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Abstract. Users possess the option to rent instances of various sorts, in a variety of regions, and a variety of availability zones,
thanks to cloud service carriers like AWS, GCP, and Azure. In the cloud business right now, fixed price models are king when
it comes to pricing. However, as the diversity of cloud providers and users grows, this approach is unable to accurately reflect
the market’s current needs for cost savings. As a consequence, a dynamic pricing strategy has become a desirable tactic to
better handle the erratic cloud demand. In this study, a deep learning model was used to propose a dynamic pricing structure
that ensures service providers are treated fairly in a multi-cloud context. The computational optimization of DL approaches
can be severely hampered by the requirement for human hyperparameter selection. Traditional automated solutions to this
issue have inadequate durability or fail in specific circumstances. To choose the hyper-parameters in the Dueling Deep Q-
Network (DDQN), the hybrid DL approach in this study uses the concept-based wild horse optimization (WHO) method. A
community of untamed horses is evolved, and the fitness of the population is evaluated concurrently to estimate the optimum
hyper-parameters. The plan changes the price appropriately to promote the use of underutilized resources and discourage
the use of overutilized resources. The evaluation’s findings demonstrated that the suggested strategy can lower end-user
costs while conducting compute- and data-intensive activities in a multi-cloud environment. The research was concluded by
comparing current models after the results were analyzed using various performance indicators.
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1. Introduction

The number of IT firms that provide network
access to a “Cloud” has increased recently. Exam-
ples include Salesforce, Amazon EC2, Google App
Engine, Windows Azure, and Amazon Web Ser-
vices. “A model for assisting ubiquitous, convenient,
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on-demand network of things connection to a pool
of shared configurable computing assets (networks,
servers, applications, data storage, and services)
which can be swiftly allocated and screened with lit-
tle to no management or cloud provider interaction,”
according to the definition given by the cloud [1]. It is
commonly known that cloud computing has benefits
[2]. These advantages entice companies to move their
current IT workload to the cloud, which may have
a favorable and economically significant impact on
manufacturing output and worker productivity [3].
For instance, to host their applications and media,
CloudPrime and Foursquare utilize Amazon EC2,
while Harvard Medical School and Yelp employ high-
performance computing from the same provider. Dell
and AVON both use the Salesforce customer relation-
ship management tool to grow their companies.

A 2010 poll of companies using cloud comput-
ing found that 74% of companies agree that “the
internet has helped to alleviate internal IT resource
pressures,” 72% of companies say their end-user
experiences have improved, and 73% of companies
have been able to lower their infrastructure expenses
[4]. The Department of the Treasury’s Office of Bud-
get and Management (OMB) stated that “government
is currently running under a cloud-first policy” in
December 2010, which mandates that agencies incor-
porate cloud-based technology into projects first and
foremost [5]. The global market for cloud computing
will increase from $40.7 billion in 2011 to $241 bil-
lion in 2020, predicts Forrester Research [6]. Cloud
computing enables service providers to measure
consumption for billing purposes while allowing con-
sumers to pay for usage. The global market for cloud
computing will increase from $40.7 billion in 2011 to
$241 billion in 2020, predicts Forrester Research [6].
Cloud computing enables service providers to mea-
sure consumption for billing purposes while allowing
consumers to pay for usage.

It is difficult to create a resource allocation
method for cloud computing due to the rise of vir-
tual distributed resources. The issues with resource
allocation in the cloud computing environment are
dynamic as a result of the heterogeneous char-
acter of cloud computing regarding applications
and resources [7–9]. Resource sharing, poor usage,
resource waste, and income loss have all been caused
by the static allocation policies. Recent studies boost
the capacity and dependability of a multi-cloud setup
by enabling end users to choose assets from various
service providers [10, 11]. The users’ main chal-
lenge, though, is deciding which service provider

would best meet their needs and do it at the low-
est possible cost. In a multi-cloud context, this study
suggests a dynamic pricing structure that ensures ser-
vice providers are treated fairly. The price is adjusted
by the plan to promote the use of natural assets with
low rates of use and to discourage the use of com-
modities with high rates of utilization. We emphasize
the need to take into account the value metric for the
fundamental job, which includes the real service and
resource needs. This paper’s main contributions are
to:

• Putting forth a hybrid DL model with integrated
cloud brokering and federation strategy for pric-
ing that changes in a multi-cloud context.
• The suggested approach can recognize patterns

present in actual pricing dynamics and make
arbitration decisions that maximize long-term
income.
• Examine the performance of the suggested

plan’s cost-effectiveness by analyzing experi-
mental data on the dynamic valuing mechanism
for resource allocation.

The structure of this essay is as follows: The asso-
ciated works are discussed in Section 2. The proposed
plan is thoroughly presented in Section 3. The overall
architecture of the suggested scheme is described in
Section 4. The procedures and findings of the evalu-
ation are covered in Section 5. The study is wrapped
up in the last section.

2. Related work

For IaaS cloud platforms, Mukhopadhyay &
Tewari [12] created a dynamic pricing model that can
determine the fluctuating cost of execution depending
on changes in user requirements while also setting a
lower bound on the fundamental price for a cloud
service. The author has also developed an effec-
tive quantitative cost analysis model that takes into
account every static as well as dynamic cost compo-
nent conceivable to determine a reasonable execution
cost. Additionally, to validate the outcomes, a novel
algorithm was introduced and put into practice within
a simulated version of the service architecture. Here,
extensive simulations were used to compare the
proposed model to existing models. The cost of cal-
culation fluctuates erratically as a result of the users’
changing demands. Therefore, preserving the trade-
off between speed and computing cost has become
essential.
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The FPM (Flexible Pricing Mechanism) is a
method used by resource providers to calculate TVB,
according to Adabi et al., [13]. The aforementioned
difficulty is even more difficult in widely recog-
nized cloud markets wherein capacity-type instances
are given with different QoS levels. This is because
choosing an approach to negotiation based on the esti-
mated TVB should prevent renting commodity-type
instances that have reduced QoS at a price greater
than renting the identical commodity-type instances
with higher QoS. The goal of this research is to
provide a flexible pricing method that supports price-
quality relationships in cloud marketplaces wherever
resource-type instances are offered with different
QoS levels. According to the simulation results, the
suggested negotiators outperform EMDA (Enhanced
Market Driven Agent) and FNSSA (Fuzzy Nego-
tiation Strategy Selection Agent), two additional
negotiators. However, because Cloud resources are
released and assigned dynamically, the suggested
strategy is no longer as practical.

The adaptive scheduling technique known as
the Dynamic price-dependent Sequential Auction
allocation mechanism was presented by Kumar &
Kartheeban [14]. Through dynamic pricing and the
combinatorial auction, it will be used to improve
resource utilization and consumer happiness. The
suggested market-based scheduling algorithm aims
to increase the contentment of Cloud suppliers
and clients by utilizing the notion of an auction
mechanism. This method reconstructs the current
resource allocation preferences in order to allocate
resources in advance for unexpected virtual machine
needs. The results of the simulation experiment
show that the suggested scheduling technique overall
Collective-target enhancement numerical prototypes
can effectively improve resource utilization, supplier
profit, and quality of service (QoS). Even if cloud
assets are assigned automatically and released, such
a scheduling approach is ineffective for Cloud.

In an evolving market where the number of
participating cloud users is changing, Shi et al.’s
[15] analysis examined whether a bidding-based
cloud service provider determines the auction price
efficiently while contending against other cloud
providers. Numerous variables, including its com-
petitors’ auction prices, the cost imposed to clients in
the previous auction, how cloud users bid, and more,
have an impact on the pricing approach. In order to
create a competitive pricing strategy, we represent
the issue as a minimally observable Markov game
and use a gradient-based multi-agent deep learning

technique. According to the experimental findings,
the created pricing strategy can outperform other
approaches to pricing in terms of long-term gains and
the number of users who participate, and it can also
successfully learn the marginal values of cloud users
and their cloud provider preferences.

The Stackelberg game was used by Zhu et al.
[16] to model the earnings maximization problem
and examine the existence as well as the distinc-
tiveness of the competitive equilibrium. Additionally,
to increase the profitability generated by SaaS and
IaaS providers, we further suggest an adaptive pric-
ing mechanism that takes into account the influence
of a resource price on users’ willingness to access ser-
vice. The simulation results show that the proposed
mechanism is preferable in terms of maximization
of revenue and resource usage when compared with
conventional fixed-price and auction-based pricing
systems. While SaaS companies want to reduce the
cost of employing infrastructure resources while
simultaneously adhering to service-level obligation
contracts with customers, IaaS providers seek a suit-
able cost policy for virtual machines to increase
revenue.

To benefit both parties, Sharma et al. [17] presented
an online Computation Commodity (C3) pricing
model termed Clabacus(Cloud-Abacus). Addition-
ally, modify the computed resource price to take
into account the inherent hazards of the Cloud
provider utilizing financial value-at-risk (VaR) analy-
sis. Additionally, provides ways based on fuzzy logic
and evolutionary algorithms to calculate the Value-
at-Risk (VaR) based on the provider’s resources.
Additionally, we have added this feature to the
Clabacus architecture. Finally, it will analyze the
implications of the caliber of assistance, rate of depre-
ciation rates of inflation, and capital expenditure on
the online access pricing for both client and supplier.
Additionally, demonstrates that SLA may be ensured
if price adjustments are made between the reduced
and upper bound.

Cong et al. [18] created a dynamic cloud pric-
ing method based on reinforcement learning (RL)
to maximize both the profit and cost of the cloud
provider for diverse consumers with different per-
sonalities. To effectively incorporate the dynamics of
users’ perceived values concerning cloud services,
we first present a unique personality-guided user-
perceived appraisal prediction scheme. In the cloud
computing market, the prediction system simulates
the relationship between user personality traits, per-
formance price, of service (QoS), user pleasure, and
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perceived value. Second, an RL-based cloud pricing
mechanism is created based on the prediction model
to teach sequential service price decision-making for
cost and profit optimization. In particular, a discrete-
time systems Markov decision process (MDP) is used
to represent and solve the profit and cost optimiza-
tion problem. Finally, in-depth simulation studies
have been carried out to validate our model for pre-
dicting user-perceived value and our pricing model
for cloud services. Although somewhat determinis-
tic, these web pricing models and methods could not
function well in a real-world setting because users’
perceptions of the value of cloud services are con-
stantly shifting and highly customized.

Cong et al.’s [19] dynamic pricing model, which
is based on the idea of user-perceived value, suc-
cessfully represents the actual supply and demand
dynamics in the market for cloud services. The
dynamic pricing model is then used to construct
a profit-maximizing scheme that maximizes the
cloud service provider’s profits while abiding by the
service-level agreement. The cost of cloud services
and multiserver configurations are finally adjusted
by the fluctuations of the cloud computing setting,
such as changing electricity and rental costs, using a
dynamic closed-loop control method. The efficiency
of the suggested user observed based on pricing
strategy along the constantly changing profit max-
imization scheme has been validated by extensive
simulations utilizing the data retrieved from real-
world applications.

To increase cloud revenue, Alzhouri et al. [20]
examined dynamic pricing of idle resources. Our sug-
gested method specifically handles multiple kinds
of virtual machines to provide the highest predicted
revenue within a limited discrete time frame. To
achieve this, the suggested method makes use of
Markov chain reactions with a variety of attributes
that, when combined with ideal controlling condi-
tions, define the behavior of a model. Additionally,
this method uses linear programming for approxima-
tion of stochastic dynamic programming in order to
produce a useful model. Experiment results demon-
strate that this dynamic pricing strategy may scale
prices up or down effectively and economically in
response to load thresholds and resource stagna-
tion. These findings offer crucial information for
increasing IaaS cloud income. This research on cur-
rent spot pricing methods demonstrates, however,
that these schemes use synthetic pricing policies that
don’t take into account the dynamic character of
these events.

To swiftly and consequently decide on federation
across various service provider domains, Martn-
Pérez et al. [21] put forward an evolving cost and
revenue-driven assistance association tactics based
on a Deep Q-Network (DQN). Each domain presents
dynamic service price offerings to its customers and
other domains. In this study, an agile arrival process
as a result of price changes is provided for expressing
a service confederation procedure as a Markov Deci-
sion Problem (MDP). This process is based on the
examination of real pricing data obtained from public
cloud providers. The problem is solved using a vari-
ety of reinforcement learning algorithms in this work,
and the results show that the DQN method surpassed
existing state-of-the-art strategies and reached 90%
of the optimal revenue. It also can learn the dynamics
of federation pricing so that it can make the best deci-
sions for the federation in response to price changes.

Inference: In conclusion, to the greatest extent of
our knowledge, real pricing dynamics have not yet
been taken into account in the literature when deter-
mining the ideal domain to distribute services. To
achieve this, additionally rely on data-driven, model-
free strategies based on optimal deep learning, which,
to maximize long-term income, identifies correla-
tions in information while generating any deductive
inferences about the system.

3. Proposed methodology

This study analyses a public cloud provider’s
price fluctuations and uses them as a benchmark for
multi-cloud service pricing. Additionally, by taking
into account the noted price variations, can increase
their market share in the multi-cloud market. Define
the multi-domain context as a web-based decision-
making problem to maximize revenue, and then
develop an adaptive arrival process that is affected
by changes in the service prices. The OBL-WHO
approach is used in this work’s design and implemen-
tation of the hyperparameter optimization method in
combat with a deep reinforcement learning system, as
shown in Fig. 1. Both require a training phase to deter-
mine a strategy for revenue maximization, as well
as to thoroughly evaluate the solution’s performance
using data and compare it to cutting-edge approaches.
The aim is to increase the service provider’s long-
term revenue as much as possible. Intuitively, lower
charges encourage a higher customer arrival rate. As
a result, the pricing structure does affect how requests
for the service arrive.
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Fig. 1. SmartArt of proposed methodology.

3.1. System architecture

The proposed system structure for the suggested
multi-clout environment is shown in Fig. 2. Diverse
vendors of services offer the resources by their price
structures, as depicted by the architecture. By provid-
ing the criteria to the broker, the end user can submit
task orders amongst different service providers in the
market for cloud services. The broker serves as a go-
between for the client as well as the service providers.
The broker has adopted the suggested dynamic pric-
ing mechanism for resource allocation. The end users
can see how resources are allocated in real-time. The
broker is in charge of choosing the service provider
with the lowest end-user cost.

The CloudSim simulator is used as the founda-
tion for the suggested dynamic pricing mechanism
[22]. The CloudSim simulator covers the modeling of
cloud economic entities, including service providers,
brokers, and end users. The simulator also supports
a multi-provider Cloud environment with resource
management and scheduling. The interaction involv-
ing the product or service provider (DataCenter) as
well as the broker (DataCenterBroker) is depicted in

Fig. 3. Information interchange between service provider and bro-
ker.

Fig. 3. To match user/broker requests to the best ser-
vice provider, the Center for Internet Security (CIS)
organization offers matchmaking services.

Our proposed plan is added to the DataCenterBro-
ker object in this study. The improved broker can
manage resource allocation, task scheduling, and the
current condition of resource use. By the resource
usage state, the broker predicts the execution times
of each request performed in every provider of ser-
vices when it gets the task requests. The broker can
then assign the undertaking to the supplier with the
lowest price.

3.2. Dynamic pricing scheme

The suggested plan supports resources that be
shared over both time and space. A time-shared
resource will be used to conduct a job if it calls for
a lot of computation [23]. Processing power can be

Fig. 2. System architecture of the proposed multi-clout environment.
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distributed across numerous cores while still support-
ing multithreading thanks to time-shared resources.
However, if a request is a data-intensive activity, it
can be handled in the space-shared capacity. Mem-
ory space, which could be memory or storage, can be
shared via space-shared resources. The plan put for-
ward is mostly dependent on the use of this resource
pool. The momentary demand in each pool is deter-
mined by resource consumption. As the amount of
resource use rises, so does the price. This method
will impact whether or not end users switch from
constrained pools of resources to other pools. The
provider of services establishes the constant price for
each unit of a resource, which is referred to as the
fundamental B price Bprice. The overall commodity
unit in a data center DCi is. RTi, whereas the sum of
the free resources in a center DCi is RFi. The vari-
able price Dprice is calculated using the subsequent
Equation (1):

Dprice = RTi

RFi

× Bpricei (1)

According to [24], processors with low usage may
waste power when it is not being used. Similar to
this, workstations are unlikely to meet the necessary
throughput and may face delays as the normal work-
load gets close to 100% [25]. As a result, the proposed
design’s possible spectrum for acceptable utilization
levels falls between 30% and 70%. The objective is to
encourage the use of resources with low utility while
restricting the use of resources with high utility. A
rate of discount is offered in the suggested system
to encourage the productive use of low-utilization
resources. On the other side, a surcharge is applied
to dissuade the use of resources with excessive con-
sumption. Let us define U at a fair level as being
betweenUlow andUhigh. The following represents the
recommended costing strategy with discount factor
DFprice:

DFpricei =

⎧⎪⎪⎨
⎪⎪⎩

Bpricei − discount Ui < Ulow
i

Bpricei Ulow
i Ui ≤ Uhigh

i

Bpricei + extra Ui > U
high
i

(2)
The reduction in pricing function DFBpricei is

made up of two parts: the constant element founda-
tion pricing rate Bpricei and the dynamic portion that
uses the discount factor. The following function of
polynomials is used to compute PF (U):

PFi ( Ui) =
√

Bpricei ∗ 10 ( Ui − 0.5)3

DFpricei = Bpricei + PFi ( Ui) (3)

The suggested scheme’s goal is to deliver end cus-
tomers with the most affordable price for the material
consumed. To achieve the goal and be fair to the ser-
vice providers, the placement of resources strategy
must use the expenditure component as the main fac-
tor. To determine the lowest-cost resources cr, assess
the expense of maintaining an operation on each
resource. Let≈ij represent the completion period for
job j on resource i. The execution time is estimated
by:

≈ij = TIj

TCi × cri
(4)

TI signifies the overall amount of j instructions
performed within i. A compute resource’s total capac-
ity TC is measured in millions of commands per
minute (mips) per a virtual machine. To calculate
the expense E for operating an assignment on the
available resources.

Eij = ≈ij ∗ price (i) (5)

Where price (i) is the pricing system used by
resource i. The suggested dynamic pricing scheme’s
pseudocode. For each interval, the work requests are
sorted by the longest job first (LJF). The consump-
tion rate in each center is determined to calculate the
pricei, which is then utilized to determine Eji for
eachEji, and every expenditure is compared to obtain
the DCi with the lowest level of Eij . Ultimately, the
request for employment will be assigned to resources
on the chosen DCi. The operation keeps going until
all requests have been fulfilled, as specified in Algo-
rithm 1.

Algorithm 1. Pseudocode of dynamic pricing scheme

Input: The user submits a task request j, and DCi lists the data
centers in the market for cloud services along with the
resources that are available and their associated costs.

Output: An anticipated job cost timeline Eij of j using
resource r at DCi

For each resource
Calculate Dprice = RTi

RFi
× Bpricei

If ( Ui < Ulow
i )

return Bpricei − discount

Else if( Ulow
i ≤ Ui ≤ Uhigh

i )
return Bpricei

Else:
return Bpricei + extra

End if
Calculate Pricing Factor

PFi ( Ui) =
√

Bpricei ∗ 10 ( Ui − 0.5)3

Estimate Completion Time DFpricei = Bpricei + PFi ( Ui)
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Allocate Resources (jobs, centers):
for each job in jobs:

Sort Jobs By Length (jobs)
for each center in centers

≈ij = TIj
TCi×cri

pricei = resource.getPrice()
Eij = ≈ij ∗ price (i)

End for
End for
If (Eij < lowest cost)

lowest cost=Eij

selected center = center
selected resource = resource

End if
End for
Return selected center.assign Job(job, selected resource)

3.3. Dynamic pricing detection Using Hybrid
IBO-WHO with DDQN Model

Detection in dynamic pricing refers to the pro-
cess of identifying optimal pricing strategies or
patterns within a changing market environment. It
involves recognizing pricing variations, trends, or
opportunities to adapt and optimize pricing mod-
els for improved profitability or performance. To
attain optimal inventory and income, a general con-
cept for an autonomous adaptive presale environment
is provided. The dynamic price problem is solved
using a DDQN algorithm, effectively enhancing the
retailer’s long-term profitability, in a limited pre-
sale horizon. The algorithm utilized in this research
can learn pricing methods more effectively than the
current reinforcement learning algorithms, accord-
ing to experiments. There are currently only a few
papers in the literature that tackle the dynamic pric-
ing problem in presale mode using the notion of deep
reinforcement learning. As a result, this represents
an innovation to enhance the multi-period dynamic
price strategy in this article’s presale mode. To train
and assess the DDQN dynamic price algorithm’s
effectiveness and demonstrate that the model is
broadly applicable in a market context with uncertain
demand, a larger multi-cloud computing simulation
environment is created. It is investigated how deci-
sions are made and profits are affected by various
stocking prices and cost deviation coefficients, and
recommendations for merchants’ marketing or ser-
vice approaches are made. In this case, the IBO-WHO
approach is used to fine-tune the hyperparameters
of the DDQN. The hyperparameters are N = 10,000,
which stands for Experience replay; B = 32, which
stands for Batch size; l = 0.001, which stands for

Learning rate; ϒ = 0.95, which stands for Discount
factor; εinit 1.0, which stands for Initial exploration
rate; εend 0.01, which stands for Final exploration
rate; and εdecay 100, which stands for Decay factor.

3.3.1. Q-learning method
By building a structure to record the Q-value

under various states and actions and choosing the
best action, the value-based reinforcement learning
method known as Q-learning is utilized to maximize
reward [26]. The predicted benefit of carrying out an
act ion act by strategy while the state is set is repre-
sented by the current action value function Qπ (st,
ac).

Qπ (st, ac) = E[
T∑

t′=t

ϒt,−trt′ |stt = st, act = ac, π]

(6)
By Equation (6), Bellman’s existence optimal

equation is followed by the state of the action value
function for the best approach. The following is the
optimal value function:

Q∗ (st, ac) =
∑
st′∼S

P
(
st
′ |st, ac

)
[
r + ϒmax

ac
′Q∗

(
st
′
, ac′

)] (7)

However, due to the huge dimensions of an issue or
activity in a real situation, calculations may become
challenging and time-consuming. Every action taken
in each state is recorded with the Q-value by the
Q-learning algorithm. Since the amount of space
containing states and actions is large, it requires an
extended period to estimate the Q-table, and it is diffi-
cult to approach convergence because a large Q-value
table must be constructed. Mnih et al. [27] suggested
using a deep neural network to calculate Q (st, ac) ,

to address the problem of dimensional disaster. Deep
learning and reinforcement learning are both used
in the DQN method. The neural network model is
introduced to the Q-learning method to calculate the
Q-value.

To eliminate the association between the data, the
DQN algorithm also uses the procedure of replayed
technique to store the data the agent experiences
within the playback memory and extract a small
batch of information through it during each update.
To increase the precision of value function esti-
mation, the DDQN [28] methodology utilizing a
dual-network structure separated the Q-network into
two parts: the value functions VF (st, ac, m) and the
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advantage function AF (st, ac, ω, l), as indicated in
Equation (8). To increase the stability of the algo-
rithm, as indicated in Equation (9), we centralize the
Q-value calculation, make sure that the order of mag-
nitude among all dominant functions stays the same
in every state, and eliminate unnecessary degrees of
freedom.

Q (st, ac, ω, m, l) = VF (st, ω, m)+ AF (st, ac, ω, l)
(8)

Q (st, ac, ω, m, l) = VF (st, ω, l)

+
[
AF (st, ac, ω, l)− 1

|AF |
∑

ac∈AF

AF (st, ac, ω, l)

]
(9)

In this work, the evaluation and target networks
are constructed using the same DDQN technique.
Equation (10), shows the computation formula for
the target network. To keep the algorithm training
stable, the target network is fixed during the updat-
ing process. The weighted average of the assessment
structure is transmitted onto the target network after
a predetermined number of repetitions, which lowers
the association among the forecast Q-value and over-
all target Q-value, eliminates the likelihood of the
loss value diverging during training, and increases
the learning’s stability. According to Equation (12),
the average squared error (MSE) is adopted by the
DQN loss function to reduce the difference between
the target and forecast Q-values. The MSE is a typical
regression estimation error-measurement technique
used in machine learning to calculate the degree of
discrepancy between the model’s true value and its
predicted value. Using backpropagation, the DQN
algorithm trains the network of neurons according to
the loss function in order to reduce the measurement
discrepancy associated with the forecasted Q-value
and the goal Q-value.

TargetQ = r + γmaxacQ
(
st
′
, ac

′
; θ

)
(10)

L (θ) = E[
(
TargetQ−Q

(
st
′
, ac

′
; θ

))2
(11)

This algorithm chooses its course of action � using
the greedy technique, balancing exploration and uti-
lization to maximize returns. Equation (12) illustrates
the exponential attenuation of the exploration rate
value and the usage of decay to regulate the attenua-
tion rate. Algorithm 2 displays the DDQN algorithm’s
pseudo-code.

ε = εend + (εinit − εend) exp

(
− step

εdecay

)
(12)

3.4. The DDQN architecture

The battling network, which we create here, is a
single Q-network architecture. The dueling network’s
lower layers are convolutional, just like in the initial
DQNs [19]. However, we use two separate chains
(or streams) of layers that are completely linked as
opposed to one pattern of entirely connected layers
to follow the convolutional layers. The streams are
designed in a way that allows them to deliver indepen-
dent estimations of worth and advantage functions.
An outputQ function is created by combining the two
streams in the end. The network produces an array of
Q standards, one for each action, as in [19].

The DDQN network can be trained using any of
the numerous known techniques, including DQN
and reinforcement learning because its output is
a Q function. Additionally, it can benefit from
any advancements made to these algorithms, such
as enhanced replay memory, improved explo-
ration rules, intrinsic motivation, etc. It takes very
careful design to create an element that brings
together both streams of entirely interconnected
levels to generate a Q estimate. It follows that
Eac∼π(st)

[
AFπ (st, ac)

] = 0. from the formulae for
advantage Qπ (st, ac) = Vπ (st)+ Aπ (st, ac) and
state-value Vπ (st) = Eac∼π(st)

[Qπ (st, ac)
]
. Fur-

thermore, it follows that Q (st, ac∗) = VF (st)
in a deterministic policy, where, ac∗ =
arg max

ac′∈AF
Q (

s, ac′
)
, and AF (st, ac∗) = 0. Let’s

have a look at the dueling network where we output
two streams of completely connected layers, one
of which produces a scalar VF (st; θ, β), and the
other of which produces a |AF | − dimensional
AF (st, ac; θ, α).

Here, the terms “convolutional layers” and “convo-
lutional streams” refer to the parameters that define
the two channels of fully connected layers, respec-
tively. We might be enticed to build the accumulating
module as follows using the concept of advantage:

Q (st, ac; θ, α, β) = VF (st; θ, β)+ AF (st, ac; θ, α) ,

(13)
Remember that this expression holds for all (s,

a) instances, thus we must replicate the scalar |AF|
in order to represent Equation (13), in matrix form.
Q (st, ac; θ, α, β) is merely a parametric estimate of
the genuine Q-function, though, so we must keep that
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in mind. Furthermore, it would be incorrect to claim
that VF (st; θ, β) offers a reliable estimate regarding
the state-value function or that AF (st, ac; θ, α) does
the same for the advantage function. Equation (7) is
unidentified in that, given Q, we are unable to retrieve
V and A singularly. This can be demonstrated by
adding a constant to V (s; θ, �) and deducting the iden-
tical constant from AF (st, ac; θ, α) . This constant
cancels out, leaving the Q value unchanged. When
this equation is applied directly, it performs poorly in
practice, mirroring its lack of identifiability. We can
make the benefits of the function estimator have no
advantage at the selected action to solve the identifi-
ability problem. In other words, we let the network’s
final module implement the forward mapping.

Q (st, ac; θ, α, β) = VF (st; θ, β)

+
(

AF (st, ac; θ, α)− max
ac′∈|A|

AF
(
st, ac′; θ, α

)) .

(14)
Now, for ac∗ = arg max

ac′∈AF
Q (

st, ac′; θ, α, β
) =

arg max
ac′∈AF

AF
(
st, ac′; θ, α

)
, we obtain

Q (st, ac∗; θ, α, β) = VF (st; θ, β) .

As a result, whereas the other stream generates
a prediction of the advantage function, the stream
VF (st; θ, β) offers an approximation of the value
function. An alternative module uses an average
instead of the max operator:

Q (st, ac; θ, α, β) = VF (st; θ, β)

+
(

AF (st, ac; θ, α)− 1
|AF |

∑
ac′

AF
(
st, ac′; θ, α

)) .

(15)
The original meaning of V and A is lost since

they have been moved inaccurately by an integer,
but on the plus side, the optimization is more stable
because in (9) the positive aspects are only required
to change as quickly as the mean, as opposed to in
(8) where they must compensate for any change in
the optimal action’s advantage. We also tested a soft
maximum version of Equation 8, but we discovered
that it produced outcomes that were comparable to
those of the more straightforward module of Equa-
tion 9. Therefore, the component of Equation (9), is
used in all the experiments given in this paper. While
removing the mean from Equation (9) improves iden-
tifiability, it has the unfavorable effect of maintaining
any greedy or non-greedy strategy based on Equation
(7)’s Q values because it does not alter the order of
magnitude among the A (as well as hence Q) val-
ues. When acting, assessing the advantage stream

is sufficient to guide judgments. It’s vital to notice
that the formula (9) is treated as a component of
the network rather than as a distinct algorithmic step
and is therefore implemented as such. As with reg-
ular Q networks (such as the extensive U-network
of Mnih et al. (2015)), training dueling architec-
tures just requires back-propagation. The estimates
VF (st; θ, β) and AF (st, ac; θ, α) are generated auto-
matically without the need for additional oversight or
algorithmic adjustments.

3.4.1. Federation based DDQN
We can reuse any learning techniques using Q net-

works (like DQN and SARSA) to learn the dueling
architecture because it has the identical input-output
interface as traditional Q networks. We begin by
reviewing the business model that is important to
our project. In this study, we investigate a system
where a service provider provides cloud services or
resources at a service cost rate as spr(t) that may
change as time passes depending on the operator’s
pricing model. This system is inspired by the market
for cloud services.

When a user decides to deploy a service for such a
fee, it submits a request, which enters the network at
time ar (σ) , and exits at time de (σ). After receiving a
user request, the service provider chooses where the
service should be deployed: either inside its infras-
tructure or across an additional domain throughout
the federation. As a result, the service provider has the
option to respond to each service deployment request
from a user by taking an action x (σ) := {0, 1, 2} that
indicates either the product has been installed region-
ally, distributed in the united domain, or denied. Note
that neither the user nor the federation is aware of
the resources that are accessible in the infrastructure
of the service provider. Users only know the price
that has been offered for their request, or spr(t) (σ).
Regarding an overview of our notation, see Table I.

Maximizing the service provider’s long-term rev-
enue is what we aim to achieve. The pricing structure
does affect how quickly service requests are received;
hence, lower rates encourage quicker user arrival.
However, after a contract between a client and a
provider has been reached, it is crucial to note that
the consumer must pay the agreed-upon amount or
sprar(σ) for each time slot ts that the facility is active,
or for each ts : ar (σ) ≤ ts ≤ de (σ). The service will
be refused if it is not installed regionally or in the fed-
erated domain. In this scenario, the customer will not
pay the service charge, leaving the service provider
with no money. This business approach enables us to
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take advantage of pricing swings that are opportunis-
tically (uncertain), which can result in significant cost
savings, while still giving end users stability, which is
crucial for vertical sectors. We consequently have two
parallel cash flows for each t: The request is granted
by the service provider using local resources, there-
fore the agent’s remuneration is equal to (Fig. 1a).

sprar(σ) (σ) ,∀ts : ar (σ) ≤ ts ≤ de (σ) ; (16)

The application supplier uses federated resources,
hence the provider receives sprar(σ) (σ)− fc(t) (σ),
where fc(t) (σ) is the variable federation cost.

Denote the agent’s income, which at time ts rep-
resents the service provider’s immediate revenue, as
follows:

ir(ts) (Xts) := ∑
σ : x (σ) = 0

ar (σ) ≤ ts ≤ de (σ)

sprar(σ) (σ)

+ ∑
σ : x (σ) = 1

ar (σ) ≤ ts ≤ de (σ)

[
sprar(σ) − fc(t) (σ)

]

(17)
where Xts := {x (σ)}σ:ar(σ)≤ts.
If the service provider exhausts all of its local

assets, its agent may federate the service x (σ) = 1
at a cost to the services provider f (t) (σ) in (17).
Therefore, the accessibility of resources affects the
service provider’s immediate revenue.

Algorithm 2: Pseudo-code of the DDQN algorithm for
dynamic pricing problem in multi-cloud

Input: Parameters of the cloud environment: c, ci, p0, k0, δ, T ;
parameters of the Dueling DQN-DP algorithm:

α, B, γ, ζ, εinit , εend, εdecay

Output: The best pricing approach π∗
Set replay of experience memory D to its maximum size N.
Initialize the weights of the Q-network θ

Set up the target network weights θ′
For episode = 1, M do
Environment reset and state activation st1 = (λ1, k1)
For t = 1, T do with probability ε select a random action act

otherwise select act = argmaxac (stt , act ; θ)
Execute action at and observe reward rt and stt+1
Store transition (stt , actrt , stt+1) in D

Set stt+1 = stt
Sample random minibatch B of transitions (stt , actrt , stt+1)

from D

Set yi =
{

rj if episode terminates at step j + 1

rj + γmax
ac
′ Q

(
stt=1, ac

′
;
)

otherwise

Calculate the federation cost as well using ir(ts) (Xts)
To develop the error function LF about the network parameters,

use gradient descent.

θ as LF (θ) = E
[

(TargetQ−Q (st, ac; θ))2
]
∗ ir(ts) (Xts)

Every ξ step updates the target network parameters
θ− ← θ

End For
End For

3.5. MWHO-based hyperparameter optimization
model

The accuracy of detection of the DDQN algorithm
is optimized by using the MWHO algorithm as a kind
of hyperparameter tuning technique [29]. The WHO
strategy relied on the traits of wild horses’ social
behavior. They generally reside in herds of stallions,
mares, and young horses [29]. They have shown off
a variety of traits, including dominating, pursuing,
mating, and grazing. The WHO’s main procedure is
explained in the following manner. The initial popula-
tion is split up into several groups. The stallion S is the
leader of each group, while the rest members—mares
and foals—are evenly dispersed. The following fac-
tors affect the grazing nature:

Xj
i,G = 2Zcos (2πRZ)×

(
Sj − Xj

i,G

)
+ Sj (18)

The location of the existing foal is indicated by
Xj

i,G in the expression. A constant stochastic num-
ber is specified by R, and Z represents the adaptive
process described below.

P =→ ⇀

R1 < TDR; IDX = (P = 0) ;

Z = R2�IDX+→ ⇀

R3� (∼ IDX) (19)

Now that P denotes a vector with a range of 0 to

1,
⇀

R1 and R2 display the configurable integer ranges
between 0 and 1 and define values within [0, 1]:

TDR = 1− it ×
(

1

maxit

)
(20)

The highest possible iteration count is now dis-
played by maxit. The foal pushes from i swarming
into the impermanent group to develop the horse’s
mating characteristics, whereas the young horse orig-
inates from the j swarm to the temporary group:

XP
G,K = Crossover

(
Xq

G,i,XZ
G,j

)
i /= j /= k, p = q = end,

Crossover = Mean

(21)
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Fig. 4. Flowchart of WHO algorithm.

In this piece, the Mane conducts the swarm toward
the water hole where they fight for control of it. The
remaining group also takes advantage of the water
hole, but mostly the dominant swarm does:

SGi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2Zcos (2πRZ)× (WH − SGi)

−WH if R3 ≤ 0.5

2Zcos (2πRZ)× (WVH − SGi)

−WH if R3 ≤ 0.5

(22)

The leader’s next location is indicated by SGi , and
the water hole’s location is indicated by WH. The
leader is then selected in the following ways based
on the standards of fitness in the succeeding phases:

SGi =
{

ifcost
(XG,i

)
> cos t

(SGi

)
(SGiif cos t

(XG,i > cos t
(SGi

))) (23)

The WHO algorithm’s flowchart is depicted in
Fig. 4. Utilizing an oppositional-based learning
(OBL) idea, the MWHO algorithm is developed. The
OBL technique offers a distinctive counter-solution
to the existing one [30] and even attempts to establish
a superior approach that promotes faster convergence.
The real number’s inverse X0, (X ∈ [U, L]) was eval-
uated by:

X0 = U + L−−X (24)

Opposite point: X0. Assume that X =
[X1,X2, ...,XDim] designates a point in a
search space of Dim dimensions, and that
X1,X2, ...,XDim ∈ R and Xj

[
Uj, Lj

]
. Con-

sequently, the opposite of X corresponds to
follows:

X0
j = UBj + Lj − Xj, wherej = 1....D (25)

The two data points (X0 and X) that were the
most useful were chosen based on the fitness func-
tion’s values, and the third point was disregarded.
If (X) f

(X0) ,X was sustained for minimizing the
problem; else, X0 was sustained.

4. Experimental results and discussions

The evaluation step uses the computationally
and data-intensive assignments as input. The SPEC
CINT2006 suite [31] is used for compute-intensive
tasks, while MalStone [32] is used for data-intensive
tasks. Both datasets specify the length and number of
jobs as a comparable measure of performance need
based on practical applications. Several renowned
public cloud service suppliers make up the multi-
cloud environment [33, 34]: Test data included
Amazon EC2, Google GoGrid, and Rackspace cloud
service providers, with ten hosts each. Ten hosts with
four processing elements (PE) make up each ser-
vice provider. There are around 100 and 180 open
positions. Approximately three thousand and 38000
million computations (MI) and 1800 and 4800 giga-
bytes (GB) of data make up a compute-intensive
activity. The training data involved utilizing histor-
ical benchmark datasets [27, 28] to create models
and algorithms for dynamic pricing strategies and
resource allocation. To shorten the simulation dura-
tion, the number of resources such as memory and
hosts is reduced. The experiment’s time interval is
five seconds. The intermediary analyzes the task pro-
posal from the buffer every five seconds. Table 2
provides the specifics of each data center’s resource
information. The asset parameter is defined by the
small digital instance given by Amazon EC2, GoGrid,
and Rackspace, which are all public Cloud providers
[35]. The cost structure has been lowered down-
wards to cost for second rather than cost per hour
for simulation purposes, and the expense per mem-
ory is scaled up by doubling each expenditure by ten.
The number of terabytes affects how much storage
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Fig. 5. The overall expense of executing computationally expen-
sive tasks assuming dynamic pricing for resource reservations.

will cost. Given that the benchmark information uti-
lized encompasses 1.8 to 4.8 terabytes, the cost per
capacity goes upwards for every supplier since the
monetary difference is too small to reveal.

Several studies are carried out to compare accom-
plishments in terms of the overall cost of job
execution. The studies involve a dynamic pricing
scheme with various resource allocation methods,
such as GA-DQN, multi-attribute auction pricing,
DRL dynamic pricing technique, and proposed OBL-
WHO with DDQN. Figure 5 depicts the overall cost
of performing compute-intensive jobs in the resource
reserve using the present as well as proposed dynamic
pricing schemes. The graph indicates that the overall
cost continuously rises as the amount of jobs grows.
However, the existing pricing plan has a higher total
cost than the constantly changing pricing scheme.
When compared to the current pricing scheme, the
dynamic pricing plan cuts total costs by 35%–45%.
This is because the current pricing policy reserved all
resources until the job execution was done. On the
other hand, in the proposed OBL-WHO with DDQN
variable price structure, resources are released after
tasks are completed. When the user adopts an inex-
pensive pricing approach and the action in question
space lacks a higher price, the IBO-WHO cannot
arrive at the ideal amount of DDQN using the sug-
gested technique. Table 1 displays the numerical
findings of total cost versus jobs.

The overall cost of performing compute-intensive
operations using various allocation techniques is
depicted in Fig. 6. The figure illustrates that the
suggested method lowered total costs by 20%, respec-
tively, when compared to DRL dynamic pricing,
GA-DQN, and multi-attribute auction pricing. The

Table 1
The numerical results of total cost vs jobs for dynamic pricing

Jobs (unit) GA-DQN Multi-attribute DRL OBL-WHO
auction pricing dynamic with

pricing DDQN

100 700 650 500 450
120 750 690 620 550
140 850 720 690 630
160 900 850 720 690
180 960 900 850 710

Fig. 6. The overall cost of utilizing dynamic pricing techniques to
conduct data-intensive workloads in cloudlets.

proposed approach adjusts the price based on the
consumption of the resources. Reduced costs for less-
utilized resources ensure fairness among numerous
service providers while also lowering total end-user
costs existing schemes ensure equitable allocation
among service providers, although at a higher cost
than the suggested approach. Right now, OBL-WHO
and DDQN can more successfully cut costs. OBL-
WHO with DDQN exhibits practically identical
sensitivity to the user’s demanding quantity and com-
putation time length when the user’s demand intensity
is high, thus we can effectively lower the cost of
the system. Although the medium intensity group’s
experimental conditions in both sets of studies are the
same, their experimental outcomes are likewise the
same, much like OBL-WHO with DDQN’s experi-
ment. Table 2 provides the numerical outcomes of
total cost vs. cloudlets.

In Fig. 7, the comparison to DRL dynamic pric-
ing, GA-DQN, and multi-attribute auctioneer pricing,
the suggested approach is 35%–5% more effective.
Regarding cost-effectiveness, the proposed strategy
outperforms alternatives. To reduce latency, the sug-
gested approach can route the assignment to fewer
congested service providers. Because GA-DQN
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Table 2
The numerical results of total cost vs jobs for dynamic pricing

Cloudlets GA-DQN Multi-attribute DRL OBL-WHO
auction pricing dynamic with

pricing DDQN

100 410 400 380 360
120 600 540 450 430
140 640 600 540 520
160 900 800 610 590
180 920 900 700 680

Table 3
The numerical results of total cost vs data size for dynamic

pricing

Data size GA-DQN Multi-attribute DRL IBO-WHO
auction pricing dynamic with

pricing DDQN

1800 200 180 170 165
2400 300 280 220 215
3000 380 340 320 315
3600 450 420 400 395
4200 510 490 440 435
4800 700 610 590 585

Fig. 7. Overall expense of performing data-intensive tasks with
dynamic pricing models for various data sizes.

distributes jobs evenly among service providers
regardless of network state, a saturated service
provider may generate a bottleneck, resulting in an
extended time to transfer data. The same is true for
the multi-attribute auction pricing model, which dis-
tributes resources at random among service suppliers.
Although the substantial difference value is a bar-
rier for the current learning methods to successfully
enhance the dynamic pricing model, the space of
actions must be accurate and constrained whenever
the consumer employs the uniform arrival rate. This
might be resolved by giving the user access to a more
focused and intricate action space. The user must

raise the price when employing a low pricing pol-
icy to boost income rewards. If not, it will be difficult
to enhance the player’s revenue because the action
done as a discount would just increase parking occu-
pancy rates rather than contribute to doing so. Table 3
provides the numerical outcomes of total cost vs.
cloudlets.

5. Conclusion and future work

The difficult problems of dynamic pricing models
and the effectiveness of using resources across many
cloud service providers are the main topics of this
work. To reduce end users’ costs and ensure fairness
among service providers, a hybrid IBO-WHO with a
DDQN-based dynamic pricing scheme is suggested.
The price is adjusted by the plan to promote the use of
natural assets with low rates of use and to discourage
the use of commodities with high rates of utiliza-
tion. By suggesting a DDQN agent that addresses the
installation decision problem of deciding whether or
not to join together services upon dynamic pricing
changes in the federation, this research contributes
to filling that gap. Despite its merits, the study
has limitations. It exhibits promise by introducing a
dynamic pricing scheme but operates in a controlled
simulation environment, potentially diverging from
real-time complexities. While showing cost reduc-
tion, its simplified pricing model might oversimplify
real-world market dynamics, limiting its compre-
hensive applicability. Additionally, the assumptions
on user behavior, though rational, might overlook
the diverse and nuanced decision-making patterns in
actual scenarios. The experimental findings demon-
strate that, in terms of overall end-user cost, the
suggested method beats the conventional pricing
scheme and other widely used resource allocation
algorithms. Future development should include a
dynamic pricing scheme with additional optimization
parameters including electrical consumption and user
input. It is important to make assumptions regarding
consumers’ strategic behavior. To get the most out
of their expected utility, individuals undertake cross-
period transactions depending on cost, quality, and
other criteria.
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