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Abstract
The present research examines the impact of Si3N4–BN hybrid reinforcement on the machinability of a magnesium hybrid
composite in wire electrical discharge machine (WEDM). The composite is fabricated through inert gas assisted stir casting
route with silicon nitride and boron nitride as reinforcement with varying weight percentages of 0%, 5%, and 10%. Subse-
quently, the fabricated composites were machined through WEDM according to Taguchi 27 orthogonal array with varying
pulse on time (PON), pulse off time (POFF), wire feed rate (WFR), andwire tension (WT). Themachinability of the composite
was evaluated by measuring Surface Roughness (SR), Kerf Width (KW), and Cutting Velocity (CV) during WEDM. Results
reveals that the % of Si3N4 has greater influence over kerf width and cutting velocity whereas BN % has higher influence
over surface roughness. The optimization of process parameters using the Taguchi method resulted in different combinations
of parameters for each output response. Therefore, Grey Relational Analysis was applied to determine the common optimal
process parameters for all three considered output responses. The identified input parameters that yielded the higher CV,
minimal SR and KW were as follows: 0% Si3N4 and BN, 6 µs PON, 14 µs POFF, 6 m/min WFR, and 10 g WT. Artificial
Neural Network model has been developed to predict the output response CV, SR and KW. The 6–8–3 network model predicts
the output responses with better accuracy with overall R2 value of 99.3% .

Keywords Magnesium composite · Silicon nitride · Wire electrical discharge machining · Taguchi · Grey relational analysis ·
Artificial neural network

1 Introduction

Metal Matrix Composites (MMCs) are composite materials
consisting of two or more materials that possess enhanced
properties to meet the specific demands of industries requir-
ing lightweight, high-strength, and wear-resistant materials
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[1]. These composites are utilized in various engineering
sectors such as automotive, aerospace, defence, etc. By
incorporating hard ceramic materials into the matrix metal,
the strength of the composite is improved, while the addi-
tion of solid lubricants enhances its tribological properties
[2]. Among the various MMCs, magnesium-based compos-
ites have garnered significant attention attributable to their
high strength-to-weight ratio. Commonly used reinforce-
ment materials for magnesium MMCs include SiC, Al2O3,
B4C, MoS2, Si3N4, graphite, TiC, and even fly ash and
rock dust [3]. While these reinforcements enhance the mate-
rial’s properties, they also adversely affect its machinability
[4]. Traditional machining techniques struggle to process
MMCs due to the presence of hard ceramic materials, which
lead to rapid tool wear. Consequently, the development of
non-conventional machining processes has emerged as a
viable alternative for machining these challenging metal
matrix composites. Among these non-conventional methods,
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WEDM is a commonly employed process for cutting com-
plicated shapes in metals.

In the WEDM process, a sequence of electric sparks are
generated between the tool and workpiece to shape the mate-
rial. Typically, a wire made of copper or brass is used as the
tool. During machining, dielectric fluid is made to flow con-
tinuously to flush the cutting region and to prevent direct
contact between the tool and workpiece [5]. Unlike con-
ventional machining methods that rely on mechanical force,
WEDM achieves material removal by utilizing electrical
energy. In this process, plasma arc is generated by the elec-
tric current between the tool electrode and thework, resulting
in expulsion of high thermal energy that melts the work [6].
The supply of electric current is in pulsating approach, which
result in intermittent development of plasma arc.While extin-
guishing an electric spark, the dielectric fluid flow eliminates
the melted metal and keeps a consistent distance amongst the
tool and work. WEDM is suitable for machining all types of
conductive materials and is commonly used in the fabrica-
tion of fixtures, tools, and dies [7]. However, despite being
more capable and cost-effective than conventional methods
for machining MMCs, the WEDM process is more complex
and involves numerous factors during machining [8]. Key
factors that influence the machining performance of WEDM
include the properties of the workpiece material, machine
settings, dielectric fluid, and tool material [9]. Even a slight
adjustment in the combinationof these parameters can impact
the final quality of the machined part. The performance of
WEDM can be assessed by measuring SR, KW, material
removal rate (MRR), CV, tool wear (TW), and other relevant
factors.

Kavimani et al. [10] performed research on the WEDM
of Magnesium–Graphene composite to analyze the impact
of material and machine factors affecting the MRR and SR.
The parameters investigated included weight% of reinforce-
ment, SiC doping percentage, PON, POFF, and WFR. The
experiments were designed using the Taguchi method, and
Grey Relational Analysis (GRA) was employed to optimize
multiple responses. The results indicated thatMRR increased
with higher PON and wire feed rate, while surface roughness
increased with longer PON. The GRA approach helped iden-
tify optimum process parameters that resulted in maximum
MRR and minimum surface roughness. Manikandan et al.
[11] developed a predictive model using an ANFIS (Adap-
tive Neuro-Fuzzy Inference System) model to evaluate the
machinability characteristics of LM6/SiC/Dunit composite.
GRA consolidate multiple responses or variables into a sin-
gular response referred to as the grey relational grade, which
was then predicted using ANFIS. The duration of the PON
was observed to have a significant impact on both the MRR
and RA. Kumar et al. [12] conducted an experimental study
to examine the effects of various process parameters on the

WEDMof anAl/SiC/Gr/Fe2O3 hybrid composite. The inves-
tigated process parameters included current, voltage, PON,
POFF, WFR, and WT. Taguchi method was employed to
optimize the parameters, leading to significant improvements
in material removal rate (33.72%) and spark gap (27.28%).
Based on the ANOVA results, it was found that the PON time
had the most significant influence on SR in the studied pro-
cess. Following PON, peak current and POFFwere identified
as the next influential factors affecting surface roughness.
Kumar et al. [13] studied the machinability of Al/SiC/B4C
hybrid composite in the WEDM process. The effect of cur-
rent, PON time, WFR, and B4C content on KW and cutting
speed was analyzed using response surface methodology
(RSM). Vijayabhaskar and Rajmohan [14] aimed to optimize
the WEDM process parameters for machining magnesium
matrix composites reinforced with nano-SiC particles. RSM
was employed, and the results showed that voltage and PON
were the major contributing factors to MRR. Increasing the
voltage resulted in higherMRRbut also increasedSR. Sadha-
sivam and Ramanathan [15] used the TOPSIS (Technique for
Order Preference by Similarity to Ideal Solution) method to
optimizemultiple objectives inWEDMof an aluminumcom-
posite. The objectives were to minimize SR and maximize
MRR.OptimumPON, voltage, andWFRwere determined to
be 6 µs, 50 V, and 4 m/min, respectively. Voltage was iden-
tified as the significant factor affecting MRR, followed by
PON. Pattnaik and Sutar [16] developed a predictive model
for WEDM parameters using a combination of Taguchi and
Neural Networkmethods. The suggested optimum values for
achieving maximumMRRwere a PON of 6µs, POFF of 7/9
µs, current of 6 Amp, and servo sensitivity of 8mm/min. The
developed predictive model demonstrated good performance
with less than 5%when comparing the actual values with the
predicted values.

Suresh and Sudhakara [6] carried out a study that focused
on investigating machining characteristics of aluminium
composite reinforced with nano-SiC particles using the
WEDM process. They investigated the impact of process
parameters such as gap voltage, POFF, PON, and current
on MRR and SR. The findings of the study demonstrated
that PON and POFF were the key parameters influencing
the machining outcomes. Increasing the SiC particle content
in the aluminum matrix led to a reduction in MRR and SR.
Ravi Kumar [17] focused on optimizing theWEDMmachin-
ing parameters for Al/WC composite using a desirability-
based multi-objective optimization technique. Based on the
ANOVA results, it was determined that the weight% of WC
had the most substantial impact on MRR, while peak cur-
rent was the key factor affecting SR. The optimal parameters
for maximizing MRR and minimizing SR were identified
as peak current of 116.81 A, PON of 4 s, POFF of 9.99
s, WFR of 14.77 mm/min, and WC content of 2.05%. Dey
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Fig. 1 a Fabricated Mg metal
matrix composite, bWEDM
machining setup, c Surface
roughness measuring setup

and Pandey [18] employed a grey-basedmulti-objective opti-
mization technique to optimize the PON, POFF, WFR, and
weight% of cenosphere during theWEDM of Al/cenosphere
composite material. The optimized machining conditions
were found to be a PON of 13.992 µs, POFF of 52.00 µs,
WFR of 5.398 m/mm, and cenosphere % of 3.209. Gopal
et al. [19] utilized GRA to identify a single optimal com-
bination of process parameters for achieving minimum SR
andmaximumMRR in theWEDMofMg/CRT/BN compos-
ite. Thankachan et al. [20] conducted an optimization study
on the WEDM process parameters for friction stir processed
Cu/BN surface composite using Taguchi-GRA. Their objec-
tive was to achieve maximum MRR and minimum SR. By
employing GRA, they identified the optimal combination of
input control factors that resulted in the highest MRR (20.19
mm3/min) and lowest SR (3.01 µs) values.

The manufacturing industries are advancing their tech-
nologies towards machining highly complex shapes with
high degree of accuracy. Among non traditional machining

process,WEDM ismost commonly utilized because of mini-
mal material wastage and capability to manufacture complex
shapes. Hence, it is the need of the hour to study and improve
themachinability characteristic of newly developed compos-
ite materials [21, 22]. The literature study showed that most
of the WEDM process study were conducted on aluminium
MMCand copperMMC.Few studieswere dedicated to study
the machining characteristics of magnesium matrix compos-
ite. In order to bridge this research gap, the current study
is intended to investigate the machining characteristics of
magnesium metal matrix composite reinforced with Silicon
Nitride and Boron Nitride using Taguchi method. Through
literature study it has been observed that, different optimum
process parameters were obtained for each output response.
To overcome the conflict of optimum parameter, a simple
multi-objective optimization technique GRA has been uti-
lized to optimise the process parameters. Artificial Neural
Network model has been developed to predict the machining
characteristic at any combination of process parameters.
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Fig. 2 SEM micrograph of fabricated composite

2 Materials andmethods

In this study, the selected matrix material is magnesium
alloy, which is widely utilized in aerospace industries. The
intention is to enhance the properties of the matrix metal
by incorporating different ceramic particles, such as Silicon
Nitride (Si3N4) and Boron Nitride (BN). Si3N4, being a hard
ceramic particle, improves the strength and hardness of the
matrix metal, while BN, acting as a solid lubricant, enhances
its wear resistance. The particle size of the reinforcements
used was smaller than 10 µm. To fabricate the hybrid metal
matrix composites, the stir casting method, a liquid process-
ing route, was employed. The magnesium matrix metal was
melted in a furnace, and a specific amount of the two rein-
forcement particles was added to the molten magnesium.
The mixture was thoroughly stirred using a motor-driven
stirrer and then poured into a rectangular die to solidify. Dif-
ferent weight percentages of each reinforcement (0%, 5%,
and 10%) were added to examine their effects on the base
material’s properties. The fabricated composite material is
shown in Fig. 1a. The distribution of reinforcement particle
in matrix material has been analysed using scanning electron
microscopic image shown in Fig. 2. The microscopic image
revealed that the reinforced particles were evenly distributed
in matrix material.

To investigate the machining characteristics of the devel-
oped composites, WEDM controlled by a computer shown
in Fig. 1b was utilized. A 0.25 mm diameter copper wire was
employed for the machining process, with distilled water
as the dielectric fluid flowing at the rate of 9 l/min. The
experiments were conducted by varying the input process
parameters, including PON, POFF,WFR, andWT. The study
involved adjusting each parameter at three different levels,
which are specified in Table 1. The range of process parame-
ters was determined based on prior research and preliminary

Table 1 Input process parameters and their levels

Parameters Unit Levels

I II III

Wt% of Si3N4 % 0 5 10

Wt% of BN % 0 5 10

Pulse ON time (PON) µs 6 10 14

Pulse OFF time (POFF) µs 14 18 20

Wire feed rate (WFR) m/min 6 8 10

Wire tension (WT) g 8 10 12

experiments. L27 orthogonal array was selected for design-
ing experiments in order to reduce number of trials [23, 24]
as shown in Table 2. The machining characteristics of the
composites were evaluated by measuring three parameters:
CS, SR and KW. SR was measured using a Mitutoyo SJ302
model surface roughness tester shown in Fig. 1c, while the
kerf width of each experiment was measured using a tool
maker microscope.

3 Result and discussion

3.1 Effect of process parameters on kerf width

In the WEDM process, the mechanism of material removal
involves the melting and evaporation of metal surrounding
the cutting wire, which carries pulsed current. As a result,
the width of the cut is slightly larger than the diameter of the
cutting wire. Figure 3 demonstrates the impact of considered
parameters on the KW produced during WEDM process. As
the weight% of Si3N4 particles increases, there is an equiva-
lent rise in the kerf width. Likewise, the kerf width initially
increases with an increase in the weight% of BN particles,
but after reaching 5%, the kerf width gradually decreases.
This phenomenon can be attributed to the discharge of sparks
amid the electrode wire and the composite, which melts the
material and removes the added reinforcement embedded in
the base material. The detachment of the reinforced particles
along the electrode wire path contributes to the increase in
the width of the cut [25]. Kerf width also increases with an
increase in PON. This is because a longer PON results in a
longer spark duration between the electrodes, leading to a
greater heat input. The higher heat input melts more mate-
rial from the workpiece, resulting in a larger cutting width.
The kerf width tends slightly decrease after 10 µs PON, this
might be due to excessive increase in PON result in higher
electrode wear. The increased electrode wear result in reduc-
tion of size of electrode which in turn produces smaller kerf
width.
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Table 2 Design of Experiments with output responses

Sl. no. Input parameters Output reponses

Wt % of Si3N4 Wt % of BN PON (µs) POFF (µs) WFR m/min WT (g) KW (mm) SR (µm) CV (mm/min)

1 0 0 6 14 6 8 0.268 1.568 3.374

2 0 0 6 14 8 10 0.272 1.772 3.425

3 0 0 6 14 10 12 0.276 1.928 3.386

4 0 5 10 18 6 8 0.286 1.774 2.769

5 0 5 10 18 8 10 0.289 1.886 2.623

6 0 5 10 18 10 12 0.295 2.120 2.424

7 0 10 14 20 6 8 0.279 1.826 1.957

8 0 10 14 20 8 10 0.282 2.022 2.215

9 0 10 14 20 10 12 0.288 2.480 1.852

10 5 0 10 20 6 10 0.298 1.368 2.350

11 5 0 10 20 8 12 0.301 1.685 2.522

12 5 0 10 20 10 8 0.307 1.642 2.150

13 5 5 14 14 6 10 0.29 2.165 2.700

14 5 5 14 14 8 12 0.294 2.662 2.565

15 5 5 14 14 10 8 0.299 2.988 2.488

16 5 10 6 18 6 10 0.312 2.120 1.757

17 5 10 6 18 8 12 0.315 2.246 1.414

18 5 10 6 18 10 8 0.321 2.332 1.347

19 10 0 14 18 6 12 0.332 1.826 2.407

20 10 0 14 18 8 8 0.336 2.125 1.995

21 10 0 14 18 10 10 0.342 2.420 1.966

22 10 5 6 20 6 12 0.338 1.546 1.333

23 10 5 6 20 8 8 0.342 2.126 1.228

24 10 5 6 20 10 10 0.348 2.120 1.128

25 10 10 10 14 6 12 0.309 2.728 1.863

26 10 10 10 14 8 8 0.314 2.820 1.454

27 10 10 10 14 10 10 0.32 2.698 1.321

The ANOVA for the kerf width was executed to recognize
the significant parameters and its influence % on kerf width.
Table 3 shows that, except for WT, all the other parameters
were found to have a significant impact on the kerf width.
The weight% of Si3N4 is the major contributing parameter,
accounting for 78.4% of the influence on the kerf width, fol-
lowed by the POFF at 14.9%. The remaining parameters have
a lesser effect on the kerf width compared to the weight% of
Si3N4 and the POFF.

3.2 Effect of process parameters on surface
roughness

Figure 4 illustrates the consequence of independent parame-
ters on SR. The composite material becomes more challeng-
ing to machine when the amount of ceramic reinforcement in

the magnesiummatrix increases. Themain effect plot clearly
demonstrates that an increase in the weight% of both Si3N4

and BN leads to higher surface roughness. This effect of
higher roughness is concerned to the higher melting temper-
ature of the reinforced ceramic material. During machining,
the spark between the electrode and the workpiece easily
melts the magnesium matrix material, while the reinforced
ceramic material cannot be melted due to its higher melt-
ing temperature. As a result, the magnesium matrix material
around the ceramic reinforcement in the wire travel path
gets melted, causing the reinforcement to protrude out of the
machined surface. The increase in the proportion of silicon
nitride and boron nitride increases the number of particles in
the wire travel path, leading to higher surface roughness due
to the existence of more protruding particles on themachined
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Fig. 3 Effect of process parameter on kerf width

Table 3 ANOVA for kerf width
Source DF Seq SS Adj SS Adj MS F p

wt% of Si3N4 2 0.011084 0.011084 0.005542 24,938 0

wt% of BN 2 0.000154 0.000154 7.68E−05 345.5 0

PON time 2 0.00031 0.00031 0.000155 696.5 0

POFF time 2 0.002093 0.002093 0.001046 4708.5 0

WFR 2 0.000398 0.000398 0.000199 895.5 0

WT 2 1.6E−06 1.6E−06 8E−07 3.5 0.059

Error 14 3.1E−06 3.1E−06 2E−07

Total 26 0.014042

surface [19]. Furthermore, rise in PON results in higher sur-
face roughness during the WEDM process [26]. The PON
decides the duration of the electric spark between the elec-
trode and the workpiece. A longer PON cause a longer spark
duration, which dissipates more heat and melts more mate-
rial. The melting of additional material creates craters on
the machined surface owing to the presence of reinforce-
ments [27, 28]. These craters contribute to higher surface
roughness. Conversely, a higher POFF yields smoother sur-
face during theWEDM process. This can be attributed to the

availability of sufficient time to wash away the debris, pre-
venting the recasting of removed material during subsequent
sparks. Furthermore, there is a direct relationship between the
electrode WFR and the SR value of the machined surface.
Specifically, as the electrode WFR increases, the roughness
of themachined surface also increases. A higherWFR causes
the electrode wire to move faster, introducing a new surface
for spark generation. The newer wire surface produces more
efficient sparks that penetrate thematerial deeper, whichmay
be a reason for the higher roughness value.

123



International Journal on Interactive Design and Manufacturing (IJIDeM)

Fig. 4 Effect of process parameter on surface roughness

Table 4 ANOVA for surface
roughness Source DF Seq SS Adj SS Adj MS F p

wt% of Si3N4 2 0.51843 0.51843 0.25922 11.02 0.001

wt% of BN 2 1.37992 1.37992 0.68996 29.34 0

PON 2 0.43473 0.43473 0.21737 9.24 0.003

POFF 2 1.13569 1.13569 0.56785 24.15 0

WFR 2 0.82517 0.82517 0.41259 17.55 0

WT 2 0.03036 0.03036 0.01518 0.65 0.539

Error 14 0.32918 0.32918 0.02351

Total 26 4.65349

ANOVA was performed to ascertain the significance of
each process parameter on SR, as publicized in Table 4. The
ANOVA was performed at a 95% confidence level, meaning
that the parameter having p-value < 0.05 possess significant
effect on output response. With the exception of WT, all
the process parameters have p-values < 0.05. This implies
that WT lacks significant effect on the surface roughness
value during the WEDM of Mg/Si3N4/BN hybrid composite
[29]. Among the significant parameters, the weight% of BN

contributes the highest percentage of 29.65% to the SR, fol-
lowed by the POFF with a contribution of 24.4%. The WFR,
weight%of Si3N4, and PONcontribute 17.73%, 11.14%, and
9.34% respectively to the surface roughness.

3.3 Effect of process parameters on cutting velocity

Figure 5 illustrates the variation of CV regarding change in
each process parameter. To optimize the cutting velocity, the
“larger the better” option was chosen for the analysis of the
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Fig. 5 Effect of process parameter on cutting velocity

Table 5 ANOVA for cutting
velocity Source DF Seq SS Adj SS Adj MS F p

wt% of Si3N4 2 4.83638 4.83638 2.41819 148.32 0

wt% of BN 2 3.91639 3.91639 1.9582 120.11 0

PON 2 0.17391 0.17391 0.08696 5.33 0.019

POFF 2 1.96275 1.96275 0.98137 60.19 0

WFR 2 0.33471 0.33471 0.16735 10.26 0.002

WT 2 0.05962 0.05962 0.02981 1.83 0.197

Error 14 0.22825 0.22825 0.0163

Total 26 11.51201

SN ratio. It is observed that an increase in the percentage
of reinforcement particles significantly decreases the cutting
velocity. The presence of non-conductive ceramic materials
in the path of the electrode wire obstructs spark generation,
thereby impeding the forward movement of the wire and
leading to a decrease in cutting velocity. Furthermore, an
increase in the PON induce increase in cutting velocity. A
longer spark duration melts more material around the elec-
trodewire and createsmore space ahead of thewire, enabling

it to move forward rapidly without any hindrance [30]. Con-
versely, the POFF, which is the duration without spark, have
opposite effect on cutting velocity.An increase in POFF leads
to decreased cutting velocity as it extends the idle time with-
out spark, resulting in a slower cuttingprocess [31]. TheWFR
demonstrates a direct proportionality with cutting velocity.
It is known that a higher WFR increases the intensity of the
spark, leading to a greater amount ofmaterial erosion. Conse-
quently, at higher material removal rates, the cutting velocity
tends to be higher as well.
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Table 6 Optimum process parameter obtained through Taguchi method

Parameter Optimum parameter for

min Kerf width min Surface roughness Max cutting velocity

Wt% of Si3N4 0 0 0

Wt% of BN 0 0 0

PON 10 6 14

POFF 14 20 14

WFR 6 6 6

WT 10 10 12

Kerf width (mm) 0.258 0.318 0.293

Surface roughness (µm) 2.166 1.271 2.365

Cutting velocity (mm/min) 2.492 1.985 3.510

Table 7 Grey relational analysis
result Normalization Grey relational coefficient Grey

relational
gradeCutting

velocity
Surface
roughness

Kerf
width

Cutting
velocity

Surface
roughness

Kerf
width

0.978 0.877 1.000 0.957 0.802 1.000 0.920

1.000 0.751 0.950 1.000 0.667 0.909 0.859

0.983 0.654 0.900 0.967 0.591 0.833 0.797

0.714 0.749 0.775 0.636 0.666 0.690 0.664

0.651 0.680 0.738 0.589 0.610 0.656 0.618

0.564 0.536 0.663 0.534 0.519 0.597 0.550

0.361 0.717 0.863 0.439 0.639 0.784 0.621

0.473 0.596 0.825 0.487 0.553 0.741 0.594

0.315 0.314 0.750 0.422 0.421 0.667 0.503

0.532 1.000 0.625 0.517 1.000 0.571 0.696

0.607 0.804 0.588 0.560 0.719 0.548 0.609

0.445 0.831 0.513 0.474 0.747 0.506 0.576

0.684 0.508 0.725 0.613 0.504 0.645 0.587

0.626 0.201 0.675 0.572 0.385 0.606 0.521

0.592 0.000 0.613 0.551 0.333 0.563 0.482

0.274 0.536 0.450 0.408 0.519 0.476 0.468

0.125 0.458 0.413 0.364 0.480 0.460 0.434

0.095 0.405 0.338 0.356 0.457 0.430 0.414

0.557 0.717 0.200 0.530 0.639 0.385 0.518

0.377 0.533 0.150 0.445 0.517 0.370 0.444

0.365 0.351 0.075 0.440 0.435 0.351 0.409

0.089 0.890 0.125 0.354 0.820 0.364 0.513

0.044 0.532 0.075 0.343 0.517 0.351 0.404

0.000 0.536 0.000 0.333 0.519 0.333 0.395

0.320 0.160 0.488 0.424 0.373 0.494 0.430

0.142 0.104 0.425 0.368 0.358 0.465 0.397

0.084 0.179 0.350 0.353 0.379 0.435 0.389
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Fig. 6 Effect of process parameters on grey relational grade

ANOVA table for cutting velocity, as shown in Table 5,
helps identify the most dominant parameter. Similar to sur-
face roughness, WT does not have a major impact on cutting
velocity. However, it was detected that all the other param-
eters had a noteworthy influence on the output. Among the
parameters, the weight% of Si3N4 and BN demonstrates the
greatest influence on cutting velocity, contributing 42% and
34% respectively. This indicates that the composition of the
ceramic particles in the composite material plays a crucial
role in determining the cutting velocity. The POFF also has a
notable contribution of 17%, while the remaining parameters
have relatively minor effects on cutting velocity.

3.4 Single objective optimization of process
parameters

The selection of the best process parameters to accomplish
minimal KW, minimal SR, and maximum CV was analyzed
using Taguchi S/N ratio and summarized in Table 6. Con-
firmation experiment was conducted by setting the optimum
parameter obtained through Taguchi method and the result
is shown in Table 6. It is important to note that the optimal
parameters for each response are not identical. This means

that the parameters that yield the minimumKWmay not pro-
duce the best surface finish, and the parameters that result in
better surface finish may not be optimal for cutting velocity.
Consequently, a single combination of process parameters
that simultaneously optimize all responses cannot be iden-
tified through single-objective optimization. In such cases,
multiple-objective optimization techniques can be employed
to identify a single optimum combination of process parame-
ters that can achieve better results for all the desired responses
[32]. Due to simplicity and ease of calculation, GRAmethod
has been adopted for optimizing themultiple objectives in the
current research work. GRAmethod optimizes all the objec-
tives simultaneously and generate a single optimum result.

3.5 Grey relational analysis

Grey relational analysis (GRA) is part of grey system the-
ory, which is suitable for solving problems with complicated
interrelationships between multiple factors and variables.
GRA method perform better for the problems dealing with
limited, and uncertain data set. GRAmethod is more suitable
for realworld problemwhere datamight not be perfectly clear
or may contain noise. GRA is multiple objective optimiza-
tion techniquewhich combines all the objective functions and
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transforms the multiple objective problem into single objec-
tive problem. The procedure for GRA explained by Sudhagar
et al. [33] has been adopted for calculating the normalized
value, grey relation coefficient and grey relational grade.

The results obtained from Grey Relational Analysis are
presented in Table 7. Among all the experimental trials con-
ducted, trial number 1 achieved the highest grey relational
grade of 0.92. This indicates that experimental trial 1 yielded
better surface roughness, kerf width, and cutting velocity

compared to the other 26 experimental trials. However, it
should be noted that only a comparison among the con-
ducted experimental trials can bemade based on the table. To
identify the process parameters combination that can yield
maximum GRG, the mean GRG for each level of the input
process parameters needs to be computed. The mean GRG
at each level of the input process parameters are shown in
Fig. 6. The level with the maximum mean GRG for each

Fig. 7 Neural Network architecture

Table 8 ANOVA for GRG
Source DF Seq SS Adj SS Adj MS F p

Wt% of Si3N4 2 0.279363 0.279363 0.139681 356.38 0

Wt% of BN 2 0.145078 0.145078 0.072539 185.07 0

PON 2 0.015255 0.015255 0.007627 19.46 0

POFF 2 0.041569 0.041569 0.020784 53.03 0

WFR 2 0.0456 0.0456 0.0228 58.17 0

WT 2 0.001107 0.001107 0.000553 1.41 0.276

Error 14 0.005487 0.005487 0.000392

Total 26 0.533459
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Table 9 Optimum process parameter obtained through GRA

Wt % of
Si3N4

Wt % of
BN

PON Time
(µs)

P OFF time
(µs)

Wire Feed in
m/min

Wire
Tension
(g)

Kerf Width in
mm

Surface
Roughness
(µm)

Cutting
Velocity
mm/min

0 0 6 14 6 10 0.27 1.612 3.398

Fig. 8 Regression plot of developed model

process parameter is considered the optimumvalue. The opti-
mal process parameter combination identified as follows: 0%
Si3N4 and BN reinforcement percentage, 6 µs PON, 14 µs
POFF, 6m/minWFR, and 10 gWt. TheANOVA for theGRG
was also calculated and presented in Table 8. The process

parameters with a p-value less than 0.05 are deemed to have
a substantial effect on the GRG. According to the ANOVA
results, all the process parameters, except forWT, have a sig-
nificant contribution to the GRG. Confirmation experiment
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Fig. 9 Performance plot of developed model

was conducted with the GRA identified optimal parameter
setting and the result obtained were tabulated in Table 9.

3.6 Neural networks modelling

GRA method have the capability to find the best solution
among the given alternatives but it fails to predict the output
response for any given input parameter combination. In order
to address the shortcoming of GRA method, ANN has been
adopted to develop a predictive model. The ANN model has
the capability to predict the output response for any given
combination of input process parameters with better accu-
racy. Artificial Neural Networks (ANNs) are of paramount
importance when it comes to predicting output parameters
in diverse fields, owing to their exceptional capabilities in
handling complex data relationships [34]. ANNs have made
a significant impact across a wide array of industries and
applications. ANNs is inspired by the structure and function
of the human brain [35, 36].

In the current work, 70% of the experimental data were
used for training ANN and 30% data were used for testing
the network model. Among the 27 input values, 19 samples
were selected for training the ANNmodel and the remaining
8 data sets were used for validating the developed model.
In this research 6–8–3 architecture (Fig. 7) is used, an input
layer with 6 neurons, a single hidden layer with 8 neurons,
and an output layer with 3 neurons. Each of these layers
serves a distinct purpose in the network’s operation. The
input layer is responsible for receiving the raw input data
or features. In this case, it has 6 neurons, which means that
the network expects input data with 6 distinct features or

attributes. There is a single hidden layer with 8 neurons. Each
neuron in the hidden layer receives input from all 6 neurons
in the input layer and performs weighted computations, fol-
lowed by the application of an activation function. During
the training phase ANNs adjust the weights of their connec-
tions iteratively using algorithms, to minimize the difference
between their predictions and the true target values in the
training dataset. The output layer is responsible for produc-
ing the network’s predictions. In this case, it consists of 3
neurons, indicating that the network is designed to produce 3
distinct predictions. The output layer’s neurons receive input
from the 8 neurons in the hidden layer and, performweighted
computations and apply an activation function to produce the
final output values.

The regression model of trained, tested and validated data
sets depicted in Fig. 8. The R-squared (R2) values indicate
the proportion of variance explained by developed model
for different datasets. R2 value of 1 for the training dataset
suggests that ANNs model perfectly fits the training data.
In other words, model can explain all the variability in the
training data, which can be an indication of potential overfit-
ting. R2 value of 0.99368 for the validation dataset indicates
that developed model explains approximately 99.37% of the
variability in the validation data. This is a high R2 value
and suggests that model is performing very well on data it
hasn’t seen during training. It indicates good generalization.
R2 value of 0.97636 for the testing dataset implies that model
explains about 97.64% of the variability in the testing data.
This is also a strong performance, although it’s slightly lower
than the R2 for the validation dataset. It’s still indicative of a
good model. The overall R2 value of 0.99373 represents the
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Fig. 10 Experimental VS predicted

Table 10 Comparison between experimental and ANN predicted values

S.l
no.

Experimental value ANN predicted value % Error

KW
(mm)

SR
(µm)

CV
(mm/min)

KW
(mm)

SR
(µm)

CV
(mm/min)

KW (mm) SR
(µm)

CV
(mm/min)

1 0.268 1.568 3.374 0.259 1.565 3.316 3.36 0.19 1.72

5 0.289 1.886 2.623 0.284 1.814 2.674 1.73 3.82 - 1.94

6 0.295 2.120 2.424 0.298 2.197 2.451 - 1.02 - 3.63 - 1.11

7 0.279 1.826 1.957 0.275 1.849 1.89 1.43 - 1.26 3.42

16 0.312 2.12 1.757 0.318 2.19 1.69 - 1.92 - 3.30 3.81

24 0.348 2.12 1.128 0.339 2.18 1.141 2.59 - 2.83 - 1.15
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combined performance of ANNs model across all datasets,
including training, validation, and testing. It suggests that, the
model can explain approximately 99.37% of the variability
in the data across all sets.

The training and evaluation of neural network model
is depicted in Fig. 9. The best validation performance is
0.015334, and it occurred at epoch 23. This indicates that
at epoch 23 of the model achieved the lowest validation loss
or error, which is a positive sign. Lower validation loss typi-
cally indicates better model performance. The gradient value
of 6.6908× 10−6 at epoch 19 represents the rate of change of
the loss function with respect to the model’s parameters dur-
ing training. A small gradient value suggests that the model
is converging well and may be close to optimal parame-
ter values. Validation checks � 6 at epoch 19 refer to the
number of times validation was performed during training.
It’s common to validate the model’s performance at regu-
lar intervals (epochs) to monitor its progress and potentially
implement early stopping if performance does not improve.
Overall information suggests that developedANNmodel has
undergone training, and at epoch 23, it achieved a good level
of validation performance with a low loss and small gradient,
indicating that it is learning effectively. FromFig. 10 it can be
observed that the trained model has better predictability. The
ANN predicted values of output response were compared
with the experimental values and the percentage of error was
calculated and shown in Table 10. The percentage of error in
prediction is less than 5%, this showed that the ANN model
predicts the output with better accuracy.

4 Conclusion

Based on the current study and analysis conducted on the
WEDM machining of Mg/Si3N4/BN hybrid metal matrix
composite, the following conclusions can be drawn:

• The addition of ceramic reinforcements Si3N4 and BN
in the magnesium matrix has a significant impact on the
machinability of the material in WEDM. The presence of
reinforcements leads to increased surface roughness, kerf
width, and decreased cutting velocity.

• The optimal process parameters for minimizing kerf width
are 0% Si3N4 and BN reinforcement, 10 µs PON, 14 µs
POFF, 6 m/min WFR, and 10 g Wt.

• The optimal process parameters for minimizing surface
roughness are 0%Si3N4 andBN reinforcement, 6µs PON,
20 µs POFF, 6 m/min WFR, and 10 g Wt.

• The optimal process parameters for maximizing cutting
velocity are 0% Si3N4 and BN reinforcement, 14µs PON,
14 µs POFF, 6 m/min WFR, and 12 g Wt.

•

The optimal parameters determined through GRA are 0%
Si3N4 and BN reinforcement, 6 µs PON, 14 µs POFF,
6 m/min WFR, and 10 g Wt which yields 0.27 mm KW,
1.612 µm SR and 3.398 mm/min CV.

• ANOVA showed that all process parameters, except for
WT, have a noteworthy influence on the output responses.

• 6-8-3 network model is developed to predict the output
response. The overall R2 value is 99.3% that implies the
ANN has better ability to predict the output values.

These conclusions highlight the impact of ceramic rein-
forcements on the machinability of the Mg/ Si3N4/BN
composite in WEDM and provide optimized process param-
eters to achieve desired outcomes in terms of kerf width,
surface roughness, and cutting velocity.
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