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ARTICLE INFO ABSTRACT

The In this paper we introduce a new class of
* -continuous mapping and studied some

of its basic properties. We obtain some characterizations of such functions. Moreover we

define sub minimal structure and further study certain properties of
* -closed sets,

normal and regularity, further we study
* open sets and

* neighborhood.
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INTRODUCTION

Levine [9] introduced the concept of g-closed sets and studied
their properties. A subset A of a space X is g-closed if and
only if OAcl )( whenever A O and O is open. Hence
every closed set is a g-closed set. The union and intersection
of two g-closed set is g-closed set. Regular open sets and
stronger regular open sets have been introduced and
investigated by Stone [19] and Tang [21] respectively.
Complements of regular open sets and strong regular open sets
are called regular closed sets and strong regular closed sets.
Andrijecvic[1], Arya and Nour[2], Bhattacharya and
Lahiri[5],Levine[9],[10],Mashour et al[13] and Njastad[17]
introduced and investigated semi-preopen sets, generalized
semi open sets, semi generalized open sets, generalized open
sets, semi-open sets, pre-open sets, generalized open set, semi-
open sets pre-open sets and α-open sets which are some of the
weak forms of open sets and the complements of theses sets
are called the same types of closed sets respectively. Ganster
and Reilly [8] have introduced locally closed sets which are
weaker than both open and closed sets. Cameron [6] has
introduced regular semi-open sets which are weaker than

regular open sets.
* open sets and

* continuous
functions were already introduced by Palanimani and
Parimelazhagan, further the closed maps were studied.

Preliminaries

In this section we begin by recalling some definitions and
properties Let (X, ) be a topological spaces and A be a
subset. The closure of A and interior of A are denoted by

)(Acl and )int(A respectively. We recall some generalized
open sets.

Definition [9] 2.1: A subset A of a space X is g-closed if and
only if cl(A) G whenever A G and G is open.
Definition [20]2.2: A map f : X → Y is called g-closed if each
closed set F of X, f(F) is g-closed in Y .
Definition[18]2.3: A map f : X → Y is called semi-closed if
each closed set F of X, f(F) is semiclosed in Y.
Definition [15] 2.4 : A map f : X → Y is called α-open if each
open set F of X, f(F) is α-set in Y.
Definition [7]2.5 : A map f : X → Y is called pre-closed if for
each closed map F of X, f(F) is preclosed in Y.
Definition [12]2.6: A map f : X → Y is called regular-closed
if for each set F of X, f(F) is regular closed in Y.
Definition (11)2.7: A map f : X → Y is said to be strongly

continuous if )(1 Vf  is both open and closed in X for each
subset V of Y .
Definition [4] 2.8: A map f: X → Y is said to be generalized
continuous if )(1 Vf  is g-open in X for each set V of Y
Definition [15] 2.9: A subset A of a topological space X is

said to be * closed set in X if cl(int(A)) contained in U
whenever U is G-open
Remark 2.11: The following implications were well known
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3.Properties of * closed sets In this section we study some

of the properties of * closed set

Definition 3.1: A map f : X → Y is called
* closed map if

for each closed set F of X, f(F) is
* closed set.

Remark 3.2: Every g-closed map is a * closed map and
the converse is need not be true from the following example.

Example3.3: Let X = {a, b, c} and ={, x, {a}, {a,

b}},
c= {,X, {b,c}, {c}} be topologies

on X. f : X → Y each closed set f(F) is g-closed. Here {a, c}

is g-closed but not * -closed.

Theorem 3.4: A map f : X → Y is * closed if and only if
for each subset S of Y and for each open set U containing

f−1(S) there is a * -open set V of Y such that SV and
f−1(V ) U

Proof: Suppose f is
* closed. Let S be a subset of Y and U

is an open set of X such that f−1(S) U,Then V = Y −f−1(X

−U)is a
* -open set V of Y Such that SV such that f−1(V

) U.
For the converse suppose that F is a closed set of X. Then
f−1(Y −f(F)) X −F and X −F is open. By hypothesis there is

* -open set V of Y such that Y −f(F)V and f−1(V)X −
F. Therefore FX −f−1(V).Hence Y −V f(F) f(X −
f−1(V )) Y−V which implies f(F) = Y −V. Since Y −V is

* -closed if f(F) is
* -closed and thus f is a

* -closed
map.

Theorem 3.5:If f : X → Y is continuous and * -closed and

A is a
* -closed set of X then f(A) is

* -closed.
Proof: Let f(A) O where O is an open set of Y. Since f is
g-continuous, f−1(O) is an open set containing A. Hence

cl(int(A))  f−1(O) is A is
* -closed set. Since f is

* -

closed, f(cl(int(A))) is a * -closed set contained in the open
set O which implies than cl(int(f(cl(int(A))))) O and hence

cl(int(f(cl(int(A))))) O .f is a
* -closed set.

corollary 3.6: If f : X → Y is g-continuous and closed and A is

g-closed set of X the f(A)is
* -closed.

Corollary 3.7: If f : X → Y is
* -closed and continuous and

A is * -closed set of X then

fA : A → Y is continuous and * -closed set.

Proof: Let F be a closed set of A then F is
* closed set of

X. From above theorem 3.5 follows that fA(F) = f(F) is
* -

closed set of Y. Here fA is * -closed and continuous.

Theorem 3.8: If a map f : X → Y is closed and a map g : Y → 

Z is * -closed then f : X → Z is * -closed.
Proof: Let H be a closed set in X. Then f(H) is closed and (g ◦

F)(H) = g(f(H)) is
* -closed as g is

* -closed. Thus g ◦f

is * -closed.

Theorem 3.9:If f : X → Y is continuous and * -closed and

A is a
* -closed set of X then fA : A → Y is continuous

and
* -closed.

Proof: If F is a closed set of A then F is a * closed set of X.

From Theorem 3.4, It follows that fA(F) = f(F) is a * -

closed set of Y. Hence fA is
* -closed. Also fA is continuous.

Theorem 3.10: If f: X → Y is
* -closed and A = f−1(B) for

some closed set B of Y then fA : A → Y.is * -closed .
Proof: Let F be a closed set in A. Then there is a closed set H
in X such that F = A ∩H. Then fA(F) = f(A ∩H) = f(H) ∩

f(B). Since f is * -closed. f(H) is * -closed in Y. so f(H)

∩ B is
* -closed in Y. Since the intersection of a

* -

closed and a closed set is a
* -closed set. Hence fA is

* -
closed.
Remark 3.11: If B is not closed in Y then the above theorem
does not hold from the following example.
Example 3.12: Take B = {b,c}. Then A = f−1(B) = {b, c} and

{c} is closed in A but fA({b}) = {b} is not * -closed in Y

.{a} is also not * -closed in B.
4. Normal and Regularity

In this section we introduce the new class of * -regular and
studied some of its properties.

Theorem 4.1: If f: X → Y is continuous ,
* closed map

from a normal space X onto a space Y then Y is normal.
Proof: Let A, B be disjoint closed sets in Y. Then f−1(A),
f−1(B) are disjoint closed sets of X. Since X is normal, there
are disjoint open sets U, V in X such that f−1(A) U and

f−1(B) V. Since f is * -closed by theorem 3.4, there are
* -open sets G,H in Y such that A G,BH and f−1(G)

U and f−1(H) V. Since U, V are disjoint. int G, int H are

disjoint open sets.Since G is * -open, A is closed and A
G,A cl(int(G)). similarly B  cl(int(H)). Hence Y is
normal.

Theorem 4.2: If f : X → Y is an open continuous * -closed
surjection, where X is regular then Y is regular.
Proof: Let U be an open set containing a point P in Y. Let X
be a point of X such that f(X) = P. Since X is regular and f is
continuous there is an open set U such
that x Vcl(int(V)) f−1(V). Hence Pf(V)

f(cl(int(V))U. Since f is
* closed f(cl(int(V))) is

* -
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closed set contained in the open set U. It follows that
cl(int(f(cl(int(V))))U and hence
pf(V)cl(int(f(V)))U and f(V) is open. Since f is open.
Hence Y is regular.
Remark 4.3: The normality is preserved under regular closed,
continuous and surjective.

Example 4.4:In the example 3.12. It is shown that f is
* -

closed {b,c} is a regular closed set in (X, 1)and it is not

closed in (X, 2).Hence f is not regular closed.

Example 4.5: Let 1 be the countable complement topology

on the real line R and 2 be the usual topology on R and f :

(R, 1) → (R, 2) be the identity map. Then f is regular
closed by the remark immediately after the above example.

But f is not * -closed. If

A = {1/n, nN} then A is closed in (R, 1) and f(A) = A is

not
* -closed as f(A)(0, 2) and (0, 2) is open in (R,

2).But cl(int(f(A)))(0, 2).

Theorem 4.6: If A is
* -closed set of a space X then IndA ≤

IndX

Proof: It suffices to show that if IndX ≤n and A is
* -

closed set of X then IndA ≤n. We prove this theorem by
induction. The result holds trivially for n=1. Assume that for

every
* -closed set A of X , ind X ≤n−1 Ind A≤n−1.

Let X be space with Ind ≤n. Let A be a * closed set of X.
Let E be a closed set of A and G be an open set of A such that
EG. Then there exist a closed set F of X and an open set H
of X such that E = A∩F and G = A ∩H. Since E is closed in

A and A is
* -closed. Since Ind X ≤n, there is an open set V

of X such that cl(int(E))VH and Indbd(V)≤n −1. Then
V ∩ A is an open set of A such that EV ∩AG and
bdA(V ∩A) bd(V ). Now

bdA(V ∩ A) is a
* -closed set of bd(V ).By induction

hypothesis and IndbdA(V ∩A) ≤n−1. Hence IndA ≤n.

Theorem 4.7: If A is a * -closed set of a space X then dim
A≤dim X.
Proof: If dimX = 0 then dimA ≤0 = dim X. Hence dimA ≤
dimX. If dimX ≤0 then dimX = n, where n is an integer
greater than or equal to -1. If n = −1 dimX = −1which implies
that
X =and hence A = and dimA = −1 = dimX and thus
dimA ≤dimX.

Next suppose dimX = n where n ≥−1 and let A be a
* -

closed set of X. Let {u1, u2, u3, ...uk} be a finite open cover of
A. Then for i = 1, 2, 3, ...K there exist open sets.V1 of X such

that u1 = A ∩V1 . Since A is
* -closed and i

i
k vU 1 is an

open set containing A, cl(int(A)) i
i
k pvU 1 Since cl(int(A))

is a closed set, dimcl(int(A)) ≤n ,so the finite open cover
{cl(int(A∩ vi, i = 1, 2, 3, ..k} cl(int(A)) has a refinement
cl(int(A))∩wi, i = 1, 2, 3, ..k or order at most

n+1, where each w1 is open in X and cl(int(A)) ∩ w1 
cl(int(A)) ∩Vi for each i. Then {A ∩wi) : i = 1, 2, ....} is an
open cover of A refining {ui, i = 1, 2, 3, ...k} and of order not
exceeding n + 1. Hence dimA ≤n which implies that dimA
dimX.

Theorem 4.8:If A is a
* -closed set of a space X then

DindA≤DindX.
Proof : Let X be a space such that DindX = n and A be a

* -closed set of X. By using the notations of the above
thoerem, cl(int(A)) Vi. Since cl(int(A)) is a closed set,
DindA ≤n. Hence for every open cover Vi ∩cl(intA)), i = 1,
2, 3...k there is a disjoint family Wi,J =1,2,3, ...k of open sets
cl(int(A)) refining Vi ∩cl(int(A)) i = 1, 2, 3, ...k and such that
Dind(cl(int(A))- j

k
j wU 1  n−1. But A − j

k
j wU 1 

cl(int(A))− j
k
j wU 1 and A− j

k
j wU 1 = A∩(cl(int(A))−

j
k
j wU 1 is

a * -closed set of cl(int(A)) as the intersection of * -
closed set . By induction hypothesis

Dind(A− j
k
j wU 1 ) ≤n−1. Also Wj ∩A, j = 1, 2, 3...k is a

disjoint family of open sets of A refining u1, u2, u3 , ...uk Thus
DindA≤n and the theorem is proved

5. * Open sets and * Neighborhoods

In this section we introduce * neighborhoods ( * -nbhd)

topological spaces by using the notion of
* open sets and

study some properties .
Definition 5.1: Let X be the point in topological space X ,

then the set of all
* -

neighborhood of a X is called
* -nbhd system of X which

is denoted by * -N(X)
Theorem 5.2 : Let X be the topological space and each

Xx  .Let ),(*  xN be the collection of all * -
nbhd of X .then we have the following results

(i)    )(, XNXx
(ii) NxXNN   )(
(iii)

)(),( XNMNMXNN   
(iv) )()( XNMXNN    such

that M N and MYYNM   ),(

Proof : (i) Since X is * open set ,it is * -nbhd of every

,Xx Hence there exists atleast one
* -nbhd (namely

X) for each Xx  .Hence    )(, XNXx

(ii) if )( XNN   ,then N is a
* -nbhd of x

.then by definition
* -nbhd(x)N
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(iii) Let N -nbhd and MN, then there is a
* -open set U such that NUx 

Since NM , MUx  and M is
* -nbhd of

X ,Hence )( XNM  

(iv) If N  )(XN ,then there exists a * -

open set such that NMx  ,since M is a * -

open set ,it is
* -nbhd of each of its points.

Therefore )(YNM   for every MY 
Theorem 5.3: Let X be a nonempty set, for each x X, let

* -N(x) be nonempty collection of subsets of X satisfying
following conditions.

(i) N  * -N(X, )) Nx .
(ii) Let consists of the empty set and all those non-empty
subsets of U of X having the property that x U implies that

there exists an N  * -N(X) such that x NU, Then
is a topology for X.
Proof : (i) φby definition. We now show that x .

Let x be any arbitrary element of X. Since * -N(x) is non

empty, there is an N * -N(X) and so xN.
Since N is a subset of X, we have x N X.

Hence X .
(ii) Let Uλfor every λ Λ. If x U {Uλ: λ 

Λ}, then x Uλx for some λxΛ.

Since Uλx , there exists an N  * -N(x) such
that x NUλx and consequently

x NU {Uλ : λ Λ}. Hence U { Uλ : λ Λ}
.It follows that is topology for X.
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