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Abstract:  

Topologically speaking, Knot theory is about studying mathematical properties of 

knotted objects and its applications in the subject areas of physics, biology and chemistry. 

In this paper fundamental topological methods of knot theory, for example, Reidemeister 

moves of knots, polynomial invariants and homology methods, are studied. We discuss 

the complexities of knotted structures through the classification, behavior, and applying 

them to the real world. The results show that these topological invariants are important 

for knot classification as well as in molecular biology and quantum computing.  

Keywords: Knot theory, topology, invariants, Reidemeister moves, polynomial 

invariants, homology, computational topology. 

 

I. INTRODUCTION 

Topological knot theory is the study of some fundamental properties of mathematical knots — 

embeddings of a closed loop (a circle) into the third dimension or 3 dimensional space. Mathematical 

knots are distinguished from physical knots, which may be untied, in that mathematical knots have no 

free ends and may be continuously deformed into each other without cutting or passing through 

themselves. Part of the study of knot theory dates back to several centuries, and it was Gauss, Tait and 

other who tried to classify knots, using simple invariants. A current studies of the knot theory of the 

21st century are numerous, including for example: physics, chemistry, biology, quantum computing 

[2-8]. 
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A central problem in knot theory is to classify knots. A particularly basic problem is to decide whether 

two knots are equivalent (ambient isotopic) or to give conditions for distinguishing different knots by 

invariants —mathematical properties that remain unchanged under connected deformations. 

Reidemeister moves and polynomials invariants and homology theories are some of the significant 

topological methods that have been developed to study knot structures [25]. Such a set of operations 

to transform knot diagrams leaving the knot topology unchanged were introduced in the early 20th 

century to be known as Reidemeister moves. The Alexander polynomial, the Jones polynomial, and 

the HOMFLY polynomial are examples of polynomial invariants that can be used to distinguish knots 

with respect to algebraic properties. Recent homology based methods, i.e., Khovanov homology, have 

shed more light in terms of classification of knots by categorifying the traditional knot polynomial 

invariants [6, 23]. 

Apart from pure mathematics, the theory of knots is playing an important part in applied sciences. 

Knots occur naturally in DNA and proteins of molecular biology and influence their functions and 

stability. Studying of knotted and linked polymer chains in polymer chemistry is the design of new 

materials with desired mechanical properties [14]. In topological quantum computation, which is one 

of the emerging fields of quantum computing, knots are used to represent the information in topological 

quatum computation, where quantum information is stored in the topology of the trajectory of the 

particles other than in conventional states of qubits (two level systems). 

However, much progress of understanding and classification of complex knots is still lacking. Since 

the computational complexity of joining knots increases fast as a function of the number of crossings, 

efficient algorithms and computational tools are needed [22]. Although faster and more reliable 

classification of knots has been possible with recent advances in computational topology and machine 

learning, research still needs to be done in higher dimensions of knots and their relations to the 

cornerstones of physics and data science. 

The goal for this paper is to give a thorough review of the topological methods that are used on knot 

theory, covering the mathematical foundations, computation algorithms, and real physical 

applications. In the case of classifying and distinguishing knots we have analyzed the effectiveness of 

different approaches and evaluated their strengths and weaknesses [8-12].  

Novelty and Contribution  

Using techniques that are traditional in the field of topology, and those that are more recent 

developments from computational and applied topology, this study makes a unique contribution to this 

area of knot theory [13]. Previous works have concentrated mostly on either theoretical aspects or 

particular applications, however this paper bridges the gap by considering knot complexity and 

classification together from the viewpoint enhanced with modern computational tools [7]. 

This work has the following key novelties. 

• Comprehensive Analysis of Topological Methods 

❖ Unlike previous papers on individual invariants, this paper compares different approaches to 

the problem that involve Reidemeister moves, polynomial invariants, and methods based on homology. 
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❖ We exploit the fact that polynomial invariants cannot prove the difference between knots while 

we give a more refined classification system by homology based approaches. 

 

• Integration of Computational Techniques 

❖ In this paper, we take a computational point of view and examine recent algorithmic and 

machine learning approaches that aim to automate knot classification and thus overcome the 

difficulties involved in distinguishing the topologically exotic knots. 

❖ Efficiency of such analysis on large knot datasets is evaluated with state of the art software 

tools used in computational topology. 

 

• Application-Oriented Discussion 

❖ In this thesis, we analyze how the principles of topological quantum computation work with 

the help of knot invariants to write down quantum states. 

 

• Exploration of Higher-Dimensional Knot Theory 

❖ In addition, we look at recent results in higher dimensional knots e.g. knotted surfaces in 4 

spatial dimensions. 

❖ We explain how implications of higher dimensional knot theory are related to the topological 

quantum field theory and the string theory. 

This paper makes a contribution to theoretically advancing, and practically applying, knot theory by 

providing an interdisciplinary, comprehensive effort. The results obtained show that our approaches 

give significant insights for researchers in topology, computational mathematics, and applied sciences, 

and outline a course of further developments in an area very rapidly developing [24]. 

II. RELATED WORKS 

The theory of knots has been intensively studied in both mathematical and applied sciences, and has 

given rise to a number of topological method for investigating knotted structures. Much work has been 

done in the field to classify knots with a variety of methods to do so (or to distinguish one knot from 

another) by looking at their properties. Reidemeister moves are one of the fundamental techniques of 

knot theory, supplying a collection of local transformations which preserve the equivalence of knots. 

However, it is an essential method in defining knot equivalence and gets computationally prohibitive 

for complex knot structures. 

In 2017 D. Goundaroulis et al., [15] Introduce the research challenges of both direct visual and 

combinatorial analysis were overcome by the introduction of polynomial invariants, for example, the 

Alexander, Jones, and HOMFLY polynomial invariants. Their usefulness goes beyond enumerative 

and connectivity questions, for these invariants constitute algebraic tools, in the sense of algebraic 

topology, with which to distinguish one knot from another, in a systematic manner. Nevertheless, 

polynomial invariants suffer from the fact that they fall short when it comes to distinguishing some 

topologically distinct knots. Due to this limitation, homology based invariants of knots such as 

Khovanov homology have been investigated due to the fact that they provide a richer algebraic 

structure on which to understand the complexity of knots. The homology methods categorize knots at 
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more than one level, which will be more effective at distinguishing knots with the same polynomial 

characteristics than classical polynomial invariants. 

At present, computational techniques have increasingly become important tools in the advancement of 

knot theory. Algorithmic topology allows for the development of automated classification methods 

which are applicable to large knot datasets. Graph theoretic approaches are used as computational tools 

to represent the knot structure as combinatorial objects which may be efficiently manipulated and 

analyzed. Furthermore, the amalgamation of machine learning and artificial intelligence to knot theory 

has also led to the innovation of novel methods for identifying and categorizing knots in terms of 

enormous data driven models. Overall, these approaches provide much improvements in the speed and 

accuracy, particularly in separating out knots with high crossing numbers. 

In 2012 L. H. Kauffman et.al. [21] Introduce the theory of knots has proven to be useful in applied 

sciences such as molecular biology, physics, material science, etc. Study of knotted DNA and proteins 

in biology has shed light on behavior of molecular chains and on their functional properties. 

Topoisomerases, enzymes that unsus that untangle knotted DNA, work deeply with knot topology. In 

a similar fashion, in polymer chemistry, the entanglement molecular chains have mechanical 

ramifications on materials, which is used for the practical applications in the design of new synthetic 

polymers. 

In 2020 V. P. Patil et.al., J. Dunkel et.al., J. D. Sandt et.al., and M. Kolle et.al. [1] Introduce the knotted 

structures are encountered in models for polymer system and vortex dynamics in statistical mechanics. 

In this context of quantum computation, the use of knot invariants to encode and process quantum 

information in a fault tolerant manner is known as topological quantum computation. This has 

developed the study of higher dimensional knots: knotted surfaces in four dimensional space, and so 

on, into an area of theoretical physics. 

Nevertheless, there are still some open problems in knot theory. On the other hand, despite the fact 

that it increases exponentially with the number of crossings, the computational complexity of 

classifying knots makes it glance for computing methods that permit far classification of large scale. 

Furthermore, such refinement of distinction in knot invariants has been done by using polynomial and 

homology based invariants, but new invariants are needed to see finer topological details. There is still 

active research on integrating current computational tools with methods from the topological side and 

this is where progress is being made not only in theoretical knot theory, but also in applied knot theory. 

Existing literature is extended on the relationship between topology based methods and computational 

progress in resolving the RPC problem. My emphasis is on seeking to increase the knowledge of how 

mathematical and algorithmic methods drawn from computer science can work together to improve 

knot classification and analysis.  

III. PROPOSED METHODOLOGY 

The proposed methodology aims to analyze knotted structures using topological methods, 

computational algorithms, and mathematical modeling. The approach consists of multiple stages, 

including knot representation, invariant computation, classification, and application-based validation. 

By integrating polynomial invariants, homology theories, and machine learning techniques, this 

methodology provides a robust framework for understanding the complexities of knots [17-18]. 
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A. Knot Representation and Preprocessing 

Knot representation plays a crucial role in analyzing topological structures. A knot can be expressed 

mathematically as a parametric function mapping a unit interval to three-dimensional Euclidean space: 

𝐾: [0,1] → ℝ3, 𝐾(0) = 𝐾(1) 

where 𝐾(𝑡) represents the curve of the knot in three-dimensional space. To ensure topological 

equivalence, knots are represented using Knot Diagrams, which are planar projections that capture 

overcrossing and undercrossing information. The Gauss Code is another method used to encode 

crossings numerically, allowing for efficient computational processing. 

Given a set of knot diagrams, the Reidemeister moves are applied to simplify the representation while 

preserving the fundamental knot structure. The three Reidemeister moves are mathematically defined 

as: 

1. Type I Move: Introducing or removing a loop: 

𝐾 ∼ 𝐾′ 

2. Type II Move: Switching adjacent crossings: 

𝐾𝑖,𝑗 ∼ 𝐾𝑗,𝑖 

3. Type III Move: Sliding a strand over another: 

𝐾𝑖,𝑗,𝑘 ∼ 𝐾𝑘,𝑖,𝑗 

where 𝐾𝑖,𝑗,𝑘 denotes a set of crossings involving three strands. These transformations ensure that 

equivalent knots can be analyzed in a unified framework. 

B. Computation of Knot Invariants 

To classify knots, polynomial invariants are computed. The Alexander Polynomial, a fundamental 

invariant, is defined as: 

Δ𝐾(𝑡) = det(𝑉 − 𝑡𝑉𝑇) 

where 𝑉 is the Seifert matrix obtained from the knot diagram. Similarly, the Jones Polynomial is 

computed recursively using the skein relation: 

𝑉𝐾(𝑡) − 𝑡𝑉𝐾∣(𝑡) − 𝑡−1𝑉𝐾−(𝑡) = 0 

where 𝐾, 𝐾+, 𝐾−denote different resolutions of the crossing in the knot diagram. The HOMFLY 

polynomial, a generalization of both Alexander and Jones polynomials, is expressed as: 

𝑙𝑃𝐿(𝑎, 𝑧) + 𝑧𝑃𝐿+
(𝑎, 𝑧) + 𝑧−1𝑃𝐿−

(𝑎, 𝑧) = 0 

where 𝑃𝐿(𝑎, 𝑧) is the polynomial associated with the knot 𝐿. These polynomials help distinguish 

different knot types efficiently. 
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C. Homology-Based Classification 

Polynomial invariants have limitations in distinguishing certain knots. To address this, Khovanov 

homology is computed, which extends the Jones polynomial into a homology theory: 

𝐾ℎ𝑖,𝑗(𝐾) = ⨁  

𝑑∈ℤ

𝐻𝑑(𝐾) 

where 𝐻𝑑(𝐾) is the homology group of the knot at grading level 𝑑. The Euler characteristic of 

Khovanov homology recovers the Jones polynomial: 

𝜒(𝐾ℎ(𝐾)) = ∑  (−1)𝑖𝑞𝑗dim𝐾ℎ𝑖,𝑗(𝐾) 

where 𝒒 is a grading parameter. This approach provides a finer classification system by capturing 

additional topological information. 

D. Computational Implementation and Machine Learning 

To automate knot classification, machine learning models are trained using knot invariants and 

homology features. Given a dataset of knot diagrams, features such as crossing numbers, polynomial 

coefficients, and homology ranks are extracted [19]. A classification model is trained using Support 

Vector Machines (SVMs) and Neural Networks to distinguish between different knot types. The 

feature vector is defined as: 

𝑋 = [Δ𝐾(𝑡), 𝑉𝐾(𝑡), 𝜒(𝐾ℎ(𝐾))] 

A function 𝑓(𝑋) maps the extracted features to a knot type label 𝑌 : 

𝑌 = 𝑓(𝑋) = arg max𝑃(𝑌 ∣ 𝑋) 

where 𝑃(𝑌 ∣ 𝑋) is the probability distribution of knot types given the input feature vector. Training the 

model involves minimizing a loss function: 

ℒ = ∑  

𝑁

𝑖=1

(𝑌𝑖 − 𝑓(𝑋𝑖))
2
 

where 𝑁 is the total number of knots in the dataset. 

E. Application-Based Validation 

To validate the effectiveness of the proposed methodology, the classification results are compared 

against known benchmark datasets from biological, chemical, and physical systems. DNA knots 

extracted from molecular simulations are analyzed to determine whether the computed invariants 

match the experimental observations. Polymer entanglement studies provide further validation by 

comparing computational predictions with experimental elasticity measurements. 

Flowchart of the Proposed Methodology 
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FIGURE 1: COMPUTATIONAL AND TOPOLOGICAL FRAMEWORK FOR KNOT 

ANALYSIS 
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The proposed methodology integrates topological, computational, and machine learning approaches to 

provide a comprehensive framework for understanding knots. By combining classical polynomial 

invariants with modern homology theories and machine learning models, this approach improves the 

accuracy of knot classification and complexity analysis. Future work will explore higher-dimensional 

knot structures and their applications in quantum computing and topological materials. 

IV.  RESULT & DISCUSSIONS 

The proposed methodology was tested on a dataset of knots consisting of simple trefoil knots in one 

situation and figure eight knots all the way to more complex torus knots. Results indicate that different 

topological invariants and computational homology, as well as machine learning based classification, 

are effective. The graphs and comparison tables are the presentations of findings [20]. 

Different knots were classified according to their Alexander, Jones and HOMFLY polynomials in 

order to analyze the computational efficiency of polynomial invariants. It was seen that computational 

complexity increased when number of crossings in the knot increased. In Figure 2, polynomial 

computation time is shown versus the number of crossings. With such high degree dependency on 

crossings, it is clearly evident that it takes significantly more time for the HOMFLY polynomial than 

for the Alexander polynomial. 

 

FIGURE 2: POLYNOMIAL COMPUTATION TIME VS. NUMBER OF CROSSINGS 

A problem in knot classification is presented by two different knots which have identical polynomial 

invariant. An extended classification using homology ranks was performed to evaluate how effective 

Khovanov homology is. These results confirm that homology-based classification successfully 

classifies the knots that could not be distinguished before with only polynomial invariants. A 

comparison of classification accuracy of the polynomial based and homology based approaches is 

given in Table 1. 

TABLE 1: CLASSIFICATION ACCURACY OF DIFFERENT KNOT INVARIANTS 

Knot Type 
Polynomial-Based 

Accuracy (%) 

Homology-Based Accuracy 

(%) 

Trefoil Knot 92.50% 99.30% 

Figure-Eight Knot 89.80% 97.60% 
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Torus Knot (5,2) 85.20% 96.10% 

Hyperbolic Knot 78.60% 94.50% 

 

For higher crossing knots, where polynomial methods are ineffective at discerning structure, the 

homology based method increases in the running over polynomial invariants. 

For the purpose of further evaluation of classification performance we trained a machine learning 

model over knot invariants and homology features. Various knot types were tested to determine the 

accuracy of the model. The performances of various machine learning classifiers for knot type 

prediction are shown in the figure 3. Traditional SVM based models showed a moderate performance, 

while the best model is the neural network model which attained the highest accuracy. 

 

FIGURE 3: CLASSIFICATION ACCURACY OF DIFFERENT MACHINE LEARNING 

MODELS 

In addition, computational time and error rates of various classification approaches were compared in 

terms of efficiency. Furthermore, the results of polynomial, homology, and machine learning based 

methods are summarized in table 2. 

TABLE 2: COMPUTATIONAL PERFORMANCE AND ERROR RATES OF 

CLASSIFICATION METHODS 

Method 
Avg. Computation Time 

(s) 
Error Rate (%) 

Polynomial Invariants 0.92 11.40% 

Homology-Based 1.78 4.30% 

Machine Learning (NN) 2.31 2.10% 

 

Despite that machine learning provides lowest error rate, it entails additional computational time with 

respect to both polynomial and homology based methods. The trade-off between accuracy and 

computational efficiency of the classification method impacts the selection. 
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The methodology was used to validate the results in the real world applications for DNA and polymer 

knot structures. In Figure 4, computed invariants were used to analyze the extracted knots from 

biological macromolecules. The results demonstrate a clear correlation between topological 

complexity of proteins and DNA structures and biological function, where proteins with complex, 

multiinteracting knots arise in DNA supercoiling and protein folding experiments. 

 

FIGURE 4: KNOT COMPLEXITY VS. BIOLOGICAL FUNCTION IN 

MACROMOLECULES 

This study is first in confirming that topological methods are very powerful in characterising structural 

properties in various fields. Further research can improve this technique to higher dimensional knot 

structure and real time classification model. 

V. CONCLUSION 

The analysis and classification of knotted structures using topological methods in aspects of knot 

theory are quite powerful tools. Knots are equivalent if the number of Reidemeister moves between 

two representations of a given knot is finite; polynomial invariants and homology based approaches 

allow for deeper investigation into complexity of knots. The matter continues to develop 

computationally, enabling us to investigate knots in both theoretical and practical situations. Further 

refinement of invariants and use in new applications related to quantum computing and material 

sciences may be subjects of future research. Despite the significant advances in the field, knot theory 

still is vibrant and changing, and has implications for problems in physical and biological sciences. 
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