ISSN - 0973 - 1334 National Joumal of Technology, Vol.7, No.3, September 2011

AN EFFICIENT ALGORITHM FOR SHORTEST PATH FINDING IN
REAL ROAD NETWORKS
V. Sreelesh* and R. V. Nataraj**

*Software Engineer, GeoEdge Technologies, Coimbatore,
**Associate Professor, Department of Information Technology, PSG College of Technology, Coimbatore

ABSTRACT

Finding of shortest path in graph/road networks
has been an area of research for the past so
many years and so many algorithms have been
proposed in the literature including Dijkstra
Algorithm, Prim Algorithm, A* Algorithm etc.
With the recent advancements in mapping of
road networks and with the invention of efficient
data structures to store and retrieve map data,
the demand for more efficient algorithms to find
shortest path in road networks has increased.
In this paper, we propose a GPS based vehicle
routing algorithm for finding shortest path in
real road networks. This paper proposes IA*
algorithm to efficiently find route between two
locations in a road network. The proposed
algorithm exploits several optimization
techniques including database projection,
remapping of nodes and bucket sorting with
indexing. For our experiments we have used real
road networks, namely the road network map of
Bangalore city.

Index Terms- Shortest Path finding - Road Networks -
Heuristic algorithm.

I INTRODUCTION

With the advancement of technology in the last decade
it has become possible to create maps of cities and roads all
over the world. Even applications which have mapped the
whole road networks in the world map are available, which
can be used in car navigators. This has given rise to a revival
of shortest path algorithms and these real road networks
contain millions of nodes and edges, whereas previous
experiments used small artificial networks. But with
availability of these road networks, it has been revealed that
the existing algorithms which are used for shortest path
finding have several short comings. This has led to the
demand for designing more efficient algorithms or optimizing
the existing algorithms to match the new requirements.

In this paper, we consider the point-to-point instance

of the shortest path problem. The best-known algorithms in
Operations Research are Bellman-Ford and Dijkstra. In
Artificial Intelligence, the A* algorithm, which assumes the
availability of a heuristic estimate, is also widely known([2]. If
we compare Dijkstra's Algorithm with A* Algorithm, Dijkstra's
is like a puddle of water flooding outwards on a flat floor,
whereas A* is like the same puddle expanding on a bumpy
and graded floor towards a drain (the target node) at the
lowest point in the floor. Instead of spreading out evenly on
all sides, the water seeks the path of least resistance, trying
new paths only when something gets in its way.

In this paper, we propose IA* (Improved A*) based
on the A* algorithm for finding shortest path in real road
networks. We have used certain techniques which have
reduced the running time of the algorithm to a great extent.
We have also done a comparative study of the performance
of the existing algorithm to the algorithm proposed by us and
the results have been explained at the end of the paper. The
rest of the paper is organized as follows. In section II, we
present the preliminaries about the algorithm being used. In
section III, we explain the algorithm and the various
optimization techniques used. In section IV, we give our
experimental results and in section V, we conclude the paper
with future work.

II PRELIMINARIES

The basic problem in shortest path finding is to find
the best way to move from the start node p to destination
node q. In the case of graph based problems there is a
probability that the edge cost might be negative. But since in
this paper we are dealing with real road problem all the edge
costs are distances which in turn are positive. In the context
of shortest path finding, a map database D is a tuple D = (N,
R), where N is a finite set of nodes along with their associated
latitude and longitude. Each node corresponds to some
landmark or locations or road junctions of specific importance
in the map. R < N x N is a binary relation between nodes.
Each pair (p, g, d) € R denotes the fact that start node p & N
is connected to the end node g & N with d being the distance
between p and g. The whole road network of a city can be
represented using this database with each landmark location
or road junction having its own unique node identifier in the
database.

(1]

1SSN - 0973 - 1334 National Journal of Technology, Vol.7, No.3, September 2011

IIISHORTEST PATH ALGORITHM

Our proposed method uses a projected database to
optimize the processing space and assumes that entire
database of road network and associated data required like
latitude, longitude (and all data structures) completely it into
main memory. Our method creates an adjacency matrix version
of projected database and projects only the required nodes
between the source and destination. We assume safely that
the maximum in-degree/out-degree of a given node is not
more than fifteen, whereas in most of the practical scenarios,
it is much lower than fifteen. This assumption is based on the
following fact; if a junction in a road is considered to be a
node, then the number of roads connecting to that junction
will be four if it is an intersection of two roads. In general,
most junctions won't have more than four of five roads
connecting to it, so our assumption that the maximum in-
degree/out-degree is less than fifteen hold.

i). A* Algorithm

In computer science, A* (pronounced "A star") is a
best-first, graph search algorithm that finds the least-cost
path from a given initial node to one goal node (out of one or
more possible goals).

It uses a distance-plus-cost heuristic function (usually
denoted as f(x)) to determine the order in which the search
visits nodes in the tree. The distance-plus-cost heuristic is a
sum of two functions: the path-cost function (usually denoted
as g(x), which may or may not be a heuristic) and an admissible
"heuristic estimate” of the distance to the goal (usually
denoted h(x)). The path-cost function, g(x), is the cost from
the starting node to the current node. Since the h(x) part of
the f{x) function must be an admissible heuristic, it must not
overestimate the distance to the goal. Thus, for an application
like routing, h(x) might represent the straight-line distance to
the goal, since that is physically the smallest possible
distance between any two points (or nodes for that matter).

The algorithm was first described in 1968 by Peter
Hart, Nils Nilsson, and Bertram Raphael. In their paper, it was
called algorithm A. Since using this algorithm yields optimal
behavior for a given heuristic, it has been called A*. Like all
informed search algorithms, it first searches the routes that
appear to be the most likely ones to lead toward the goal.
What sets A* apart from a greedy best-first search is that it
also takes the distance already traveled into account (the g(x)
part of the heuristic is the cost from the start, and not simply
the local cost from the previously expanded node).

The algorithm traverses various paths from start to
goal. For each node x traversed, it maintains 3 values:

& g(x): the actual shortest distance traveled from
initial node to current node

£ h(x): the estimated (or "heuristic") distance
from current node to goal

® f(x): the sum of g(x) and h(x)

Starting with the initial node, it maintains a priority
queue of nodes to be traversed, known as the open set (not
to be confused with open sets in topology). The lower the
value of f{x) for a given node x, the higher its priority. At each
step of the algorithm, the node with the lowest f(x) value is
removed from the queue, the fand h values of its neighbors
are updated accordingly, and these neighbors are added to
the queue. The algorithm continues until a goal node has a
lower f value than any other node in the queue (or until the
queue is empty). (Goal nodes may be passed over multiple
times if there remain other nodes with lower f values, as they
may lead to a shorter path to a goal.) The fvalue of the goal is
then the length of the shortest path, since h at the goal is zero
in an admissible heuristic. If the actual shortest path is desired,
the algorithm may also update each neighbor with its
immediate predecessor in the best path found so far; this
information can then be used to reconstruct the path by
working backwards from the goal node. [6]

ii). IA* Algorithm

The original A* has been modified to improve the
running time. We propose mainly three techniques to reduce
the running time of the A* algorithm.

i Database projection.

. Remapping of nodes.

iii. Bucketsorting with indexing.
Database Projection

We use a database projection technique to reduce the
number of nodes which are processed by the algorithm. Once
we obtain the source-node and destination-node, we fetch a
set of nodes by forming an.ellipse around the source-node
and destination-node. The two nodes will form the focal
points of the ellipse which is drawn. For doing this we need
to have latitude and longitude positions of each of the node
in the road network. This is where GPS comes into play. When
we map the road network data, we also map the latitude and
longitude of the road network. We call the ellipse as MBE
(Minimum bounding ellipse). An example figure of ellipse
which is used for filtering nodes is shown below.

[i2]

ISSN - 0973 - 1334 National Joumal of Technology, Vol.7, No.3, September 2011

2
b i
: !

Figure 1: MBE for node extraction

In Figure 1, S is the source, D is the destination and
M,,, the major diagonal. The node A is a node in the vicinity
of the ellipse. We are using the following equation to find all
the nodes which comes inside the ellipse. Assuming that
(X, Y be the latitude and longitude of the destination point
and (X, Y, be the latitude and longitude of the source point.
For a given node N, let (X, Y) be the latitude and longitude
positions in the node. A node N is said to be inside the ellipse
with eccentricity n if the following equation is satisfied. We
define DBP(Point p,,Point p,) as the distance between points
function which will give the straight line distance between
two points for points p, and p,.

DBP(S, N) + DBP(D, N) <=1*DBP(S, D)
DBP(Point p,, Point p,)
{

return Sqrt(Square(p, latitude-p, latitude) +Square
(p,-longitude-p, .longitude))

}

The lower the n value the more will be the number of
nodes that will be eliminated in this phase. When the value of
7 is selected it should be selected in such a way that there
should be a path between the source and destination through
the nodes which are not eliminated. Selecting the n depends
on the type of graph generally. If the graph is very dense i.e.
so many nodes are available in a very small space (Eg:- city
maps) a lower value of n would suffice. But if the map is
sparse we will have to select higher n) values. From our studies
we have found out that the values of n| varies from 2 to 5.

This database projection technique exploits the fact
that the shortest path between any two points will be almost
a straight line path and therefore in such cases there is no
need to consider nodes which does not come anywhere near
the straight line joining source and destination nodes.

Remapping of Nodes

To improve the processing speed and reduce the
memory consumption of the dataset, we use the following
techniques. We remap all the nodes to continuous integer
space. For example, if the nodes obtained after the database
projection phase are {100,200,234,388}, then it is remapped
as {1,2,3,4} i.e. 1 instead of 100, 2 instead of 200 and so on.
This will reduce the adjacency matrix size to a great extent, If
we use the items directly then we will have to use an adjacency
matrix of size 388 whereas after remapping the matrix size
reduces to 4. This in turn will reduce the memory access time.
For real time road networks where number of nodes are in
lakhs or crores, the time saved is really significant.

Also, instead of using the normal adjacency matrix for
representing whether two nodes are connected, here we use
amodified approach. In normal adjacency matrix approach, if
node k is related to node x ,y ,z then adjacency_matrix(k][x]
= 1, adjacency_matrix [k][y] =1, adjacency_matrix[k][z]=1.
In our approach if nodes x,y,z are related with node k then
adjacency_matrix[k][1] will be set as x, adjacency_matrix
[£][2] will be set as y and adjacency matrix[k][3] will be set
as z. This would again save lot of memory consumption and
memory access time for huge databases.

Bucket Sorting

A* algorithm spends most of its processing time to
sort the nodes from open set and obtain the node having the
minimum cost. Since this is done each time a new element is
inserted, which heavily influences the running time of the
algorithm. To improve the running time of the sorting
procedure we use bucket sorting. It has been found that this
reduces the running time to a great extent. The method used
for bucket sorting is explained below.

In our implementation, we are using single level
buckets. When we start the execution of the algorithm, we
initialize the bucket size. It is done based on the perpendicular
distance between the source and the destination. If that
distance increases, then the bucket size also increases
proportionally. Ifthe distance between source and destination
is D in terms of latitude & longitude values, then the bucket
size, BS, shall be D/0.01. We are using 0.01 because 0.01 in
latitude & longitude corresponds to 1 km. This can be modified
by considering the density/sparsity of the road network. Each

(13]

ISSN - 0973 - 1334 National Joumal of Technology, Vol.7, No.3, September 2011

element in the bucket shall be a sorted singly linked list. A
linked list only requires O(1) time to complete an operation in
each distance update in the bucket data structure. These
operations include:

1) Checking if a bucket is empty
2) Deleting an element from a bucket.
3) Retrieving the top element from the bucket.

The insertion operation will take O(n) on an average
where n=N/BS where N is the total number of nodes and BS
denotes the number of buckets available. All nodes with
distances ranging between i*(D/BS) and (i+1)*(D/BS) (where
D is the distance between source and destination and BS the
bucket size) shall be inserted in the i* bucket.

To improve the performance of the bucket sorting
technique, we are using a variable named 'index' which will
contain the index of the smallest indexed bucket which is not
null. Whenever an element is inserted or removed from the
buckets, the 'index’ variable is updated. This helps us to avoid
scanning of the bucket each time when we need to find the
smallest element. This optimization is not shown in the
algorithm given below as it is simple and understandable.

ALGORITHM 2: IA* Algorithm

Input: database D, source-node, destination-node Output:
shortest path from source-node to destination-node

// The heuristic we are considering here is straight line
distance heuristic.

. IA* (source, destination)

|
2
3. closed_set=F

4. Initialize open_set

5. bucket_size=heuristic_distance(source, destination)

6. Initalize bucket[size]

7. g score[source] =0

8 h_score[source]=heuristic_distance(source,destination)
9. f score[source]=g_score[source]+h_score[source]

10. insert_to_bucket(f_score[source], source);

11. while (open_set !=F)

125 of
13. for(i=1 to bucket_ size)

14. {

15. If{bucket[i]!=null)

16. x=first_element(bucket[i]);

L }

18. if"(x = goal)

19. return generate_path(came_from,destination)
20. open_set = open_set\x

7. by closed_set = closed_set U x

22, remove_from_bucket(x,f_score[x])

23 foreach(y € neighbor_nodes(x))

2, {

25 If (y € closed_set)

26. continue

27. tentative_g_score=g_score[x]+dist_between(x,y)
28. tentative_is_better = false

29, if (1(y € open_set))

30. {

31 open_set = open_set U y

32 insert_to_bucket(f_score[start], start)
33. h_score[y]=heuristic_distance(y, destination)
34 tentative_is_better = true

35. }

36. else if (tentative_g_score < g_score[y])
37, tentative_is_better = true

38. if (tentative_is_better = true)

39. {

40, remove_from_bucket(y,f _score[y]);
41. came_from[y] =x

42, g_score[y] = tentative_g_score

43. f_score[y] = g_score[y] + h_score[y]
44, insert_to_bucket(f_score[y],y);

45. }

46.

47. return failure

48.}

49. generate_path(came_from,curr_node)

50. {

51. ifcame_from[current_node] != -1

52.

33 p=generate_path(came_from,came_from[curr_node]);
54, return (p + current_node);

S

56. else

57 return null;

58.)

59. **insert_to_bucket(f_score, node)

60. {

61. for(i=1 to size)

62t

63. if(f_score>i*D/BS && f score<(i+1)*D/BS)
64. {

65. insert_to(bucket[i]);

66. }

6752}

68. }

69. **remove_from_bucket (node, f_score)
70. {
71. for(i= 1 to size)

{
73. iflf_score>i*D/BS && f_score<(i+1)*D/BS)

74. {
75. remove_from(bucket[i]);
76. }

FitEy

8.}

ISSN - 0973 - 1334 National Joumal of Technology, Vol.7, No.3, September 2011

** Each element of the bucket will contain a linked list
which is always sorted. The element is always inserted to the
linked list at the exact position. The smallest element will
always be on the top.

Algorithm Explanation

In the above algorithm we do not explain the filtering
of nodes using the MBE ellipse technique, since it has been
explained clearly in the previous section. We assume that the
nodes considered here contain only the set of nodes
contained in the MBE ellipse.

The algorithm takes as input the source node and the
destination node. The closed_set is initialized to NULL (line
no 3) and the open_set is initialized to set of nodes which fell
inside the MBE (line no 4). The bucket_size is initialized to
the heuristic distance between source and destination and all
the buckets are initialized (line no 5 & 6). The f score for
source node is calculated (line no 9). The g_score for source
is zero since distance from source node to source node is
zero (lineno 7). The h_score for source is the heuristic distance
between the source node and destination node (line no 8).
The source node is now inserted into the bucket (line no 10).

In the next loop, check whether the open_set is NULL
to make sure if there is any more nodes left to which the
distance need to be found (line no 11). If this loop exits before
we find the path to the destination node, then it means that
there is no path through the existing set of MBE filtered nodes,
and the size of MBE needs to be increased so as to take into
account other nodes and other possible paths,We scan the
buckets to find the smallest valued node in the set of nodes
which has been inserted. Since the buckets are in such a way
that the lowest element will always be the first element in the
first non-empty bucket, we only need to fetch that (line no 15
& 16). If the returned node itself is the goal then we have
found the path already and need to generate the path from
source to destination. This is done by calling the
generate_path function (line no 19). Ifit is not the destination
node then the returned node x is removed from open_set and
added to the closed set (line no 20 - 21) and also removed
from the bucket. This is done because we have already found
the best available path for x from source. Ify is an element of
closed_set then the shortest path to it has been already been
found so no need to update the f_score(line no 26). Ify is not
an element of open_set then f score of y need to be added to
the bucket and y is added to open_set (line no 31). If y is an
element of open_set then f score of y need to be updated
(line no 33-35). So we calculate the new £~ score and update it
if it is lower than the previously calculated f score in the
bucket (line no 43-44).

The generate_path function generates the path
through which the vehicle should travel to reach the
destination from source. The path is actually stored in an
array known as came_from. In the came_from array if
came_from[p]=q then it means that q is the ancestor of p. The
root node r will have came from[r]=-1. This method of
representation is similar to array representation of sets. So
starting from the destination node d we will check
came_from[d]. If came_from[d]=e, then we set e as the
ancestor of d (line no 44). We now check came_from[e] and
go on finding ancestors recursively (line no 43) until we reach
the source node s where the came_from(s) will be equal to -
1 (line no 51).

The insert_to_bucket function takes the f score and
the node id as arguments. It inserts the node id into the
required bucket by checking the value of f* score against the
range of values of each bucket (line no 63-65). The
remove_from_bucket function takes the f_score and the node
id as arguments. It removes the node_id from the bucket in
which it was previously inserted by checking the value of
f_score against the range of values of each bucket (line no
73-75). The space complexity of the algorithm is linear in
terms of the number of nodes i.e. O(k) where k is the number
of nodes.

IV IMPLEMENTATION AND RESULT ANALYSIS

We have implemented our method using C# language
and the code was compiled using 32-bit Microsoft Studio
2005 C# compiler. We have implemented Dijkstra's algorithm,
A* algorithm and our IA* algorithm. We have used a real
road network for comparing the algorithms and therefore feel
that the comparison results are fair and can be trusted over
artificial data sets. We have used the Banglore road network
database for our study and implementation. Qur results
obtained are shown below. We have considered a network
containing almost one lakh nodes and are trying to find the
distance between points of varying straight line distances.

Table 1: Running Time Analysis

Time(ms)
Time(ms)[Time(ms) Dijkstra
A*Star | IA* (With

Straight | Distance
Distance in.L Calculated
Kilometers| by A*Star

buckets)
5.811 8.505 31 <l 15
13.962 15.699 359 16 31
16.985 18.537 1032 47 63
23.383 24.884 3671 125 250

26.187 29.039 5734 210 422
32.279 37.214 6984 250 547

ISSN - 0973 - 1334 National Joumnal of Technology, Vol.7, No.3, September 2011

‘We have done a large number of experiments and shall
present only representative results here. Table 1 shows the
runtime performance of various algorithms along with
proposed Modified A* algorithm. From the results shown, it
is clear that the IA* algorithm outperforms the existing A*
and Dijkstra algorithm which are its major competitors. Figure
2 shows the comparison graph of our modified A* algorithm
against IA* algorithm whose sorting has been done using
buckets. Figure 3 shows the performance of A* algorithm
against Dijkstra Algorithm. In both the cases IA* algorithm
performs better than its counterparts.

—— A" Algarithm |
—u— A" algorithm)|

£

8000
T000
6000
S000
4000
2000
2000
1000

0

Figure 2 : Runtime of the Dijkstra algorithm vs Modified
A* algorithm

—— IA* Algorithm
—a— Distra Algorithm

Distanca

Figure 3: Runtime of the A* algorithm vs Modified A*
algorithm

VY CONCLUSION & FUTURE WORK

We have proposed IA* algorithm which uses
projected databases for reducing the processing space. We
also make use of bucket sorting and indexing technique to
improve the running time of our algorithm. Our technique is
computationally efficient in terms of space, time and processor
usage. We are working on to further optimize the running
time and to make the memory consumption more efficient. In
future, we plan to modify the algorithm to support dynamic
route prediction taking into account issues like traffic blocks,
road blocks etc.

ACKNOWLEDGEMENTS

We would like to thank GeoEdge Technologies Pvi.
Ltd. for providing us with the valuable infrastructure and the
maps databases which helped us test our algorithm in a real
time environment. We would like to thank Mr. Ganesh Kumar
Ponnuswamy, System Analyst, GeoEdge Technologies Pvt.
Ltd. for giving us invaluable input in the form of suggestions
and the guidance he offered us during the development of
this algorithm and its implementation.

REFERENCES

[1] F. Benjamin Zhan," Three Fastest Shortest Path
Algorithms on Real Road Networks: Data Structures
and Procedures", Journal of Geographic Information
and Decision Analysis, vol.1, no.1, pp. 69-82,2001.

[2] Wim Pijls,Henk Posty," Anew bidirectional algorithm
for shortest paths", Econometric Institute Report EI
2008

[3] FengLuand Poh-Chin Lai," A Shortest Path Searching
Method with Area Limitation Heuristics", Lecture
notes in Computer Science, 2006, NUMB 3991, pages
884-887, ISSN 0302-9743.

[4] Thomas H.Cormen ,Charles E.Leiserson,Ronald
L.Rivest, and Clifford Stein."Introduction to
Algorithms",Second Edition.MIT Press and McGraw-
Hill,2001.ISBN 0-262-03293-7.Section 24.3:Dijkstra's
algorithm, pp.595-601. *

[5] F. Benjamin Zhan and Charles E. Noon ," Shortest
Path Algorithms: An Evaluation using Real Road
Networks" Journal of Transportation Science Vol. 32,

ISEN - 0973 - 1334 National Joumal of Technology, Viol.7, Mo.3, September 2011

(6]

M

(8]

9

[10]

[11]

[12]

[13]

[14]

[15]

[16]

No. 1, February 1998 .

Heung Suk Hwang, "GIS-Based VRP Solver for Supply
Chain Network - 2-D and 3-D GIS Vehicle Routing
Model ", LSCM2006 (International Conference on
Logistics and Supply Chain Management), Hong
Kong, 5-7, Jan, 2006,

Zhang Ke ,LliuXiao ming ,WANG Xiao jing |
"Research on Route Planning System for Vehicle
Automatic Navigation”,Systems En gineering,2001.

M. YANG, "Application design and implementation
of GPS-GPRS location system vehicle terminals,"
Telecommunication Engineering, March, 2004, pp. 103-
106.

E. W. Dijkstra.” A note on two problems in connection
with graphs. Numerische Mathematik" pp. 269-271,
1959.

Peter E.Hart ,Nils J.Nilsson,"A formal Basis for the
heuristic Determination of Minimum Cost Paths " IEEE
Transactions on Systems Science and Cybernatics,
July 1968,

Decher,Rina,Judea Pearl," Generalized best-first search
strategies and the optimality of A*" Journal of the
ACM, Volume 32 Issue 3, July 1985.

Lu Feng, Zhou Chenghu, Wan Qing, 2000, An
improved Dijkstra's shortest path algorithm based on
quad heap priority queue and MBR searching method,
Proceedings of the 9th Spatial Data Handling
Symposium, 2000,6b:3-13.

Ahuja R.K.,Mehlhorn K_,Orlin J.B. and Tarjan R.E.,"
Faster algorithms for the shortest path problem",
Journal of the ACM , Volume 37 Issue 2, April 1990,

Amit's A *pages,URL http://theory.stanford.edu/
~amitp/Gameprogramming

A *searchalgorithm ,URL http://en. wikipedia. org/wiki/
A*_search_algorithm

Lester P,A*pathFinding for Beginners,URL:http://
www.policyalmanac.org/games/aStar Tutorial. htm

