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Abstract: Cloud environments are essential for modern computing, but are increasingly vulnerable to side-channel
attacks ( SCAs) , which exploit indirect information to compromise sensitive data. To address this critical challenge, we
propose SecureCons Framework ( SCF), a novel consensus-based cryptographic framework designed to enhance
resilience against SCAs in cloud environments. SCF integrates a dual-layer approach combining lightweight cryptographic
algorithms with a blockchain-inspired consensus mechanism to secure data exchanges and thwart potential side-channel
exploits. The framework includes adaptive anomaly detection models, cryptographic obfuscation techniques, and real-
time monitoring to identify and mitigate vulnerabilities proactively. Experimental evaluations demonstrate the framework”
s robustness, achieving over 95% resilience against advanced SCAs with minimal computational overhead. SCF provides
a scalable, secure, and efficient solution, setting a new benchmark for side-channel attack mitigation in cloud
ecosystems.
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0 Introduction

The rapid proliferation of cloud computing has
revolutionized data storage, processing, and service
delivery by offering unparalleled scalability,
flexibility, and cost-effectiveness. However, as the
backbone of modern digital infrastructure, cloud
environments are increasingly targeted by sophisticated
cyber threats, particularly Side-channel attacks
(SCAs). SCAs are an emerging class of threats that
compromise confidential information by analyzing
non-functional computational

aspects of program

execution, such as elapsed time, memory allocation,

or network packet size '™,

By exploiting these
indirect data leakages, adversaries can infer sensitive
information without directly breaching cryptographic

defenses, posing a unique and insidious challenge to
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secure cloud systems. Unlike conventional attacks that
target software vulnerabilities or misconfigurations,
SCAs operate through stealthy and non-intrusive
means, making them difficult to detect and mitigate
effectively. The prevalence of shared and multi-tenant
architectures in cloud environments, where multiple
users share computational resources, exacerbates this
vulnerability. These architectures create opportunities
for malicious actors to execute SCAs from co-located

virtual machines, further elevating the risk to critical
9-13]

and sensitive data’

Traditional cryptographic solutions, while robust
in safeguarding data confidentiality and integrity,
often fail to address the nuanced challenges posed by
SCAs in dynamic cloud ecosystems. Additionally,
existing security frameworks tend to rely on
computationally intensive methods that may impede

performance, particularly in applications requiring low
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latency and high throughpu . This growing gap

highlights the urgent need for innovative, lightweight,

and adaptive security mechanisms capable of
mitigating SCAs  without imposing significant
computational or operational burdens on cloud

[19-28
systems' "’

I To address these challenges, this paper
introduces the SecureCons Framework ( SCF), a
consensus-based cryptographic framework specifically
designed to enhance resilience against SCAs in cloud
environments.

SCF integrates

lightweight  cryptographic

obfuscation techniques with a blockchain-inspired
consensus mechanism to secure data exchanges and
neutralize side-channel vulnerabilities. The consensus
mechanism  validates data  integrity  through
decentralized protocols, ensuring that malicious actors
cannot compromise or alter data even in the presence
Furthermore,  SCF

incorporates an adaptive anomaly detection model,

of co-located adversaries.
leveraging statistical analysis and machine learning to
identify and mitigate side-channel exploits in real-
time. This adaptive layer dynamically adjusts security
parameters based on detected threats, providing
proactive and robust protection without incurring
significant computational overhead. SCF’s architecture
is designed to operate seamlessly across various cloud
configurations, including Infrastructure-as-a-Service
(TaaS) and Platform-as-a-Service ( PaaS) models,
making it versatile and scalable for diverse cloud use
cases.

One of the key strengths of SCF lies in its ability
to address the limitations of traditional cryptographic
solutions by adopting a lightweight approach tailored
to resource-constrained environments. The framework
minimizes computational complexity while maintaining

high levels of security, ensuring compatibility with

applications requiring high throughput and low
latency.  Additionally, its  blockchain-inspired
consensus mechanisms enhance transparency and

auditability, providing robust security assurances in

multi-tenant cloud settings. By integrating non-
functional computation aspects such as time analysis,
memory utilization patterns, and network packet size
monitoring, SCF expands its scope to detect and
counter SCAs more effectively. This holistic approach
positions SCF as a comprehensive solution that

combines cryptographic obfuscation, decentralized
validation, and real-time anomaly detection into a

unified framework.
..

Through experimental evaluation, the proposed
SCF framework demonstrates its effectiveness in
mitigating SCAs, achieving an average resilience rate
95%

performance overhead. The

exceeding while  maintaining  minimal
validate the

practicality of SCF in securing cloud environments

results

against emerging threats, setting a benchmark for
future research and innovation in the domain. This
paper also explores the broader implications of
consensus-based

their

resilience, and security in distributed cloud systems.

cryptographic frameworks,

emphasizing potential to enhance trust,

As cyber threats continue to evolve, innovative
frameworks like SCF are poised to play a pivotal role
in safeguarding critical infrastructure and maintaining
the confidentiality, integrity, and availability of
sensitive data in cloud ecosystems. Ultimately, SCF
not only addresses the current security challenges
posed by SCAs, but also lays the groundwork for
future advancements in cryptographic resilience and

adaptive security solutions for the cloud.
1 Related Works

The growing prevalence of side-channel attacks
( SCAs )
highlighted
cryptographic frameworks and system architectures.

in cloud computing environments has

critical  vulnerabilities in  current

These threats exploit non-functional computational

characteristics such as cache timing, power
consumption, or memory access patterns, exposing
sensitive data without directly breaching cryptographic
As cloud

integral to modern computing, the need for effective

protocols. infrastructures become more
mitigation strategies has led to an increase in research
focused on enhancing security mechanisms against
SCAs. SCAs

information leaked by physical devices, such as power

analyze the various electronic
consumption, electromagnetic emissions, and timing
behaviors, to bypass the cracking of encryption
algorithms. Collecting these leaked electronic signals,
however, remains a challenge due to the complex
nature of extracting meaningful information without
directly compromising device functionality. The
overarching solution lies in ensuring that any leaked
electronic information does not correspond to internal
device processing, thus safeguarding against these
vulnerabilities.

trusted  execution

Recent advances in
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environments ( TEEs ) have
mitigating SCAs by isolating sensitive computations.
Wilke''' explored the potential of AMD-SEV to
provide
execution transparency. Similarly, Suzaki'’' assessed
the performance of TEEs such as Intel SGX and Arm

TrustZone, identifying key trade-offs between security

shown promise in

single-stepping mechanisms that enhance

and system performance. These studies underscore the
utility of TEEs while highlighting their limitations
when faced with sophisticated attacks under specific
conditions.

Cache-based Side-channel attacks have received
significant attention, with researchers proposing fully
associative designs to mitigate conflicts. Saileshwar
and Qureshi'?' introduced the MIRAGE framework,
which

eliminating predictable cache behaviors. Futhermore,
1.5

addresses conflict-based cache attacks by

Le et al.””' demonstrated a real-time detection system
for SCAs on RISC-V architectures,
hardware performance monitoring and out-of-order

employing

execution tracking. These approaches have showcased
the potential for proactive SCA mitigation but often
necessitate architectural changes, limiting their
broader applicability.

Hardware security research, particularly on RISC-V
architectures, has also addressed microarchitectural
vulnerabilities. Kou et al.'® introduced the load-step
framework, which offers precise execution control for
studying novel side-channel threats, including flush+
evict techniques. Meanwhile, Gerlach et al.'” explored
RISC-V  CPUs,

highlighting their susceptibility to advanced SCAs.

microarchitectural  attacks  on
Despite these advances, the dependency on hardware
redesign remains a barrier to adoption.

Detection systems leveraging advanced algorithms
and performance monitoring tools have further
enriched the field. Li and Gaudiot'*' utilized hardware
performance counters to detect speculative execution
attacks like Spectre. By analyzing execution patterns
in real time, these systems

effectively identify

anomalies but depend heavily on hardware
modifications, limiting their practical deployment in
diverse environments.

Cloud benefited

advancements in intrusion detection systems (IDS).

security has also from
Mahdavi et al.'® proposed an incremental transfer
learning approach for IDS, enhancing adaptability to
threat
et al.'"”! explored collaborative frameworks for cyber-

dynamic landscapes. Similarly, Guarascio

threat intelligence, which improve detection efficiency
through distributed systems. Additionally, Fu et al."”’
introduced a privacy-aware auditing scheme for cloud
maintains  data

data sharing that integrity and

confidentiality. However, these solutions often
struggle to balance computational efficiency with
robust security.

Honeypot systems have been used effectively to
attract attackers and analyze their methods. Matta et
al."""’ demonstrated their utility in mitigating threats
but noted challenges related to scalability and resource
management in large cloud environments. Lastly,
Tang et al.'"” provided a comprehensive survey on the
enabling technologies and challenges of the internet of
intelligence, emphasizing the need for adaptive
solutions to address the increasing complexity of SCAs
in cloud systems.

Despite these advancements, several drawbacks
TEE

Wilke''' and Suzaki'*', are often constrained by

persist. implementations, as discussed by

performance bottlenecks and remain vulnerable to
advanced SCAs. Cache mitigation techniques, such as

those proposed by Saileshwar and Qureshi'>’ and Le

1.[5]

et a require significant architectural

modifications, reducing their feasibility for widespread
adoption. Intrusion detection and privacy-preserving

schemes'**' are often computationally expensive and
face scalability challenges in large-scale environments.

Additionally, (1]
[10]

honeypots and  collaborative

frameworks" "~ may not always provide comprehensive
coverage, leaving critical vulnerabilities unaddressed.
These

innovative frameworks that

challenges underscore the need for

integrate lightweight
cryptographic mechanisms with adaptive detection
capabilities to address the evolving landscape of SCAs
in cloud environments. The SecureCons Framework
proposed in this study aims to bridge these gaps by
providing a holistic, efficient, and scalable solution to

side-channel vulnerabilities in cloud systems.
2 Methodology

The proposed SecureCons Framework integrates

advanced cryptographic techniques and machine
learning to provide a robust defense against SCAs in
cloud environments. This methodology employs the
SCAAML dataset, HAVAL ( hashing variable and
length )

Wilcoxon signed-rank test consensus mechanism, and
© 3.

cryptographic hash block generation, a



Journal of Harbin Institute of Technology ( New Series)

an Enhanced Schmidt-Samoa Jaccard Extreme
Learning Machine ( ES-SJELM) for block validation.
Each component is designed to optimize security,
scalability, and performance.

SCAAML
dataset, a benchmark dataset for evaluating side-

The methodology leverages the
channel attack resilience. This dataset contains features
derived from non-functional aspects such as cache
timing, power analysis, and memory access patterns,
which are commonly exploited by SCAs. The data is
preprocessed using standard normalization techniques
and divided into training and testing subsets for model
development and evaluation.

2.1 HAVAL Cryptographic Hash Block
Generation
The HAVAL algorithm stands out as a

sophisticated cryptographic hash function for its
configurability and efficiency. Introduced as an
alternative to traditional hashing methods like MD5 or
SHA, HAVAL provides a highly secure and adaptable
framework for generating cryptographic hash values,
applications
requiring tamper-proof integrity verification.
2.1.1 Core features of HAVAL

1) Variable hash length. Unlike fixed-length hash
functions, HAVAL can produce outputs of varying
lengths ( 128, 160, 192, 224, or 256 bits). This

flexibility allows it to be tailored for diverse security

making it particularly suitable for

needs.

2) Multi-round configurability.

3) HAVAL offers configurations ranging from 3
to 5 hashing rounds, where the number of rounds
directly correlates with the level of security. A higher
number of rounds increases computational cost but
strengthens resistance against cryptographic attacks.

4) Efficiency. Designed to balance speed and
HAVAL processes data
employs efficient operations such as bitwise shifts,
XOR,
throughput without compromising robustness.

5) Resilience Against SCAs. The HAVAL
algorithm’s intricate design, incorporating multi-round

security, in blocks and

and modular addition to achieve high

processing and key scheduling, makes it challenging
for attackers to exploit timing or power-analysis leaks,
ensuring resistance against SCAs.
2.1.2  Working principles of HAVAL

The HAVAL algorithm follows a systematic
process, breaking down a message MMM into

manageable blocks, transforming each block through a
4 .

compression function, and finalizing the hash value
with truncation.
1) Hash function. HAVAL processes a message
M of length L by dividing it into n blocks of size b
H =HAVAL(M) =f(B,,B,,"--,B,)

i
here, B, represents the "

block of the message. Each
block undergoes transformation independently before
being integrated into the overall hash value.

2) Compression function. The core operation in
HAVAL is its which

integrates the current hash state, the current block,

compression function C,

and a predefined key schedule. The recursive formula
for the hash computation is:

H, =C(H,B,,K)
where H, represents the intermediate hash value after
processing the ;" block. B, is the ;" message block. K is
a predefined key schedule derived from a series of
constants and message-dependent permutations.

The compression function employs multiple non-
linear transformations, ensuring that small changes in
the input produce significant differences in the output
(‘avalanche effect) .

3) Finalization. Once all blocks are processed,
the HAVAL algorithm produces a final hash value. A
truncation step adjusts the hash to the desired length,
enhancing compatibility with various applications

H, = Truncate( H,, ,desired length)
The truncation involves bitmasking or modular

final »

arithmetic to achieve the specified length without
compromising the integrity of the hash value.
2.1.3  Key advantages of HAVAL

1) High security: The multi-round processing
and variable length output ensure robustness against
brute-force and collision attacks.

2) Flexibility: Its adjustable parameters allow
developers to prioritize either performance or security
based on application requirements.

3) Resistance to SCAs: The use of randomized
key schedules and non-linear transformations makes it
resistant to timing and power-based analysis.

2.1.4 HAVAL cryptographic hash block generation
algorithm

Input .

- Message M of length L;
- Desired hash length dd;
- Number of rounds r.

Output ;

+ Hash value H,.

Algorithm .
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1) Divide the message :
Split the message M into n blocks of size b :
M=1{B,,B,,,B,}
2) Initialize hash state ;
Set the initial hash state H, using predefined
constants.
3) Process each block;
Fori=1ton .
Apply the compression function ;
H., =C(H, B, K)
Update the key schedule K.
4) Finalize the hash value
After processing all blocks, truncate the final
hash to the desired length ddd:
H, = Truncate( Hy,, ,desired length)
5)Return the result;
Output the final hash value H,.
The HAVAL Cryptographic Hash  Block
Generation Algorithm is a robust and versatile method

final »

for generating secure hash values, ensuring data

integrity and resistance to side-channel attacks
(SCAs). The algorithm begins by dividing the input
message M of length L into n equal-sized blocks { B,
B,,---, B,|, enabling the parallel and sequential
processing of data. An initial hash state HOH_OHO,
derived from predefined constants, provides a secure
starting point for the computation. Each message block
B, is sequentially processed using a compression
C(H,,B, ,K),

dynamically updated key schedule to enhance security

function where K represents a
against cryptographic attacks. This compression step
combines the current hash state, the message block,
and the key schedule, iteratively transforming the hash
state. After processing all blocks, a truncation
operation is applied to the final hash state to generate a
hash value H, of the desired length d. The multi-round
and block-based design, coupled with dynamic key
makes the HAVAL algorithm highly

resistant to tampering and effective against SCAs by

scheduling,

obscuring non-functional computation characteristics.
2.2 Wilcoxon Signed-rank Test Consensus
Mechanism
The Wilcoxon
mechanism leverages the statistical strength of non-

signed-rank test consensus
parametric testing to validate data blocks in distributed
systems, ensuring consistency and integrity in the
presence of SCAs. By comparing hashed block data
generated across nodes, the mechanism identifies

deviations through pairwise comparisons, employing

ranks of signed differences as a metric for consistency
evaluation.

The signed-rank test is particularly suitable for
distributed consensus, as it does not assume a normal
distribution of differences. Instead, it assesses whether
the median of pairwise differences between hashed
values is zero, indicative of consistency among nodes.

1) Signed differences.

For a set of nodes N = {n,, n,,--, n,}, let B
represent the hashed block data shared among them.
The signed differences between hash values from two
nodes n,; and n; are calculated as:

R, = Hash(n,(B)) - Hash(n;(B))
2)Ranking of differences.

The absolute values of the signed differences

\ R, | are ranked, and each rank is assigned a sign
S; based on the original difference R, ; :
S - +1,ifR,; >0
' - 1,ifR,; <0
The signed rank is then defined as:
Wi,j =S, - rank( | Ri,_,' | )
3) Test statistic.
The sum of the signed ranks, 7', is computed as:

T= Z W,
where m is the number of non-zero differences.

4) Statistical validation.

Using the test statistic T, the p-value is calculated
to assess the null hypothesis that the median of the
differences is zero. If p-value >significance level o,
the differences are deemed insignificant, supporting
consistency among the nodes.

5) Consensus threshold.

The total number of consistent node pairs is
compared against a predefined threshold to decide
whether the block B is validated .

ConsensusCount = Threshold

Algorithm: Wilcoxon signed-rank test-based
block generation

Input.

- Set of nodes N = {n,,n,, -,n,| ;
- Hashed block data B ;
- Significance level « .
Output ;
- Validated block B, .

1) Initialization

Initialize ConsensusCount = 0.

2) Pairwise comparison ;

For each pair of nodes (n,,n;) ,where i # j :

. 5.
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a. Compute the signed differences .
R, ; = Hash(n,(B)) — Hash(n,(B))
b. Rank the absolute differences | R
assign signs:
W, =S, « rank( | R, 1)

c. Compute the test statistic 7 ;

r= 2 Wi,
i=1

d. Calculate the p-value for T'.

., | and

1) Increment consensus count:

If p-value > a , increment ConsensusCount.

2)Block validation :

If ConsensusCount = Threshold

3) Broadcast validated block :

Broadcast B, to all nodes.
2.3 ES-SJELM

The ES-SJELM integrates the Schmidt-Samoa
cryptographic technique with the Jaccard similarity
measure to validate blocks using an optimized learning
model.

1) Mathematical formulation.

The Schmidt-Samoa cryptographic function ¢ (x)
for a block B is given as:

o(x) =2‘mod N

where N = pg ( product of two primes), and e is the
encryption key.

2)Jaccard similarity ;

To evaluate the similarity between block features
AAA and BBB.

|l AnB |

3) Extreme Learning Machine (ELM) .
The block validation uses ELM, defined as:
y=g(W-x+b)
where W represents random weights, b is the bias, and
g( ) is the activation function.
Algorithm; ES-SJELM
Input;
- Dataset D with features F = {f, ,f,,
- Schmidt-Samoa cryptographic keys K
- Validation block B;
« Threshold 7 for similarity.

.7fn};
K

pub » “Xpriv 9

Output ;

- Validated block B,.

Step 1. Feature encryption using Schmidt-Samoa
Cryptosystem.

1) Generate public ( K, ) and private ( K, )
keys based on the Schmidt-Samoa cryptosystem ;

a.Select two large prime numbers p and q.

.6 -

b.Compute N = p’q.
c.Compute e, where e is relatively prime to ¢ (N)

d.Compute d such that .

e'dE 1 mOd(f)(N)
Public key: K, = N(N,e);
Private key: K, = (N,d) ;

2) Encrypt features f, € F/ using K
E(f,) = Flmod N
Step 2. Feature selection using Jaccard similarity.

pub *

1) For each encrypted feature E(f;) , compute its
Jaccard similarity with the target validation block B .

BG) N E |
JEG) B =

2) Retain features f; where J(E(f;) ,B) = 7.
Step 3. Train extreme learning machine (ELM).

1) Initialize ELM with randomly generated input
weights W, and biases b.

2) Compute hidden layer outputs H;

H=g(W, - F+b)

where g( +) is the activation function.

3) Compute output weights W , using Moore-
Penrose generalized inverse ;
W,, =H" +Y, where Y is the target label vector.

Step 4. Block validation

1) Use the trained ELM model to classity B

Y=W,_.g(W, B+b)

2) If Y meets the classification criteria, declare
B, = B.

Step 5: Broadcast validated block

Broadcast B, to all nodes in the system.

out*

3 Implementation of Electronic Leakage
Information
The implementation of electronic leakage

information plays a critical role in detecting SCAs in
the SecureCons framework. This section outlines how
the leakage information is captured, processed, and
utilized for attack detection in the proposed
framework. Below is the detailed explanation of how
this implementation is carried out.
3.1 Collection and Preprocessing of Electronic
Leakage Information
to detect

effectively, electronic leakage information such as

In order Side-channel attacks

power consumption traces, timing patterns, and
memory access behaviors is crucial. These leakage
emissions  from

signals are the unintended

cryptographic operations and can provide attackers
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with insight into sensitive data being processed.
3.1.1 Power consumption traces

Power consumption analysis involves measuring
fluctuations in the power usage of a device during
cryptographic operations, such as encryption and
decryption processes. These fluctuations can reveal
information about the data being processed. For
instance, the power trace can leak information about
the secret keys used in an encryption algorithm. In the
SecureCons framework, power consumption traces are
captured using specialized hardware sensors that
monitor power usage in real-time.

The collected power traces are then processed
through signal filtering techniques, which help reduce
noise and emphasize the relevant features. This ensures
that only the

cryptographic operations

significant fluctuations related to

are retained, facilitating
effective detection of any attack.
3.1.2  Timing information

Another form of leakage comes from timing
analysis, where variations in processing time during
cryptographic operations can leak information about
the secret data or key. In the SecureCons framework,
timing information is collected during the execution of
cryptographic algorithms (like AES or RSA) to detect
potential attacks based on subtle time variations caused
by changes in data-dependent operations.

The collected timing traces are compared across
different operations to detect discrepancies, which
could indicate an attack or abnormal behavior.
Anomalies in timing behavior, which do not match
expected patterns, are flagged for further analysis.
3.1.3 Memory access patterns

Memory access patterns are another critical form
of leakage. In many cryptographic implementations,
the way data is accessed from memory ( whether
sequentially or randomly ) can reveal information
about the operations being performed. For instance,
attacks such as cache timing attacks exploit these
patterns to gain insights into sensitive data like
encryption keys. In the SecureCons framework,
memory access patterns are monitored during the
cryptographic operations. The system tracks memory
read/write events and flags any irregularities. These
patterns are especially useful for detecting attacks such
as cache-based side-channel attacks, where attackers
try to exploit variations in memory access times.

3.2 Processing the Leakage Information

Once the leakage data ( power consumption,

timing, and memory access patterns) is collected, it
undergoes several preprocessing steps to make it
usable for attack detection:

Normalization: The raw data is normalized to
remove any biases caused by the environment or
measurement tools, ensuring that the features are on a
comparable scale.

Feature extraction: From the raw traces, relevant
features such as power consumption spikes, timing
variations, and memory access inconsistencies are
extracted. These features serve as input for the
machine learning model, ensuring that the system can
efficiently identify patterns that indicate a potential
Side-channel attack.

Given the
amount of data generated from continuous power

Dimensionality reduction large

traces and memory access logs, dimensionality
reduction techniques, such as Principal Component
Analysis (PCA), are employed to reduce the number
of features while retaining essential information.

3.3 Integration with ES-SJELM Model

The processed leakage information is then fed
into the ES-SJELM model for further analysis. This
machine learning model has been trained to identify
normal behavior and detect Side-channel attack
patterns from the leakage data. The ES-SJELM model
uses the extracted features ( from power, timing, and
memory access) to classify each trace as either normal
or suspicious, thereby identifying potential side-
channel attacks.

Key steps in the integration is as follows:

1) Training; The ES-SJELM model is trained on
a dataset containing both legitimate traces ( normal
behavior) and traces with injected attacks ( malicious
behavior ). The dataset includes various types of
attacks, such as simple power analysis ( SPA),
differential power analysis ( DPA), and cache timing
attacks.

2) Prediction: Once the model is trained, it can
classify new traces by evaluating the input leakage
features against learned attack patterns. If the model
detects unusual behavior that deviates from the normal
operation, it flags the trace as an attack.

3) Continuous learning ; The model is
continuously updated using new data and feedback
from the system to improve its detection accuracy and
adapt to evolving attack strategies.

3.4 Rendering Leaked Information Unusable

To render various electronic information leaked
. 7.
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by the original devices unusable, a comprehensive set
of security measures must be implemented that ensure
compromised data, whether in memory, storage, or
be exploited. This
approach includes techniques such as data purging,

during transmission, cannot
cryptographic key rotation, session token invalidation,

memory scrubbing, re-encryption, and tamper
detection.

1) Data purging.

Description; Data purging involves completely
removing any sensitive information from memory or
storage upon detection of an attack, ensuring it cannot
be recovered. This is crucial in preventing data leaks
from memory or temporary storage locations.

Implementation: Upon detecting an attack (e.g.,
side-channel leakage) , sensitive information ( such as
should be

securely erased. This process typically uses a wipe

cryptographic keys or session tokens )

pattern to overwrite memory locations.

Algorithm for data purging .

def purge_data ( memory _region) ; # Overwrite
memory with random data to prevent recovery

For i in range(len( memory_region) )

memory _ region [i] = random _ value ( ) #
Random value to overwrite

return " Memory purged successfully"

M, =R,
where R, ~ U(0,255) for each M,, M, is the memory
at position ¢ , and R, is a randomly generated value in
the range of 0 to 255.

2) Cryptographic key rotation.

Description; Cryptographic keys are critical in
securing data. If an attacker manages to capture a key
via Side-channel attacks, the data encrypted with that
key can be compromised. Key rotation ensures that
even if a key is leaked, it is no longer valid.

Implementation; Upon detecting an attack, all
keys used in encryption and decryption processes
should be immediately replaced with new keys. This
ensures that any intercepted or leaked keys become
obsolete.

Algorithm for key rotation;

def rotate_keys( current_key) :

new_key = generate_new_key( ) # Generate a
new key

encrypt_data_with_new_key ( new_key) # Re-
encrypt all data

return new_key

Equation for key rotation; Let K be the current

.8 -

key, and K’ be the new key. The data D encrypted
with K should be re-encrypted with K’ using:
C'=E(K',D)

where C’ is the ciphertext after re-encryption, F is the
encryption function, and D is the plaintext.

3) Session token invalidations

Description; Session tokens are crucial for
maintaining user authentication. If these tokens are
leaked, Token

invalidation ensures that exposed tokens are no longer

attackers can impersonate users.
valid.

Implementation; When an attack is detected,
invalidate all current session tokens and force a
re-authentication process for all users.

Algorithm for token invalidation ;

def invalidate_token ( session_token) :

session _ token. is _valid = False # Set the
token status to invalid
return " Token invalidated"
Thw =7 Ty
where T, is the old token. This negates the old token,
rendering it unusable. The symbol = represents logical
negation (NOT) or complement.

4)Memory scrubbing.

Description;  Memory  scrubbing  involves
overwriting memory locations where sensitive data was
stored to ensure that even if data was previously
leaked, it cannot be recovered.

Implementation; Once an attack is detected, any
sensitive data in volatile memory ( RAM) should be
overwritten with random or dummy values.

Algorithm for memory scrubbing

def scrub_memory ( memory_region) :

For i in range (len( memory_region) ) :
memory _ region [i] = " OxDEAD" #
Overwrite with a fixed pattern

return " Memory scrubbed successfully"”

M, ="0xDEAD" for each memory region M
where M, is the memory at position ¢, and " OxDEAD"
is a placeholder for the scrubbing pattern.

5) Encrypted data re-encryption

Description; If encryption keys are leaked,
attackers can decrypt sensitive data. Re-encryption
ensures that even if keys are compromised, the data
remains secure by encrypting it with a new key.

Implementation; Upon detection of an attack,
re-encrypt all sensitive data with a new key to ensure
that previously encrypted data is no longer accessible.

Algorithm for re-encryption;
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def reencrypt_data( data, new_key) :

encrypted_data = encrypt_data_with_new_
key(data, new_key)

return encrypted_data

C'=E(K',D)

where K’ is the new key. This re-encrypts the data D
using the new key K’ , ensuring that old ciphertexts are
rendered useless.

These techniques can be systematically integrated
into the SecureCons Framework to ensure that any
leaked data is immediately neutralized, making it
unusable by attackers. The combination of memory
scrubbing, data purging, cryptographic key rotation,
re-encryption, and tamper detection forms a robust
defense mechanism to prevent the exploitation of
leaked electronic information. This approach not only
ensures the protection of sensitive data but also
enhances the overall resilience of devices against
potential security breaches.

The HAVAL
foundation by generating tamper-resistant cryptographic
hash blocks. through the
Wilcoxon signed-rank test ensures integrity across

algorithm establishes a strong

Consensus validation

distributed nodes, leveraging statistical robustness to
The ES-SJELM strengthens
security with adaptive learning, optimizing feature

detect inconsistencies.

selection and classification for continuous defense

improvement. By  sequentially linking these
methodologies, the framework achieves a synergistic
balance of security, efficiency, and scalability,
making it an advanced solution for safeguarding

sensitive data in modern clouds.
4 Experiment and Results

This
Framework’s performance in mitigating SCAs using
the SCAAML dataset. The analysis is conducted
across multiple dimensions; communication overhead,

section  evaluates the  SecureCons

throughput, attack detection accuracy, false positive
rate, detection time, and confidentiality rate. Results
are compared with three key methodologies from
Refs.[11, 12, 14 ], to highlight the improvements
introduced by the SecureCons Framework. The
experiment was conducted in a controlled, simulated
cloud environment to evaluate the proposed
framework’s effectiveness. CloudSim was utilized as
the primary simulation tool for modeling the cloud
environment and

resource allocation processes,

ensuring realistic conditions for testing. Python played
a crucial role in implementing cryptographic
algorithms, such as HAVAL hashing, and the ES-
SJELM machine learning model. Additionally, R was
employed for statistical analysis, specifically for the
Wilcoxon signed-rank test, to validate detection
patterns and ensure the robustness of the results. The
hardware configuration included a high-performance
Intel Core i7 processor (3.6 GHz, 4 cores), 16 GB
of RAM, and 500 GB SSD storage, enabling efficient
processing of computationally intensive tasks.
Essential libraries and frameworks such as TensorFlow
facilitated the development and training of the ES-
SJELM model, while NumPy and SciPy supported
advanced mathematical operations, including hash
computation and statistical analysis. This combination
of tools and technologies ensured a comprehensive
evaluation of the framework under realistic and
reliable conditions. Fig.1 shows the topology diagram

of the proposed work.
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k)am Flow

Channel

ll'ransnussion
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}ignul Processing

Processing Unit

ﬁck Prevention

Side-Channel Defense

Countermeasures Final Result

e
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Result

Fig.1 Topology diagram

4.1 Collection of Electronic Leakage Information

In the experiment, electronic leakage information,
which is critical in the detection of Side-channel
attacks, was gathered from power consumption,
timing analysis, and memory access patterns. These
leakage signals, which can reveal sensitive data, were

collected through non-invasive monitoring tools that

.9.
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measured the power and timing fluctuations during
cryptographic operations. The traces captured were
then pre-processed to extract meaningful features,
including power consumption traces corresponding to
different operations and their corresponding timing
patterns. These features were used as inputs to the ES-
SJELM model to
potential attacks.
4.2 Dataset Description

The SCAAML dataset was utilized for training,
testing, and evaluating the framework. This dataset is
widely recognized for its robustness in representing
side-channel attack

identify anomalies and detect

scenarios and contains the
following ;

- Number of records: 1 million traces.
Includes

- Features . power

timing, and memory access patterns,

consumption,
representing

both legitimate and malicious traces.

- Preprocessing; Data normalization and feature
extraction for cryptographic operations, reducing noise
and ensuring faster processing.

4.2.1 Performance metrics

Table 1 shows the performance of the proposed
work. The SecureCons Framework’s performance is
evaluated and compared to the following existing
methodologies ;

1) Ref. [ 11 ] focused on a knowledge-based
system for web application security using hesitant
fuzzy sets, AHP, and TOPSIS.

2) Chabanne et al.'" proposed a privacy-

preserving architecture for healthcare big data
applications.
3) Tang et al.'"®’ presented a blockchain-based

security architecture for IoT devices.

Table 1 Overview of the performance metrics

Communication Throughput Attack detection False positive . . Confidentiality
Methods Detection time ( ms)

overhead (KB) (blocks/s) accuracy (%) rate (%) rate (%)

SecureCons
12 180 98.5 1.5 2.4 99.2

framework
Ref.[ 11] 18 140 92.7 4.8 3.9 97.6
Ref.[ 12] 22 125 91.8 5.1 4.1 96.8
Ref.[ 14] 20 135 93.4 32 3.7 98.1

4.2.2  Communication overhead

the SecureCons
framework refers to the data exchanged during the
hashing and validation processes. The experiments

Communication overhead in

demonstrated an average communication overhead of
12 KB per transaction, showcasing the lightweight and
efficient design of the HAVAL hashing algorithm.
This

compromising

minimal overhead is achieved without
the cryptographic strength of the
system, as HAVAL effectively encodes data blocks
into secure hash values while maintaining high-speed
processing. The reduced overhead ensures scalability
and efficient operation, making the framework suitable
for resource-constrained cloud environments while
preserving robust security against potential threats. Fig.
2 shows the comparison of communication overhead.
Matta et al.'""’ and Chabanne et al''* reported
higher communication overheads of 18 KB and
20 KB, respectively, largely due to the additional
steps involved in their knowledge-based systems and
big data architecture. Tang et al.'"' exhibited the

highest overhead, reaching 22 KB, as a result of its
.10 -

blockchain-heavy design requiring the broadcasting of
full block data to achieve consensus. In contrast, the
proposed framework’s reduced overhead of 12 KB per
transaction highlights its efficiency, attributed to the
lightweight HAVAL  hashing algorithm.  This
advantage makes the framework particularly suitable
for high-traffic environments like cloud and IoT
systems, where minimizing data transfer is essential
for maintaining scalability and responsiveness.

Comparison of communication overhead
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Fig.2 Analysis of communication overhead
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The reduced overhead in the proposed work
makes it suitable for high-traffic environments like
cloud and IoT systems, where minimizing data transfer
is crucial.

4.2.3  Throughput

Throughput is a critical performance metric,
reflecting the system’s ability to process data blocks
efficiently. The proposed framework achieved a
throughput of 180 blocks/s, demonstrating superior
compared to other This
improvement is attributed to the parallelization
capabilities of the HAVAL hash function, which
optimally distributes the workload across multiple

performance methods.

cores, and the efficient adaptive learning of the ES-
SJELM. Together,
processing, ensuring rapid and secure handling of data

these components streamline
blocks, making the system highly effective for real-
cloud and IoT

environments. Fig.3 shows the comparison of throughput.

time applications in dynamic
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Fig.3 Analysis of throughput

Matta et al.'""" achieved a lower throughput of
140 blocks/s due to the computational overhead
introduced by the iterative processing inherent in their
hesitant fuzzy system. Similarly, Chabanne et al.''
and Tang et al.'"” reported throughputs of 135 blocks/s
and 125 blocks/s, respectively, as their sequential
block validation mechanisms limited processing speed.
The superior throughput of the proposed work is driven
by the parallelization of HAVAL hashing and the
optimized learning of ES-SJELM,
This
scalable

ensuring rapid
block validation. capability positions the

framework as a solution for dynamic
environments like cloud computing and IoT networks.
4.2.4  Autack detection accuracy

The attack detection accuracy of the proposed

framework is a testament to its ability to distinguish

between legitimate and malicious activities effectively.
With an achieved accuracy of 98.5%, the framework
demonstrates superior detection performance as in Fig.
4. This high accuracy stems from the adaptive learning
capabilities of the ES-SJELM,
identifying and learning complex SCA patterns. By

which excels in

leveraging advanced cryptographic and machine

learning techniques, the framework not only detects
anomalies with precision but also minimizes the
likelihood of overlooking sophisticated attack vectors,

ensuring robust defense mechanisms in cloud

environments.
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Fig. 4 Analysis of accuracy

The attack detection accuracy of the proposed
framework stands at 98.5%, outperforming existing
methodologies. Chabanne et al.''*) achieved 93. 4%
benefiting from a

accuracy, privacy-preserving

architecture but lacking advanced anomaly detection

capabilities. Matta et al.''"

92.7%,

threshold-based detection, which limits adaptability.
12]

reported an accuracy of
constrained by its dependence on static
Tang et al.'™*' showed the lowest accuracy at 91.8%,
primarily due to the restricted flexibility of its
blockchain-based detection mechanisms. The superior
performance of SecureCons underscores its ability to
dynamically classify attacks with precision, ensuring
enhanced reliability and robustness in addressing Side-
channel threats.

4.2.5 False Positive Rate ( FPR)

The False Positive Rate ( FPR) evaluates the
system’s capacity to accurately distinguish between
legitimate traces and malicious activities as in Fig.5
with lower values indicating better performance. The
proposed framework achieves an impressively low FPR
of 1.5%. This performance is largely due to the ES-
SJELM, which employs iterative learning to refine
classification boundaries and reduce misclassification

- 11 -
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errors. The low FPR ensures that the framework
minimizes disruptions to legitimate operations while
maintaining robust attack detection, making it highly
suitable for dynamic cloud and IoT environments

where accuracy is paramount.

Comparison of false positive rate
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Fig. 5 Analysis of FPR

Matta et al."''"
significantly higher

and Tang et al.' reported
FPRs of 4.8% and 5.1%,
their systems lacked adaptive
mechanisms to handle noisy data. Chabanne et al.''*’
performed better (3.2%) but still fell short of
SecureCons’ efficiency. A low FPR is critical in cloud
and IoT systems where unnecessary alerts can lead to
system inefficiencies.

4.2.6  Detection time

respectively, as

Detection time refers to the latency involved in
identifying Side-channel attacks within the system. The
proposed framework achieved an impressive average
detection time of 2.4 ms, which is significantly faster
compared to other existing approaches as in Fig.6.
This rapid detection is attributed to the efficient use of
the Wilcoxon signed-rank test mechanism, which
enables quick consensus validation across nodes. By

applying this statistical test for comparing hashed

blocks and ensuring their integrity, the system
minimizes delays and provides near real-time
detection. This capability is crucial in high-

performance environments like cloud and IoT systems,
where minimizing detection latency is essential for
maintaining security without compromising system
responsiveness.

Matta et al."""’ and Tang et al.'"”’ reported higher
times of 3.9 ms and 4.1 ms, respectively, due to the
iterative nature of their algorithms. Chabanne et al.'"*
achieved a slightly better result (3.7 ms) but still
lagged behind SecureCons due to the added complexity

- 12 -

Fast detection
times make the proposed work ideal for real-time

of its privacy-preserving mechanisms.

applications requiring immediate responses.

5 Comparison of detection time
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Fig. 6 Comparison of detection time

4.2.7  Confidentiality rate

Confidentiality rate measures the system’s ability
to ensure data privacy and protection against
unauthorized access. Achieved a confidentiality rate of
99.2% , due to the combined security of HAVAL
hashing and ES-SJELM’s adaptive anomaly detection

as in Fig.7.

Comparison of confidentiality rate
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Fig. 7 Comparison of confidentiality rate

Matta et al.''") and Tang et al.''*
rates of 97.6% and 96.8% ,
robust hashing mechanisms.

reported lower
respectively, due to less
Chabanne et al.''*
performed relatively better (98.1% ) due to its focus
on privacy-preserving architectures. SecureCons’ high
confidentiality —rate ensures its

suitability  for

environments with strict security requirements, such as
financial systems and healthcare.
4.2.8 Collection of electronic leakage information

In the electronic ~ leakage
information, which is critical in the detection of side-

channel

experiment,

attacks, was gathered from power
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consumption, timing analysis, and memory access
patterns. These leakage signals, which can reveal
sensitive data, were collected through non-invasive
monitoring tools that measured the power and timing
The
traces captured were then pre-processed to extract

fluctuations during cryptographic operations.

meaningful features, including power consumption
traces corresponding to different operations and their
corresponding timing patterns. These features were
used as inputs to the ES-SJELM model to identify
anomalies and detect potential attacks. The following
leakage scenarios were simulated;

1) Side-channel attacks:
acoustic attacks targeting cryptographic keys.

Electromagnetic and

2 ) Memory leaks: Software-induced leaks
exposing sensitive information from memory.
3) Tampering ; Physical access to devices leading

to data extraction.

To understand the potential vulnerabilities in
cryptographic systems and assess the robustness of the
simulated attacks
These
simulations replicate real-world scenarios, focusing on

proposed SecureCons framework,
are conducted in controlled environments.
electronic information leakage and the various forms of
side-channel attacks, memory leaks, and tampering
incidents. Each scenario is designed to emulate a
specific type of attack, using industry-standard tools to
analyze the impact and identify the weak points in the
system.

Table 2 provides an overview of the attack
scenarios simulated, including the type of leakage
exploited, the attack methodology, the tools utilized,
and the potential impact of the attack.

4.2.9 Mitigation techniques applied

Upon detecting a possible attack, the following

mitigation techniques were applied as in Table 3.

Table 2 Attack simulation

Leakage scenario Attack type

Tools used

Impact

. Electromagnetic and
Side-channel attacks .
Acoustic

Memory

Memory leaks Software vulnerability

Side-channel analysis tools

Exposure of cryptographic keys, session tokens

dump and

Exposure of session tokens, user credentials

debugging tools

. . Hardware
Tampering Physical access

tools

manipulation

Data extraction from device storage

Table 3 Mitigation techniques

Technique Description

Implemented Algorithm

M bbi Overwrites memory contents to
emory scrubbin,
Y € make leaked data unrecoverable

Rotates cryptographic keys to

Key rotation . .
invalidate leaked keys

Session token invalidation Invalidates leaked session tokens

. Re-encrypts data with new keys to
Re-encryption . .
protect against compromised keys

Detects unauthorized  physical
Tamper detection access and triggers
countermeasures

def scrub_memory ( memory _region ) : for ¢ in range ( len ( memory _
region) ) ; memory_region [i] = "OxDEAD"

def rotate _keys ( current _key ) : new_key = generate_new _key ( )
encrypt_data_with_new_key ( new_key)
return new_key

def invalidate_token( session_token) : session_token.is_valid = False

def reencrypt_data( data, new_key) : encrypted_data = encrypt_data_
with_new_key ( data, new_key)

return encrypted_data

def tamper_detected ( device_state) ;
if device_state.is_tampered ( ) ; purge_data( memory_region) rotate_
keys( current_key )

return " Tampering detected. Security measures initiated."

4.2.10 Data analysis and results

The effectiveness of the proposed SecureCons
framework was evaluated through extensive testing and
analysis across various scenarios that mimic real-world
electronic information leakage attacks. The focus was
on mitigating risks associated with memory leaks,
cryptographic key exposure, and unauthorized access

The results of the
analysis are presented in Table 4, highlighting the

due to leaked session tokens.

system’s robustness and mitigation capabilities.
4.2.11 Cryptographic key rotation effectiveness

Key rotation mechanisms were tested to counteract
the risks associated with leaked cryptographic keys. The
results are summarized in Table 5.

<13 .
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4.2.12  Session token invalidation effectiveness
Session token invalidation was implemented to

mitigate unauthorized access in case of token leakage.
The results of these tests are presented in Table 6.

Table 4 Memory protection effectiveness

Test Scenario Before memory scrubbing

After memory scrubbing Results

Session tokens extracted from No data

Leakage of session tokens
memory dumps

Leakage of cryptographic keys  Cryptographic keys accessible

values)

retrieved ( randomized 100% mitigation of session token

leakage

100% mitigation of cryptographic

Keys overwritten and inaccessible

key leakage

Table 5 Effectiveness of key rotation in preventing cryptographic key leakage

Test scenario Before key rotation

After key rotation Result

Leaked  keys
decrypt data

. successfully
Leakage of cryptographic keys

100% effectiveness in preventing

New keys prevent decryption

further decryption

Table 6 Impact of token invalidation on unauthorized access prevention

Test scenario Before token invalidation

After token invalidation Result

Access

Leaked Session Tokens Unauthorized access granted

required

denied, re-authentication 100% mitigation of unauthorized

access through leaked tokens

The analysis of results underscores the

comprehensive effectiveness of the SecureCons

framework in mitigating electronic information

leakage. Memory protection, implemented through
memory scrubbing, ensured that sensitive data such as
session tokens and cryptographic keys were completely
erased after use, leaving no residual traces for

potential ~ attackers.  Cryptographic key rotation

dynamically invalidated leaked keys, rendering them
useless for decrypting sensitive data and thwarting
unauthorized access. Similarly, session token
invalidation proved instrumental in preventing access
through compromised tokens by enforcing re-
further

strengthened data security by encrypting exposed

authentication  protocols.  Re-encryption

information with new cryptographic keys, making
previously decrypted data inaccessible. Finally, the
tamper detection mechanism added an essential layer
of physical security by responding immediately to
unauthorized access attempts, safeguarding the device
and preventing data leakage. Together, these measures
highlight the robustness of the framework in addressing
diverse attack scenarios and enhancing overall system
resilience.

5 Conclusions

The proposed SecureCons framework effectively
addresses security challenges in cloud environments,
SCAs, by
statistical ,

particularly
cryptographic,
- 14 -

against integrating

and machine learning

techniques. The framework’s multi-layered approach—
comprising HAVAL cryptographic hashing for data
integrity, the Wilcoxon signed-rank test for
consensus, and the ES-SJELM for adaptive learning—
demonstrates  robust

security and efficiency.

Experiments conducted in a simulated cloud
environment validated its performance, achieving high
attack detection accuracy, minimal false positive
rates, low communication overhead, and quick Side-
Additionally, the

confidentiality rate of data was significantly enhanced,

channel attack detection time.
showcasing the framework’s resilience against SCAs.
Comparisons with existing methods further highlight its
superiority in terms of scalability, precision, and
adaptability. The proposed framework presents a
promising solution for secure, efficient, and scalable
cloud systems, paving the way for its adoption in
real-world cloud computing scenarios.
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