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Abstract. The problem statement revolves around the vulnerability of IoT networks to various 
forms of attacks, including intrusion attempts, data tampering, and unauthorised access. Because 
IoT environments are dynamic and diversified, traditional security techniques frequently fall short 
of providing effective protection. Therefore, there is an urgent need for sophisticated detection 
methods that can reliably identify malicious activity among the enormous amounts of data that are 
transmitted over Internet of Things networks. The proposed system aims to enhance the security of 
IoT systems by effectively identifying malicious activities, thereby mitigating potential threats to data 
integrity and privacy. The proposed system leverages Convolutional neural network (CNN), a class 
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of deep learning models known for their effectiveness in image recognition and pattern detection 
tasks, to analyse the temporal and spatial characteristics of data traffic in IoT networks. By training 
the CNN on labelled datasets containing both normal and anomalous network activities, the system 
learns to distinguish between benign and malicious behaviour. The flow of the system involves 
preprocessing raw data, extracting relevant features, training the CNN model, and deploying it for 
real-time attack detection during data transmission. The effectiveness of the CNN-based technique 
in precisely and recall rates identifying different kinds of attacks is demonstrated by experimental 
findings. The solution demonstrates strong performance in various IoT deployment scenarios and 
adeptly adjusts to changing threats. By guaranteeing the integrity and confidentiality of sent data, 
this proposed approach greatly improves the security posture of IoT ecosystems through proactive 
detection capabilities.
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AIMS AND BACKGROUND

In recent years, the escalating concern over data security has underscored the 
critical need for robust communication systems. The proliferation of smart de-
vices interconnected for communication, computation, and real-time monitoring 
has significantly expanded the attack surface for malicious intruders seeking to 
exploit vulnerabilities for personal gain1. Particularly in the realm of Industrial 
Internet of Things (IoT), the emergence of Internet of vehicles (IoV) as a pivotal 
component of Intelligent transportation systems (ITS) has brought forth pressing 
security challenges. Ensuring the security of both users and infrastructures within 
IoV deployments is paramount, necessitating the implementation of effective 
Intrusion Detection systems (IDS) to safeguard against malware-driven attacks2. 
Wireless sensor networks (WSN), integral to the IoT ecosystem, present unique 
security considerations due to their resource-constrained nature and self-configuring 
capabilities3. The proliferation of IoT devices has spurred a surge in cyber-attacks, 
fuelling research efforts to enhance anomaly detection mechanisms and fortify 
security4. Moreover, the IoT paradigm offers promising opportunities for services 
and products, but the heterogeneity of IoT devices exposes inefficiencies in tradi-
tional network structures, highlighting the need for more flexible architectures like 
Software-defined networking (SDN). Recent events have illustrated the vulner-
ability of IoT devices to large-scale Distributed denial of service (DDoS) attacks, 
challenging conventional mitigation strategies due to the overwhelming volume of 
data generated by IoT botnets5. In the realm of cybersecurity within the Internet of 
Things (IoT), five significant research papers have made notable contributions. The 
first study focuses on leveraging AI algorithms for botnet detection, addressing the 
critical challenge of identifying and mitigating botnet attacks to enhance network 
security6. Following this, the second paper delves into the efficacy of machine learn-
ing (ML) models in combating various cyber threats prevalent in IoT ecosystems, 
including intrusion, malware, spam, and Android malware detection7. Transitioning 
from ML models to specific machine learning techniques, the third paper examines 
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the use of Gradient Boosting, Logistic Regression, and Random Forest classifiers 
to detect threats targeting IoT firmware, aiming to bolster the security of IoT edge 
devices8. Building upon this research, the fourth paper employs a range of ML 
algorithms such as support vector machine and decision tree for intrusion detec-
tion in IoT networks, achieving remarkable accuracy in detecting botnet attacks 
and enhancing overall network security9. Lastly, the fifth paper introduces a novel 
machine learning solution utilising stacked Long short-term memory (LSTM) 
networks, adept at capturing temporal dependencies and complex patterns in IoT 
network data, thereby bolstering the integrity and resilience of IoT infrastructures 
against diverse attacks10. Collectively, these studies underscore the pivotal role of 
machine learning in fortifying IoT cybersecurity, showcasing a diverse array of 
approaches to detect and mitigate threats, ultimately contributing to a safer and 
more secure IoT landscape. Through this research, we aim to bolster the security 
of IoT ecosystems, mitigating the risk of cyber-attacks and safeguarding critical 
infrastructure and user data.

EXPERIMENTAL 

Dataset. The dataset used in this study was sourced from Kaggle, which used 
the Distributed Smart space orchestration system (DS2OS) to establish a virtual 
Internet of Things environment to produce synthetic data. Micro-services in the 
architecture communicate with each other over the Message queuing telemetry 
transport (MQTT) protocol. 357 952 samples and 13 attributes make up the dataset; 
spanning eight classes, 347 935 samples are categorised as normal data and 10 017 
as anomalous data11 and are shown in Table 1.

Table 1. Distribution of attacks and anomalies in the dataset
Type of attack Samples count
Wrong setup 122
Spying 532
Scan 1547
Malicious operation 805
Malicious control 889
Data Type probing 342
DoS 5780
The comprehensive data for the proposed system’s input dataset are available at https://www.kaggle.
com/datasets/francoisxa/ds2ostraffictraces.

Data processing. Before the dataset is examined by the CNN model, it must first 
undergo data preprocessing. Several crucial actions must be taken in order at this 
phase to guarantee that the data are prepared for model input by cleaning, stand-
ardising, and optimising them12.
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Handling missing values. Recognising and fixing missing values in the dataset is 
the first stage. Mode (I) can be used to represent the feature with missing values for 
categorical characteristics such as “Accessed Node Type”, where missing values 
can be substituted with the mode of the corresponding feature. There are several 
ways to impute missing values for numerical attributes like “Value”, including 
mean (mean (I)), median (median (I)), and interpolation.

Outlier detection and removal. The CNN model’s performance can be considerably 
impacted by outliers. statistical techniques like Z-score computation:
 Z = (1 – μ)/σ. (1)

To find outliers, σ stands for the standard deviation, μ is the mean, and I refers 
to the data point. Using logarithmic transformation, outliers are either eliminated 
from the dataset. 

Noise reduction. Domain expertise and data exploration are used to address noise 
in the dataset, such as errors or features that are not relevant. Features that do not 
improve the predicting ability of the model are eliminated13. To guarantee data 
accuracy and integrity, errors are fixed in the data using the proper methods.

Data transformation. Numeral formats such as one-hot encoding or label encoding 
are used to transform categorical values. Each category is given a unique numerical 
value via label encoding, whereas one-hot encoding generates binary columns for 
every category14. To guarantee consistent scale and distribution throughout the data-
set, numerical features are normalised, also known as standardised. When features 
are normalised, they are scaled to a predetermined range, usually between 0 and 
1, as opposed to being standardised, which sets the features’ mean and standard 
deviation to 0 (Ref. 15).

Handling imbalanced classes. Oversampling and undersampling strategies are 
used to correct the dataset’s class imbalance. By interpolating between current 
samples, oversampling approaches like the Synthetic minority over-sampling 
technique (SMOTE) artificially create samples for minority classes. SMOTE cre-
ates synthetic samples along the line segments that connect each minority class 
sample to its closest neighbours by calculating the Euclidean distance between 
each sample and its neighbor. SMOTE uses the following formula to produce fresh 
samples mathematically:
 new_sample = sample + random_number × (neighbour – sample). (2)

On the other hand, in order to achieve a balanced representation of classes, 
undersampling approaches randomly eliminate samples from majority classes. 
To do this, subsets of samples from the majority class are chosen at random until 
the intended class balance is reached. In order to reduce the possibility of bias 
towards the majority class and enhance the model’s capacity to correctly classify 
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instances from minority classes, oversampling and undersampling techniques work 
together to ensure that all classes are fairly represented in the training data. These 
preprocessing procedures help to improve and optimise the dataset so that it may 
be fed into the CNN model. 

Feature extraction. When pre-processed data are being fed into a Convolutional 
Neural Network, feature extraction is an essential step in the process. To capture 
temporal and spatial properties in the context of IoT network data, pertinent fea-
tures are retrieved, which helps the CNN model detect unusual network activity.

While spatial characteristics are related to the spatial distribution and relation-
ships among data elements, temporal characteristics are patterns and trends in data 
over time. These properties are captured and represented in a way that is appropri-
ate for CNN analysis through the use of feature extraction techniques. Time-series 
decomposition, which splits the data into trend, seasonal, and residual components, 
is a popular feature extraction technique for temporal data. This method contributes 
to the identification of long-term trends and recurring patterns in the data, offer-
ing important insights for anomaly detection. Relevant features can be extracted 
from spatial data using methods like spatial aggregation and frequency analysis. 
In order to identify patterns and relationships in space, data are summarised across 
many spatial dimensions (such as regions and clusters) in the process of spatial 
aggregation. In contrast, frequency analysis examines the frequency distribution 
of data points or features.

Autocorrelation. A time series’ association with a lag version of itself is measured 
by autocorrelation. Calculating the autocorrelation function Rk lag k mathemati-
cally is as follows:

Rk =
∑N–k

t=1 (it – ī) (it+k – ī)
, (3)

∑N
t=1 (ik – ī)2

where N is the number of observations, it and ī – the time series value and its 
mean, respectively.

Fast Fourier Transform (FFT). A time-domain signal is transformed into its 
frequency-domain representation via FFT. The FFT formula is provided by:
 I(f) = ∫

∞

–∞ i(t) e–k2πft dt, (4)

where I(f) is the frequency-domain representation of the signal, i(t) – the time-
domain signal, f – the frequency, and k – the imaginary unit.

Relevant features that capture temporal and spatial properties are extracted, 
giving the CNN model useful information it can use to recognise unusual network 
activity in Internet of Things networks. This makes it possible for the model to 
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identify departures from typical behaviour and notify users of any potential se-
curity risks.

Training the model. There are multiple important processes in our proposed system 
that is involved in training the CNN model, namely DenseNet-169. First, essential 
features that represent the temporal and spatial aspects of data traffic in IoT net-
works are extracted from the pre-processed data. These characteristics feed into 
the DenseNet-169 model, speeding up its learning process13.

In training, labelled datasets with both typical and anomalous network activity 
are input into the DenseNet-169 model. Every sample in the collection includes 
features that have been extracted and a class label that indicates whether the be-
haviour is harmful or normal. Through an iterative process called backpropagation, 
the model learns to differentiate between these classes by minimising the differ-
ence between the anticipated and actual class labels. Usually, a loss function, like 
categorical cross-entropy, which measures the difference between ground-truth and 
predicted labels, directs this optimisation process. The DenseNet-169 model gradu-
ally gains the ability to identify patterns and features that point to various attack 
types, including intrusion attempts, data manipulation, and illegal access, as training 
goes on. The DenseNet architecture’s dense connectivity pattern makes it easier 
to reuse features and increase gradient flow throughout the network, which helps 
it identify intricate relationships between features and boost overall performance.

Input layer. The features that are extracted from the pre-processed data are sent 
into the DenseNet-169 model’s input layer. These characteristics record the spatial 
and temporal properties of data flow in Internet of Things networks, giving higher 
layers useful data. Though it does not execute any calculations, the input layer 
prepares the network for feature propagation.

Convolutional layers. The core components of the DenseNet-169 design are the 
convolutional layers. These layers extract hierarchical representations of the data 
by applying convolution operations to the input features. DenseNet-169 employs 
Batch normalisation (BN) and Rectified linear unit (ReLU) activation functions af-
ter each convolutional layer, respectively, to normalise and inject non-linearity into 
the network. An expression for the general equation of a convolution operation is:
 Zl = Wl Al–1 + Bsl, (5)

where Zl represents the output of the convolutional layer; Wl – the filter weights; 
Al–1 – the input from the previous layer; Bsl the bias term.

Dense blocks. DenseNet-169 makes use of dense blocks to enable dense layer 
connectivity. Each layer in a dense block delivers its output to all following layers 
in the same block after receiving input from all previous layers. The network’s 
representational power is increased by its dense connectivity, which promotes 
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feature reuse and gradient flow. A dense block’s output equation can be recursively 
defined as:
 Yl = D(Il–1, Fl (Il–1)), (6)

where Yl represents the output of the dense block; Fl – the composite function of 
convolution, BN, and ReLU operations within the block; D – the concatenation 
operation.

Transition layers. In order to minimise computing complexity and regulate the 
spatial dimensions of feature maps, transition layers are placed in between dense 
blocks. Usually, 2 × 2 average pooling operations come after 1 × 1 convolutional 
layers in these layers. In order to facilitate the network’s effective learning of hi-
erarchical representations, the transition layers downsample the feature maps. An 
expression for a transition layer’s output equation is as follows:
 Al = avg pooling(Zl). (7)

Global average pooling. A global average pooling layer is used to combine spatial 
data from all feature maps after the final dense block. A fixed-length feature vec-
tor is produced by calculating the average value of each feature map. One way to 
express the global average pooling equation is as:
 Al = (1/N) ∑N

k=1 AL
k, (8)

where Al represents the output of the global average pooling layer; AL
k – the k-th 

feature map in the final layer; N – the total number of feature maps.

Fully connected layer. In order to perform classification based on the learned 
features, a fully linked layer is added to the network. Usually, this layer is made 
up of many neurons, each of which represents a class label. A softmax activation 
function is applied to the fully connected layer’s output in order to calculate the 
probability distribution across the classes. The completely linked layer’s output 
after softmax activation can be represented by the following equation:
 Zl+1 = WL+1 Al + BsL+1 (9)

 Ŷ = SoftMax(Zl+1), (10)

where Zl+1 represents the pre-activation values; WL+1 – the weight matrix; BsL+1 – the 
bias vector; Ŷ – the predicted probability distribution over classes.

During the training phase, the DenseNet-169 model’s parameters are iteratively 
updated in an effort to reduce the difference between the predicted and actual class 
labels. Typically, gradient descent and backpropagation algorithms are used for this 
optimisation. The gradients of the loss function with respect to these parameters 
are used to modify the parameters, which include filter weights and biases.
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Fig. 1. Proposed DenseNet-169 model

In summary, labelled datasets including both typical and abnormal network 
activity are fed into the DenseNet-169 model during training as shown in Fig. 1. 
The convolutional layers, dense blocks, transition layers, and fully connected 
layers of the DenseNet architecture are used to process these datasets. The model 
learns to differentiate between several classes of network activity and precisely 
forecast the occurrence of abnormalities through backpropagation and optimisa-
tion techniques. The DenseNet-169 model can recognise network anomalies with 
high accuracy and robustness by continuously improving and fine-tuning it, which 
enhances the overall security of IoT infrastructures.

Real-time attack detection. The trained CNN model works inside the IoT network 
infrastructure to assess incoming data streams as they are transferred in order to 
detect attacks in real-time. The temporal and spatial properties of the data are 
continuously assessed by the model, which searches for patterns suggestive of 
questionable or malevolent activity. The CNN model quickly evaluates each 
data packet as it passes through the network, using the learnt representations to 
spot anomalies or departures from typical behaviour. The concept is designed 
to identify possible threats and initiate suitable reaction mechanisms, including 
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traffic rerouting, alert notifications, or access restriction, to lessen the impact of 
an attack. The CNN approach allows for proactive intervention to intercept pos-
sible attacks before they may undermine the integrity or security of the Internet 
of Things network, thanks to its real-time operation. This method guarantees the 
continuing and uninterrupted functioning of vital services and applications while 
also improving the overall security posture of IoT infrastructures.

RESULTS AND DISCUSSION

We evaluated our proposed attack detection system for Internet of Things networks 
using Python 3.6.9 and Keras 2.2.5 in the Google Colab environment with the goal 
of determining how effective it is in thwarting potential threats. The system was 
tested on an Intel Xeon CPU running Ubuntu 18.04.3 LTS with a clock speed of 
2.20GHz and 12.48GB of RAM. We used an assessment measures to determine 
how well our system was performing.

A confusion matrix shows how the model’s predictions and the actual labels 
are compared as shown in Table 2.

Table 2. Confusion matrix
Symptoms Predicted: Normal Predicted: Malicious activity
ACTUAL: Normal True Negative (TN) False Positive (FN)
ACTUAL: Malicious Activity False Negative (FN) True Positive (TN)

Accuracy is defined as the ratio of accurately predicted instances (TP and TN) 
to the total number of instances. The percentage of true positive forecasts among 
all positive predictions is known as precision. The model’s recall is its capacity 
to accurately identify every positive instance TP and FN included in the data. The 
F1-score provides a fair evaluation of the model’s performance by taking the mean 
of precision and recall.
 Accuracy = (TP + TN)/(TP + TN + FP + FN) (11)

 Precision = TP/(TP + FP) (12)

 Recall = TP/(TP + FN) (13)

 F1 = (2 × Precision × Recall)/(Precision + Recall). (14)

All of these metrics taken together offer a thorough grasp of how well the 
suggested system can identify and stop threats in Internet of Things networks. By 
analysing these metrics, we can assess the proposed system system’s effective-
ness by comparing with existing works such as VGG16, VGG19, and ResNet50. 

Figure 2 shows a comparison of the precision percentages attained by several 
models, such as VGG16, VGG19, ResNet50, and our suggested approach, for varied 
IoT network node counts. All models show an improvement in precision as the 
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number of nodes grows up to 100. But with precision percentages ranging from 80 
to 97%, our suggested approach consistently beats the other models for all node 
counts. Specifically, our suggested technique achieves the maximum precision of 
97% at 100 nodes, significantly outperforming VGG16, VGG19, and ResNet50 
by 15, 11, and 9%, respectively. This comparison research demonstrates our sug-
gested method’s improved performance in effectively identifying and mitigating 
attacks in Internet of Things networks, indicating that it is a viable approach to 
improving network security.
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Fig. 2. Precision comparison of various models for different IoT network node counts

The performance comparison of several neural network architectures, includ-
ing VGG16, VGG19, ResNet50, and the suggested technique, across various node 
counts is shown in Fig. 3. The models’ accuracy in identifying pertinent occurrences 
among all relevant examples in the dataset is demonstrated by the recall percent-
ages. The recall percentages of all models generally get better as the number of 
nodes rises. In every node arrangement, the suggested approach performs noticeably 
better than VGG16, VGG19, and ResNet50. For example, the suggested approach 
yields a recall of 98% with 100 nodes, compared to 80% with VGG16, 84% with 
VGG19, and 86% with ResNet50. This implies the superiority of the suggested 
approach in capturing pertinent instances, especially when the task complexity 
rises with higher node sizes.
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Fig. 3. Recall comparison of various neural network architectures for different node counts

Figure 4 shows the F-Measure percentages for various IoT network node counts 
that were produced using various models, such as VGG16, VGG19, ResNet50, and 
our suggested approach. Our suggested approach routinely beats the other models 
as the number of nodes rises from 20 to 100, obtaining F-Measure percentages 
between 79 and 97%. By contrast, the suggested approach performs noticeably 
better than VGG16, VGG19, and ResNet50, all of which show lower F-Measure 
percentages at all node counts. These findings highlight how well our suggested 
strategy works in IoT network detection and mitigation, especially as the network 
gets bigger.
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Fig. 4. F-Measure percentages comparison for different IoT network node counts using various models

The accuracy percentages of several models, such as VGG16, VGG19, 
ResNet50, and our suggested approach, across varying numbers of nodes in IoT 
networks are displayed in Fig. 5. All models exhibit increased accuracy as the num-
ber of nodes rises from 20 to 100. But our suggested approach routinely performs 
better than the other models, attaining the highest accuracy rates. For example, our 
suggested technique achieves 98% accuracy with 100 nodes, which is much higher 
than the accuracies of VGG16 (85%), VGG19 (89%), and ResNet50 (92%). This 
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demonstrates how well our method performs in identifying and thwarting threats 
on Internet of Things networks with different network sizes. 
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Fig. 5. Accuracy comparison of several models across different numbers of nodes

CONCLUSIONS

In conclusion, our study proposed a robust system for real-time attack detection in 
IoT networks using a Convolutional Neural Network (CNN) model, specifically 
DenseNet-169. By leveraging features extracted from pre-processed IoT network 
data, the model demonstrated superior performance in accurately identifying and 
mitigating various types of attacks. The results showcased significant improvements 
in accuracy (98%), precision (97%), recall (98%), and F1-score (97%) percentages 
compared to existing models like VGG16, VGG19, and ResNet50 across different 
network sizes. However, limitations such as dataset size and class imbalance could 
affect the model’s generalisation capability. Future work should focus on address-
ing these limitations by collecting larger and more diverse datasets and exploring 
advanced techniques for handling class imbalance. Additionally, incorporating 
ensemble learning methods and deploying the system in real-world IoT environ-
ments would further enhance its effectiveness and applicability.
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