 
"trends". The statistical context and importance of each 
produced feature are detailed here; however, the two most 
crucial features, the Canberra distance measure and the flat 
spots, will be discussed in the parts that follow, as they were 
extracted for this particular inquiry[22].A "flat spot" is a 
period of abnormally constant or low power consumption, 
which may not be typical in normal family or corporate usage. 
It may indicate manipulation, in which electricity is pulled 
without being consumed. These flat patches are worrisome, 
especially when they occur during times of projected power 
usage unpredictability.As a statistical metric, the Canberra 
distance measure 01#2(3452 is computed using Equation 4. 

01#2(3452 = �(�, 6) = ∑ |��"9�|
|��|�|9�|:�;<           (4) 

Given a set of data points, 01#2(3452 can spot any 
noticeable deviations. In order to find outliers in the 
consumption data, the proposed system calculated 01#2(3452 by comparing each consumer's current and past 
monthly consumption records. The average 01#2(3452 score 
of most consumers falls somewhere between zero and four, 
indicating that the system are in the healthy consumption 
range.  Having a larger number of 01#2(3452 , however, is 
indicative of inconsistent consuming behavior, as 
demonstrated by their purchasing habits. After going over all 
the proposed approach have discussed thus far, it is reasonable 
to conclude that 01#2(3452  is an important statistic for 
evaluating client status and buying behaviors without a 
tedious computing process[23]. One major problem with this 
metric is that it doesn't automatically set a cutoff value that 
distinguishes between two groups. To find flat spots, or fspots, 
in a time series, one usually finds the greatest run length inside 
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each equally sized interval in the given sample space. 
Specifically, this metric can be employed to ascertain the 
occurrences of low consumption that occur most frequently 
within a dataset of consumption records. These areas with low 
usage are usually revealed when consumers hook up directly 
to the mainline or employ specialized gadgets to interfere with 
the metering process. 

C. Model Training 

1) Neural Turing Machine:The approach's automation 

and precision provide the most significant improvement. 

Using advanced algorithms like as neural networks or 

particular machine learning approaches, the system can detect 

tiny patterns of aberrant power use that would otherwise go 

undetected using traditional methods. Furthermore, technique 

certainly increases detection accuracy and decreases false 

positives by incorporating advanced anomaly detection 

models that learn from prior data to forecast normal 

consumption patterns. The introduction of Neural Turing 

Machines (NTMs) or other complicated designs improves the 

ability to manage sequential data, allowing it to adapt to 

changing consumption patterns.It was in the book Neural 

Turing Machines by Ivo Alex Graves, Danihelka, and Greg 

Wayne when the idea was initially proposed. For its 

simplicity, the feed-forward neural network was used as the 

controller. None of the NTM parameter restrictions were 

updated in our solution. A controller, a memory and an 

arbitrary number of heads are all up for grabs[24].The 

controller and memory implementation has remained 

unchanged from the suggestions made in the previous 

research. An in-house feed-forward neural network controller 

was already mentioned. There are four stages to the 

addressing procedure. Implementation of content addressing 

and interpolation follows the guidelines laid out in the 

system. Implementation of convolutional shift only allows us 

to change one cell to the left or right. When dealing with raw 

shift addressing weight, the following formula is employed: 

� = �
<�2)�&%�' = 1                                (5) 

drawing on the raw addressing vector of the controller and 
its raw shift weight, ?�. Here is the process for applying the 

convolutional shift to the addressing vector @  following 
interpolation �: 

%(�) = &1 = |�|@(�) + @(� + �)'           (6) 

where [c] is initialized to 1 when � is non-zero. Under no 
circumstances is � equal to 1.  � is a positive integer between 
1 and 1. When the value of � is 1, the addressing vector shifts 
to the left by one cell. On the other hand, a rightward shift of 
one cell is carried out when �equals 1. A value of 0 � does not 
signify a change. The sharpening scalar A can be calculated 
using the sharpening weight Band the following formula: 

A = �?(�C�() + 1) + 1                   (7) 

It uses the identical formula proposed in the original paper 
to sharpen it. The proposed learning algorithm of choice for 
weight optimization was rmsproposed, which involves back-
propagation across time. The use of back-propagation with 

any weight optimization method is made possible by the 
proposed methodology. The proposed approach have verified 
that NTM works by applying the suggested learning exercises. 
Replicable results were obtained on the n-gram, copy, and 
repeat copy tasks.On top of that, the proposed system 
developed and evaluated NT Monsequences. The proposed 
approach put the models through their paces to see how well 
the system could generalize. 

For sequences with � D 20, � + ℎ D 20 and up to � = 60, 
the proposed approach conducted tests of NTM. All of the 
deterministically predictable properties were accurately 
predicted by the model with this report ratio of �.Any model 
with a performance greater than 0.34 can generalize to any 
observed sequence length.Natural language processing 
(NTM) can learn any sequence. Even if sequences longer than 
60 can be learned, the system need to use the minimum 
training duration. With a modestly sized controller and a little 
memory, the best generalization was achieved. The results 
were obtained using a 4 I 4 memory NTM, a 100-neurons 
controller, and a single head. The process by which NTM 
acquires the sequence J3 , KL, �3�L is readily apparent. The 
convolutional shift addressing mechanism enables the NTM 
to shift focus over its memory in a continuous, differentiable 
manner, rather than making discrete jumps. This allows the 
model to capture gradual changes in the power consumption 
pattern, improving its ability to track slight but significant 
shifts, which might signal theft.Adding extra memory cells is 
unneeded for an NTM because it learns to utilize just two cells 
and ignore the others or to use all of the memory as a single 
cell. In the former case, the other elements of the head 
addressing vector are zero during the full sequence. Raising 
the capacity of a memory cell does nothing to improve the 
precision of generalizations; all it does is change the internal 
representation of the character count. The capacity of an NTM 
to store memory over longer periods can aid in the discovery 
of subtle patterns or recurring anomalies that regular neural 
networks may overlook. NTMs provide more dynamic 
analysis of time-based data, which is crucial in detecting theft 
that occurs sporadically or intermittently. 

IV. RESULT AND DISCUSSION 

Utilities are facing challenges in properly meeting 
customer demand for electricity due to an increase of power 
thieves. Present approaches fail to accurately detect energy 
theft (ETD) because to their high false positive rate (FPR), 
propensity for overfitting issues, and inaccurate classification 
of imbalanced power consumption data. Power theft has cost 
utilities a lot of money, thus finding the perpetrators of this 
crime will need further research. 

 

Fig. 2. Loss Curve of Training and Testing 
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Data on normalized consumption is used to base the 
experiment. When using a batch size of 100, the training 
process ends after 300 epochs. Training and testing losses 
leveled out gradually, as seen in Figure 2. 

 

Fig. 3. ROC Curve of NTM Models 

When compared to the baseline model, the computed AUC 
value for the NTM is 0.95, indicating significant 
improvement. Figure 3 shows that the suggested approach can 
accurately classify both classes. 

 

Fig. 4. PR Curve of the Different Model 

The PR curve is shown in Figure 4. When compared to the 
other benchmarks, the PR curve makes it quite evident that the 
various models perform far better. 

TABLE I.  PERFORMANCE EVALUATION(%) 

Models Precision Recall F1-Score MAP 

ELM 0.8716 0.8541 0.8631 0.8768 

RNN 0.8964 0.8734 87.63 0.8991 

NTM 0.9219 0.9040 91.24 0.9260 

 
Table I also displays comparisons based on recall, F1-

score, mean average precision (MAP), and precision. The 
results of table I show that the suggested technique 
outperforms the others on MAPscore. 

Figure 5 shows that when comparing the accuracy, recall, 
precision, F1score, and MAP of the many offered ways, the 
suggested strategy clearly performs better, demonstrating its 
efficacy and importance. On the same performance evaluation 

measures, the proposed approach also compare the suggested 
strategy to some of the more well-known conventional 
approaches. Convolutional shift addressing enhances model 
performance by allowing it to better manage the trade-off 
between short-term and long-term dependencies in data. This 
method allows for smoother transitions while focused on 
different areas of the input data, improving the accuracy of the 
theft detection system by spotting nuanced trends over time. 

 

Fig. 5. Performance Evaluation of the Model 

V. CONCLUSION 

Electricity theft is a global pandemic that affects utilities 
and power customers equally. Electric dangers are on the rise, 
utility firm economic development is halted, and energy costs 
for customers are driven up. One important part of building 
smart grids is collecting massive amounts of data, like 
customer consumption data, which may be utilized to identify 
instances of power theft through the application of deep 
learning and machine learning algorithms. Data preparation 
includes data cleansing, missing value imputation, and data 
standardization.  Because utility meter reading and 
registration are typically done manually and out of sync, 
utility data sets are prone to missing and inconsistent data. 
Fortunately, feature extraction can help with this. For the 
model's training, the NTM is sufficient. The proposed 
approach found that our suggested model achieved an average 
accuracy of 94.22% when compared to the RNN and ELM 
models. 
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