
ScienceDirect

Available online at www.sciencedirect.com

Procedia Computer Science 233 (2024) 660–669

1877-0509 © 2024 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 5th International Conference on Innovative Data
Communication Technologies and Application
10.1016/j.procs.2024.03.255

10.1016/j.procs.2024.03.255 1877-0509

© 2024 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 5th International Conference on Innovative Data Communication
Technologies and Application

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2023) 000–000
www.elsevier.com/locate/procedia

1877-0509 © 2024 The Authors. Published by ELSEVIER B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 5th International Conference on Innovative Data Communication
Technologies and Application

5th International Conference on Innovative Data Communication Technologies and Application (ICIDCA 2024)

An Empirical Investigation of Docker Sockets for Privilege
Escalation and Defensive Strategies

Rajyashree Ra, Senthilkumar Mathib, *, Saravanan Gc, Sakthivel Md
a, bDepartment of Computer Science and Engineering,

Amrita School of Computing, Coimbatore,
Amrita Vishwa Vidyapeetham, India.

cDepartment of Artificial Intelligence and Data Science,
Erode Sengunthar Engineering College, Erode, India.
 dDepartment of Computer Science and Engineering,
Erode Sengunthar Engineering College, Erode, India.

b*m_senthil@cb.amrita.edu

Abstract

Cloud-based infrastructures often leverage virtualization, but its implementation can be expensive. Traditional coding methods can
lead to issues when transitioning code from one computing environment to another. In response, the container paradigm emerged
to offer cost-effective and agile delivery. Containers differ from full machine virtualization by compactly encapsulating the entire
software and its dependencies. Leveraging containers, developers can create more secure and efficient applications. Docker, a
prominent containerization platform, facilitates the execution of docker images. The Docker Hub serves as a popular repository for
various images. Given the importance of application security, especially in the face of threats like malware, ransomware, and data
breaches, ensuring robust security is imperative. The paper investigates vulnerabilities within Docker containers and proposes
defensive strategies to mitigate potential breaches. In addition, it investigates attacks involving Docker sockets and suggests
preventive measures for non-root users.

© 2024 The Authors. Published by ELSEVIER B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 5th International Conference on Innovative Data
Communication Technologies and Application

Keywords: Attack; Containerization; Data heist; Docker, Malware; Virtualization; Vulnerabilities.

1 Prologue

The demand for effective and secure virtualization is inclined towards a safeguarded, portable, and adaptable
environment. These solutions can be broadly categorized into two main approaches: hypervisor-based virtualization

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2023) 000–000
www.elsevier.com/locate/procedia

1877-0509 © 2024 The Authors. Published by ELSEVIER B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 5th International Conference on Innovative Data Communication
Technologies and Application

5th International Conference on Innovative Data Communication Technologies and Application (ICIDCA 2024)

An Empirical Investigation of Docker Sockets for Privilege
Escalation and Defensive Strategies

Rajyashree Ra, Senthilkumar Mathib, *, Saravanan Gc, Sakthivel Md
a, bDepartment of Computer Science and Engineering,

Amrita School of Computing, Coimbatore,
Amrita Vishwa Vidyapeetham, India.

cDepartment of Artificial Intelligence and Data Science,
Erode Sengunthar Engineering College, Erode, India.
 dDepartment of Computer Science and Engineering,
Erode Sengunthar Engineering College, Erode, India.

b*m_senthil@cb.amrita.edu

Abstract

Cloud-based infrastructures often leverage virtualization, but its implementation can be expensive. Traditional coding methods can
lead to issues when transitioning code from one computing environment to another. In response, the container paradigm emerged
to offer cost-effective and agile delivery. Containers differ from full machine virtualization by compactly encapsulating the entire
software and its dependencies. Leveraging containers, developers can create more secure and efficient applications. Docker, a
prominent containerization platform, facilitates the execution of docker images. The Docker Hub serves as a popular repository for
various images. Given the importance of application security, especially in the face of threats like malware, ransomware, and data
breaches, ensuring robust security is imperative. The paper investigates vulnerabilities within Docker containers and proposes
defensive strategies to mitigate potential breaches. In addition, it investigates attacks involving Docker sockets and suggests
preventive measures for non-root users.

© 2024 The Authors. Published by ELSEVIER B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 5th International Conference on Innovative Data
Communication Technologies and Application

Keywords: Attack; Containerization; Data heist; Docker, Malware; Virtualization; Vulnerabilities.

1 Prologue

The demand for effective and secure virtualization is inclined towards a safeguarded, portable, and adaptable
environment. These solutions can be broadly categorized into two main approaches: hypervisor-based virtualization

	 Rajyashree R et al. / Procedia Computer Science 233 (2024) 660–669� 661

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2023) 000–000
www.elsevier.com/locate/procedia

1877-0509 © 2024 The Authors. Published by ELSEVIER B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 5th International Conference on Innovative Data Communication
Technologies and Application

5th International Conference on Innovative Data Communication Technologies and Application (ICIDCA 2024)

An Empirical Investigation of Docker Sockets for Privilege
Escalation and Defensive Strategies

Rajyashree Ra, Senthilkumar Mathib, *, Saravanan Gc, Sakthivel Md
a, bDepartment of Computer Science and Engineering,

Amrita School of Computing, Coimbatore,
Amrita Vishwa Vidyapeetham, India.

cDepartment of Artificial Intelligence and Data Science,
Erode Sengunthar Engineering College, Erode, India.
 dDepartment of Computer Science and Engineering,
Erode Sengunthar Engineering College, Erode, India.

b*m_senthil@cb.amrita.edu

Abstract

Cloud-based infrastructures often leverage virtualization, but its implementation can be expensive. Traditional coding methods can
lead to issues when transitioning code from one computing environment to another. In response, the container paradigm emerged
to offer cost-effective and agile delivery. Containers differ from full machine virtualization by compactly encapsulating the entire
software and its dependencies. Leveraging containers, developers can create more secure and efficient applications. Docker, a
prominent containerization platform, facilitates the execution of docker images. The Docker Hub serves as a popular repository for
various images. Given the importance of application security, especially in the face of threats like malware, ransomware, and data
breaches, ensuring robust security is imperative. The paper investigates vulnerabilities within Docker containers and proposes
defensive strategies to mitigate potential breaches. In addition, it investigates attacks involving Docker sockets and suggests
preventive measures for non-root users.

© 2024 The Authors. Published by ELSEVIER B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 5th International Conference on Innovative Data
Communication Technologies and Application

Keywords: Attack; Containerization; Data heist; Docker, Malware; Virtualization; Vulnerabilities.

1 Prologue

The demand for effective and secure virtualization is inclined towards a safeguarded, portable, and adaptable
environment. These solutions can be broadly categorized into two main approaches: hypervisor-based virtualization

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2023) 000–000
www.elsevier.com/locate/procedia

1877-0509 © 2024 The Authors. Published by ELSEVIER B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 5th International Conference on Innovative Data Communication
Technologies and Application

5th International Conference on Innovative Data Communication Technologies and Application (ICIDCA 2024)

An Empirical Investigation of Docker Sockets for Privilege
Escalation and Defensive Strategies

Rajyashree Ra, Senthilkumar Mathib, *, Saravanan Gc, Sakthivel Md
a, bDepartment of Computer Science and Engineering,

Amrita School of Computing, Coimbatore,
Amrita Vishwa Vidyapeetham, India.

cDepartment of Artificial Intelligence and Data Science,
Erode Sengunthar Engineering College, Erode, India.
 dDepartment of Computer Science and Engineering,
Erode Sengunthar Engineering College, Erode, India.

b*m_senthil@cb.amrita.edu

Abstract

Cloud-based infrastructures often leverage virtualization, but its implementation can be expensive. Traditional coding methods can
lead to issues when transitioning code from one computing environment to another. In response, the container paradigm emerged
to offer cost-effective and agile delivery. Containers differ from full machine virtualization by compactly encapsulating the entire
software and its dependencies. Leveraging containers, developers can create more secure and efficient applications. Docker, a
prominent containerization platform, facilitates the execution of docker images. The Docker Hub serves as a popular repository for
various images. Given the importance of application security, especially in the face of threats like malware, ransomware, and data
breaches, ensuring robust security is imperative. The paper investigates vulnerabilities within Docker containers and proposes
defensive strategies to mitigate potential breaches. In addition, it investigates attacks involving Docker sockets and suggests
preventive measures for non-root users.

© 2024 The Authors. Published by ELSEVIER B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 5th International Conference on Innovative Data
Communication Technologies and Application

Keywords: Attack; Containerization; Data heist; Docker, Malware; Virtualization; Vulnerabilities.

1 Prologue

The demand for effective and secure virtualization is inclined towards a safeguarded, portable, and adaptable
environment. These solutions can be broadly categorized into two main approaches: hypervisor-based virtualization

2 Senthilkumar Mathi / Procedia Computer Science 00 (2019) 000–000

and container-based virtualization, often called OS-level virtualization. Among these, containers stand out for their
resource efficiency and versatility, making them a highly sought-after solution. They achieve efficiency by minimizing
the overhead typically associated with traditional virtual machines. Docker, an open-source virtualization platform,
caters to software developers and system architects across Windows, Linux, and macOS environments; with Docker,
various applications’ installation, testing, and hosting become feasible. This platform facilitates rapid software
deployment while optimizing resource utilization and reshaping multi-tier systems’ dynamics in cloud infrastructures.

Despite its achievements in container services, vulnerabilities persist within these systems, making them
susceptible to attacks such as denial of service, distributed denial of service, ARP spoofing, and image poisoning [1].
These potential threats target various components, including hosts, the Docker engine, and applications.

Docker’s architectural design is based on a client-server model comprising three pivotal components: the Docker
client, daemon, and registry. The Docker client plays a crucial role in creating, running, and managing Docker
containers interacting with the Docker daemon. This interaction takes place via a UNIX socket or network interface.
Through this socket, the Docker daemon connects to the Docker engine and initiates the establishment of a connection.
This mechanism depends on the nature of the socket, predominantly Unix, although alternatives like TCP and file
descriptors can be employed.

Utilizing Unix sockets in Docker allows users to access Docker as either a privileged root user or a non-root user.
Managing multiple containers is facilitated by a stream of Docker clients termed “docker-compose.”

Docker images are central to effective Docker management, managed by Docker registries to generate Docker
containers. These images encapsulate essential components like code and dependencies to establish a Docker
environment. Images can be created interactively, involving manual modifications to an existing image, resulting in a
new version. Alternatively, they can be generated through Docker files to create a new image. These files are organized
as layers, stacked where changes in the uppermost layer necessitate fewer computations to rebuild an image.

The executable instance of an image is a container, which can be created, launched, stopped, or removed using the
Docker API or command line interface [2]. These containers can access one or more networks or produce a distinct
image based on the ongoing state. Following creation, a Docker container can be activated using the “docker run”
command, establishing a writable container layer above the specified image. In conjunction with “docker commit,”
this command can modify commands within the container.

The Docker socket performance can be improved by using monitoring tools like Prometheus and cAdvisor to
monitor the performance metric, including socket latency and throughput. Socket caching library tools like docker-
sock proxy cache the socket request, thereby improving the performance. Another efficient approach to elevate the
socket performance is to leverage the Docker Container to Kubernetes for effective socket access and resource
allocation.

The paper’s structure is outlined as follows: Section 2 delves into related works, followed by section 3, which
offers insights into attack and defence orchestration. Section 4 encompasses result analysis and image examination,
while section 5 concludes the paper.

2 Literature Survey

The current section discusses the vulnerabilities in security and potential attack scenarios that can be executed
within the Docker environment.

Aparna et al. devised a comprehensive threat model, as documented in their work [1], which encompasses a
spectrum of potential attacks targeting the host system and its various layers. This study delves into the specifics of
the denial of service (DoS) attack. Vulnerabilities exist within the container layer, rendering it susceptible to diverse
attacks such as malware infiltration, DoS incidents, privilege escalation, ARP, MAC spoofing, and container escape
attempts. Furthermore, the investigation examines intrusions at different levels, encompassing the application layer
and the Docker engine. These incursions include DoS occurrences, malware infiltration, manipulation of images to
carry malicious payloads or the utilization of outdated software, the injection of evil code, exploits targeted at the
kernel, and instances of crypto-jacking. An intriguing observation from the research is the immediate surge in CPU
usage observed after the execution of a DoS attack. This phenomenon sheds light on the impact of such an attack on
system resources.

662	 Rajyashree R et al. / Procedia Computer Science 233 (2024) 660–669
 Senthilkumar Mathi / Procedia Computer Science 00 (2019) 000–000 3

Vipin et al. explore Docker images, focusing on static and dynamic security analyses to detect potential bugs. This
emphasis is driven by containers’ reliance on these images [2]. The authors outline various factors that can render
Docker images vulnerable to tampering, including insecure production practices, cryptographic misconfigurations,
issues related to decompression, and inherent vulnerabilities associated with Docker and lib-container. To address
these concerns, the research highlights using tools such as Clair, Anchore, Dagda, Notary, and Grafes. These tools
assess and identify vulnerabilities in the Docker images, ensuring a comprehensive evaluation of their attack
susceptibility.

Ahmet et al. provide valuable insights into vulnerabilities associated with web applications [3]. They highlight the
significance of the “docker content trust” security feature, introduced in version 1.8. Once enabled, this feature
safeguards against downloading unsigned Docker images. It plays a critical role in ensuring the verification,
authentication, and preservation of the integrity of Docker images. Furthermore, the researchers delve into enhancing
security measures by controlling container resource consumption. It can be achieved by utilizing the “docker run”
command, which limits the resources allocated to containers. This practice improves security considerations by
preventing excessive resource consumption and potential vulnerabilities.

The research outlined in [4] conducted comprehensive penetration testing within the Docker environment. This
testing encompassed various attack scenarios, including DoS, Docker container escape, and side-channel attacks,
which were meticulously analyzed. Viewing the container as an initial point of entry, an attacker, upon gaining access,
undertakes scrutinizing the container’s privileges and potential vulnerabilities. Once identified, these weak points
become the focus of the attacker’s efforts, often leading to targeted attacks such as ARP poisoning, MAC flooding,
and sniffing. In the context of the Docker daemon, vulnerabilities emerge during the parsing of files. A crucial
consideration is whether these vulnerabilities can extend their impact beyond the container to compromise the host
system. It is especially relevant due to the potential of misconfigurations and the likelihood of a series of attacks
originating from remote access authentication. Also, the research highlights how the broader environment influences
security risks. Importing images from external sources introduces the possibility of man-in-the-middle attacks or
image hijacking, as these externally sourced images might be tampered with or compromised. The research
underscores the multifaceted nature of security threats within Docker environments, ranging from the container’s
internal vulnerabilities to the implications for the host system and the broader ecosystem.

Jyoti et al. have conducted a comprehensive assessment of the security landscape surrounding Docker containers,
a review currently under evaluation [5]. Given the surge in cloud computing and Docker adoption due to their
advantageous portability and adaptability in application development, a significant concern arises regarding the
security of images sourced from diverse repositories. To address this, the authors propose using continuous integration
and continuous deployment (CI/CD) practices as part of the software development lifecycle [6]. This approach ensures
a meticulous evaluation of Docker images’ integrity. The investigation leverages tools such as VirusTotal to detect
potential malicious elements within images. In parallel, they execute a Docker instance with tcpdump, facilitating the
detection of suspicious network activities. To estimate the efficacy of their proposed technique, they conducted
experiments involving deliberately vulnerable images. The subsequent evaluation measures the precision with which
their methodology identifies these vulnerabilities, stating its robustness.

In the investigation detailed in [7], an examination encompassing 2,227,244 images was conducted, focusing on
their metadata sourced from the Docker Hub. This investigative effort yielded valuable insights. The researchers
additionally propose the implementation of dynamic scans for individual packages installed within active containers,
an approach that significantly enhances security. Moreover, they advocate for utilizing “apt-get-upgrade” to elevate
packages to secure versions within operational containers, contributing to an elevated level of safety.

The emphasis lies on enhancing docker image security in the context of scientific data analysis, as evidenced in a
study [8]. This research involves a comparative assessment of four vulnerability scanners, delineating their efficacy.
The impact of image upgrading and mitigation measures on threat reduction is also quantified. Notably, vulnerabilities
are addressable through image refinement and removing extraneous packages. The combined application of these
strategies contributes to reducing vulnerabilities arising from unutilized software and patches managed by package
maintainers. The study also sheds light on the broader docker infrastructure, exploring its security trends [9]. Among
the security recommendations presented by this research is the endorsement of streamlined operating system projects

	 Rajyashree R et al. / Procedia Computer Science 233 (2024) 660–669� 663
 Senthilkumar Mathi / Procedia Computer Science 00 (2019) 000–000 3

Vipin et al. explore Docker images, focusing on static and dynamic security analyses to detect potential bugs. This
emphasis is driven by containers’ reliance on these images [2]. The authors outline various factors that can render
Docker images vulnerable to tampering, including insecure production practices, cryptographic misconfigurations,
issues related to decompression, and inherent vulnerabilities associated with Docker and lib-container. To address
these concerns, the research highlights using tools such as Clair, Anchore, Dagda, Notary, and Grafes. These tools
assess and identify vulnerabilities in the Docker images, ensuring a comprehensive evaluation of their attack
susceptibility.

Ahmet et al. provide valuable insights into vulnerabilities associated with web applications [3]. They highlight the
significance of the “docker content trust” security feature, introduced in version 1.8. Once enabled, this feature
safeguards against downloading unsigned Docker images. It plays a critical role in ensuring the verification,
authentication, and preservation of the integrity of Docker images. Furthermore, the researchers delve into enhancing
security measures by controlling container resource consumption. It can be achieved by utilizing the “docker run”
command, which limits the resources allocated to containers. This practice improves security considerations by
preventing excessive resource consumption and potential vulnerabilities.

The research outlined in [4] conducted comprehensive penetration testing within the Docker environment. This
testing encompassed various attack scenarios, including DoS, Docker container escape, and side-channel attacks,
which were meticulously analyzed. Viewing the container as an initial point of entry, an attacker, upon gaining access,
undertakes scrutinizing the container’s privileges and potential vulnerabilities. Once identified, these weak points
become the focus of the attacker’s efforts, often leading to targeted attacks such as ARP poisoning, MAC flooding,
and sniffing. In the context of the Docker daemon, vulnerabilities emerge during the parsing of files. A crucial
consideration is whether these vulnerabilities can extend their impact beyond the container to compromise the host
system. It is especially relevant due to the potential of misconfigurations and the likelihood of a series of attacks
originating from remote access authentication. Also, the research highlights how the broader environment influences
security risks. Importing images from external sources introduces the possibility of man-in-the-middle attacks or
image hijacking, as these externally sourced images might be tampered with or compromised. The research
underscores the multifaceted nature of security threats within Docker environments, ranging from the container’s
internal vulnerabilities to the implications for the host system and the broader ecosystem.

Jyoti et al. have conducted a comprehensive assessment of the security landscape surrounding Docker containers,
a review currently under evaluation [5]. Given the surge in cloud computing and Docker adoption due to their
advantageous portability and adaptability in application development, a significant concern arises regarding the
security of images sourced from diverse repositories. To address this, the authors propose using continuous integration
and continuous deployment (CI/CD) practices as part of the software development lifecycle [6]. This approach ensures
a meticulous evaluation of Docker images’ integrity. The investigation leverages tools such as VirusTotal to detect
potential malicious elements within images. In parallel, they execute a Docker instance with tcpdump, facilitating the
detection of suspicious network activities. To estimate the efficacy of their proposed technique, they conducted
experiments involving deliberately vulnerable images. The subsequent evaluation measures the precision with which
their methodology identifies these vulnerabilities, stating its robustness.

In the investigation detailed in [7], an examination encompassing 2,227,244 images was conducted, focusing on
their metadata sourced from the Docker Hub. This investigative effort yielded valuable insights. The researchers
additionally propose the implementation of dynamic scans for individual packages installed within active containers,
an approach that significantly enhances security. Moreover, they advocate for utilizing “apt-get-upgrade” to elevate
packages to secure versions within operational containers, contributing to an elevated level of safety.

The emphasis lies on enhancing docker image security in the context of scientific data analysis, as evidenced in a
study [8]. This research involves a comparative assessment of four vulnerability scanners, delineating their efficacy.
The impact of image upgrading and mitigation measures on threat reduction is also quantified. Notably, vulnerabilities
are addressable through image refinement and removing extraneous packages. The combined application of these
strategies contributes to reducing vulnerabilities arising from unutilized software and patches managed by package
maintainers. The study also sheds light on the broader docker infrastructure, exploring its security trends [9]. Among
the security recommendations presented by this research is the endorsement of streamlined operating system projects

4 Senthilkumar Mathi / Procedia Computer Science 00 (2019) 000–000

like CoreOS and Ubuntu Core, which foster a more secure container environment. Introducing Stackelberg’s model,
facilitated by linear programming, aids in selecting optimal security practices and operational efficiency.

While Docker offers lightweight virtualization, its security is compromised as container isolation is weaker than
traditional VMs. Vulnerabilities like inter-container traffic, insecure image environments, and runtime susceptibilities
jeopardize system security, integrity, and access controls. Addressing these concerns, researchers in [10] provide
insights into hardware and software security approaches. Hardware security involves trusted platform modules that
expedite algorithms, ensure data encapsulation, and enable secure boot. Software solutions encompass namespaces,
segregating hostnames, end-users, file systems, and other resources. This process validates separation before
establishing connections between containers. The abovementioned issues also give rise to virtualization security
challenges, including insider attacks within Docker. Such attacks originate internally from malicious users who gain
access through commands, potentially compromising host folders and data. This vulnerability analogy aligns Docker
security with ship security, illustrating that while a dock might be secure, a vulnerable ship can undermine its safety.
Therefore, guarding against external attacks is crucial. Measures to counter external threats include reducing container
privileges, implementing access control policies, adhering to secure deployment guidelines, managing Daemon
privileges, enabling logging/auditing, employing SELinux/AppArmor, and utilizing cgroups. These defensive
strategies are elaborated upon in [11].

The insights presented in [12] shed light on the diverse dimensions through which Docker can be exploited. The
primary emphasis lies in cultivating user awareness regarding the utilization of Docker packages. This imperative
arises due to the consequential ramifications of employing malicious packages, which can result in losing valuable
assets such as confidential data, financial resources, and an organization’s reputation. The study delves into the context
of Elastic Containers, employing it as a testing ground to showcase potential attacks within the Docker environment.
The researchers illustrate conceivable attacks in the Docker ecosystem within this experimental framework. These
include injecting malicious data facilitated by cURL commands, unauthorized password cracking, and similar
exploitative activities. The purpose is to underline such attacks’ inherent vulnerabilities and potential impact.
Ultimately, the study underscores the need for vigilance and caution among users when navigating the Docker
landscape to mitigate these security risks.

The study in [13] provides essential guidelines for organizations to ensure a secure and successful implementation
of Docker technology. In this context, a cybersecurity training environment known as a “cyber range” [14] is
recommended. This system leverages Docker to facilitate efficient security exercises, effectively simulating
vulnerabilities and incidents for training purposes. Containers offer advantages such as resource efficiency and cost-
effective deployment. Nevertheless, empirical findings suggest that Dockers are ill-suited for integration into a cyber
range environment. It is primarily because when a Docker container is compromised, it can lead to a complete system
crash. Consequently, threats rooted in the operating system and kernel vulnerabilities should be carefully excluded
from such implementations. The research highlights the intricate balance between the benefits of Docker technology
and its limitations, emphasizing the need for strategic decision-making and cautious implementation in cybersecurity
training scenarios.

 Leveraging large datasets for comprehensive insights, known as big data analytics, values Docker for its
adaptability and user-friendliness [15]. This technology proves particularly beneficial in establishing big data clusters
through platforms like Hadoop and Spark. User authentication is achieved via MD5 encryption. In [16], researchers
assess Docker’s performance using hardware tools such as Bonnie++ and psutil. The host exhibits exceptional speed
and resource management in Bonnie++, while psutil reveals similar performance between the host and Docker
concerning CPU, memory, and network usage. Though the marriage of Docker with the cloud is revolutionary, it
contends with significant vulnerabilities, including Container escape, root access, buffer overflow, and Image
poisoning. These threats are elaborated upon and proposed measures to mitigate them [17]. The research in [18]
pioneers an approach outlining three culpability-driven Docker use cases, offering a nuanced perspective on each.
Similarly, in [19], researchers employ CI/CD through Jenkins jobs to conduct image scanning. Opting for a public
registry over a private one is advised for image security. Notably, the study identifies malicious DNS requests exposed
to an evil image propagating cryptocurrency pursuit via the SSH daemon. For simplified use, building multi-container
configurations for web applications atop Docker is endorsed [20]. It is facilitated by Docker swarm technology, which

664	 Rajyashree R et al. / Procedia Computer Science 233 (2024) 660–669
 Senthilkumar Mathi / Procedia Computer Science 00 (2019) 000–000 5

caters to scalability, availability, and load balancing. Due to its advantages, the work underscores the preference for
setting up containers over conventional cloud infrastructure.

In [21], an experimental investigation has been conducted to evaluate the performance of Docker when executing
heterogeneous microservices. The Cloud Evaluation Experiment Methodology (CEEM) is employed to assess
container interference, considering the impact of resource constraints. This approach contributes to formulating
intelligent resource allocation within the containerized environment. Similarly, [22] explores the amalgamation of
Docker with Blockchain technology, resulting in the container as a Service (CaaS). This innovative integration is
underpinned by three major orchestrators: Docker Swarm, Kubernetes, and OpenShift [23]. Among these, Kubernetes
is the preferred choice due to its adaptable templates, lenient security policies, easy installation across various
platforms, and open-source nature. A crucial advantage is its capability to accommodate multiple masters, enhancing
resilience against single-cluster failures.

Despite Docker’s efficiency and widespread adoption across various technologies, it grapples with significant
cluster synchronization and resource management drawbacks. While certain issues have been addressed at a basic
level, higher-level problems remain unattended. As a response, researchers have conceptualized a graphical model
tool named Docker Designer. This tool emphasizes stringent validation of Docker during the design phase, aiming to
alleviate these concerns. In [24], static code analysis tools such as Go Reporter and Go Meta Liner have been explored.
The goal is to dissect the flaws and vulnerabilities, notably the Common Vulnerability Exposure (CVE)-2015-3630.
This vulnerability involves files with write access disregarding network security constraints, accentuating security’s
overarching significance within network environments [25-27].

Thus, the current paper underscores the importance of reducing the privileged user status to that of a non-root user.
This seemingly simple action effectively prevents root directory attacks and potential data breaches, as the user’s
access is confined within their container.

3 Methodology

The current section discusses attack and defence orchestration.

3.1 Orchestrating attacks

The UNIX socket is pivotal in container management, which functions as a conduit for data exchange between
software entities. This socket assumes a central role in establishing a connection with the Docker daemon, and Docker
clients utilize this socket to issue corresponding Docker commands. The socket is mounted for operational purposes
during the adoption of images from online sources and the initiation of Docker containers. However, this socket
mounting introduces a vulnerability wherein an attacker with a shell on the container can exploit the situation. Through
this shell access, the attacker might escalate their privileges to the root user level, potentially gaining unauthorized
access to all files on the host machine.

In this context, the procedure unfolds by creating a file within the root directory. Echo commands are employed to
input data into this file. By utilizing the capabilities of the Docker socket and client, containers are initiated on the
host system. Following this, the host’s root directory is accessed using specific commands executed within the newly
launched container, along with the activation of a shell to breach the host’s root directory. The ‘sh’ command is
utilized to trigger the shell that facilitates the acquisition of root access. Once the attack gains root access, the host is
compromised and may lead to exploitation of files owned by the root user on the host. Fig. 1. outlines the sequence
of steps in the orchestrated attack process.

	 Rajyashree R et al. / Procedia Computer Science 233 (2024) 660–669� 665
 Senthilkumar Mathi / Procedia Computer Science 00 (2019) 000–000 5

caters to scalability, availability, and load balancing. Due to its advantages, the work underscores the preference for
setting up containers over conventional cloud infrastructure.

In [21], an experimental investigation has been conducted to evaluate the performance of Docker when executing
heterogeneous microservices. The Cloud Evaluation Experiment Methodology (CEEM) is employed to assess
container interference, considering the impact of resource constraints. This approach contributes to formulating
intelligent resource allocation within the containerized environment. Similarly, [22] explores the amalgamation of
Docker with Blockchain technology, resulting in the container as a Service (CaaS). This innovative integration is
underpinned by three major orchestrators: Docker Swarm, Kubernetes, and OpenShift [23]. Among these, Kubernetes
is the preferred choice due to its adaptable templates, lenient security policies, easy installation across various
platforms, and open-source nature. A crucial advantage is its capability to accommodate multiple masters, enhancing
resilience against single-cluster failures.

Despite Docker’s efficiency and widespread adoption across various technologies, it grapples with significant
cluster synchronization and resource management drawbacks. While certain issues have been addressed at a basic
level, higher-level problems remain unattended. As a response, researchers have conceptualized a graphical model
tool named Docker Designer. This tool emphasizes stringent validation of Docker during the design phase, aiming to
alleviate these concerns. In [24], static code analysis tools such as Go Reporter and Go Meta Liner have been explored.
The goal is to dissect the flaws and vulnerabilities, notably the Common Vulnerability Exposure (CVE)-2015-3630.
This vulnerability involves files with write access disregarding network security constraints, accentuating security’s
overarching significance within network environments [25-27].

Thus, the current paper underscores the importance of reducing the privileged user status to that of a non-root user.
This seemingly simple action effectively prevents root directory attacks and potential data breaches, as the user’s
access is confined within their container.

3 Methodology

The current section discusses attack and defence orchestration.

3.1 Orchestrating attacks

The UNIX socket is pivotal in container management, which functions as a conduit for data exchange between
software entities. This socket assumes a central role in establishing a connection with the Docker daemon, and Docker
clients utilize this socket to issue corresponding Docker commands. The socket is mounted for operational purposes
during the adoption of images from online sources and the initiation of Docker containers. However, this socket
mounting introduces a vulnerability wherein an attacker with a shell on the container can exploit the situation. Through
this shell access, the attacker might escalate their privileges to the root user level, potentially gaining unauthorized
access to all files on the host machine.

In this context, the procedure unfolds by creating a file within the root directory. Echo commands are employed to
input data into this file. By utilizing the capabilities of the Docker socket and client, containers are initiated on the
host system. Following this, the host’s root directory is accessed using specific commands executed within the newly
launched container, along with the activation of a shell to breach the host’s root directory. The ‘sh’ command is
utilized to trigger the shell that facilitates the acquisition of root access. Once the attack gains root access, the host is
compromised and may lead to exploitation of files owned by the root user on the host. Fig. 1. outlines the sequence
of steps in the orchestrated attack process.

6 Senthilkumar Mathi / Procedia Computer Science 00 (2019) 000–000

Fig. 1. Sequence of orchestrating an attack in the docker image.

3.2 Defence Orchestration

 The Docker Daemon is connected via a UNIX socket instead of a TCP port. The UNIX socket remains under the
control of the root user, allowing other users to access Docker by utilizing the sudo command. Consequently, root
privileges are the default configuration when executing an application within a Docker Container. This is exemplified
by the Ubuntu Docker Container Bash, which logs in as the root user. However, this practice poses a significant risk
to application security, allowing potential attackers to compromise the container and various applications. Hence, it
is crucial to prioritize the execution of even the most basic operations as a non-root user whenever feasible. This
approach is vital to enhance the security posture of Docker containers and safeguard the applications they contain.

The initial action within the defensive process involves generating a fresh Docker image and placing it within the
designated directory. By default, the Docker registry retrieves the Ubuntu image, which serves as the base. The
useradd command appends a novel user with a designated identity using the docker RUN directive. Meanwhile, the
USER directive showcases an array of currently logged-in users during the execution of the Docker container
associated with the precise image.

The docker image is built and run using the command “sudo docker build -t my-image”. To run the docker container
associated with the docker image, the command, “sudo Docker -H unix:///var/run/docker.sock run -it -v /:/test:ro -t
my-image bash” is used. The user is denied access to escape his container by accessing files from the host root user.

Many Docker users either overlook or do not perceive the importance of modifying their user privileges and
transitioning to non-root user accounts. These habits frequently expose vulnerabilities, particularly when an
application is deployed comprehensively. In such scenarios, malicious actors can manipulate the shared file system
and compromise other critical applications within the container. The defense orchestration process is illustrated in Fig.
2, outlining its sequential progression.

666	 Rajyashree R et al. / Procedia Computer Science 233 (2024) 660–669 Senthilkumar Mathi / Procedia Computer Science 00 (2019) 000–000 7

Fig. 2. Progression of defense orchestration

4 Result analysis with image scrutiny

During the stages of security analysis, a significant focus is placed on examining Docker images. This segment
compares three notable tools for scanning Docker images: Anchore, Trivy, and Clair.

Anchore tools are proficient at conducting comprehensive scans of images, scrutinizing them thoroughly,
documenting their findings, and categorizing them. These tools play a pivotal role in identifying vulnerabilities before
they can infiltrate the production environment. Anchore is conveniently available as a Docker image and can be
implemented as a standalone application or integrated into an orchestration platform. However, Anchore has a larger
footprint and longer scan with a complex interface and configuration, making it less preferred.

For statically surveilling vulnerabilities within containers like Docker and OCI (Open Container Initiative), there
exists an open-source tool named Clair. The term “Clair” conveys transparency and clarity, as its primary focus is to
provide an insightful view of container-based infrastructure security.

Clair’s functionality is divided into three core components: indexing, where contents undergo scanning and yield
an interim report; matching, where vulnerabilities are correlated, and notifications are generated for subsequent
actions.

A comprehensive scanner catering to a diverse range of security threats across different targets is Trivy. This tool
stands out for its ease of implementation, speed, and reliability. Trivy can scan container images, file systems, and Git
repositories. It incorporates various scanners, including Software Bill of Materials (SBOM) for OS packages and
software dependencies, Common Vulnerabilities and Exposures (CVE) database, and Infrastructure as Code (IaC)
misconfigurations for complaince and transparency benefits.

In Fig. 3, vulnerabilities identified by these three tools are illustrated. Clair and Trivy collectively identified 500
CVEs, whereas Anchore only detected 450. Interestingly, the number of false positives generated in Anchore was
much less compared to Trivy. Trivy uses static analysis for image analysis, making it faster in installation and
dependable performance; Trivy is the preferred choice among these tools. Whereas Anchore uses both static and
dynamic analysis making it complex and less preferred. False positive comparison is shown in figure 4.

	 Rajyashree R et al. / Procedia Computer Science 233 (2024) 660–669� 667 Senthilkumar Mathi / Procedia Computer Science 00 (2019) 000–000 7

Fig. 2. Progression of defense orchestration

4 Result analysis with image scrutiny

During the stages of security analysis, a significant focus is placed on examining Docker images. This segment
compares three notable tools for scanning Docker images: Anchore, Trivy, and Clair.

Anchore tools are proficient at conducting comprehensive scans of images, scrutinizing them thoroughly,
documenting their findings, and categorizing them. These tools play a pivotal role in identifying vulnerabilities before
they can infiltrate the production environment. Anchore is conveniently available as a Docker image and can be
implemented as a standalone application or integrated into an orchestration platform. However, Anchore has a larger
footprint and longer scan with a complex interface and configuration, making it less preferred.

For statically surveilling vulnerabilities within containers like Docker and OCI (Open Container Initiative), there
exists an open-source tool named Clair. The term “Clair” conveys transparency and clarity, as its primary focus is to
provide an insightful view of container-based infrastructure security.

Clair’s functionality is divided into three core components: indexing, where contents undergo scanning and yield
an interim report; matching, where vulnerabilities are correlated, and notifications are generated for subsequent
actions.

A comprehensive scanner catering to a diverse range of security threats across different targets is Trivy. This tool
stands out for its ease of implementation, speed, and reliability. Trivy can scan container images, file systems, and Git
repositories. It incorporates various scanners, including Software Bill of Materials (SBOM) for OS packages and
software dependencies, Common Vulnerabilities and Exposures (CVE) database, and Infrastructure as Code (IaC)
misconfigurations for complaince and transparency benefits.

In Fig. 3, vulnerabilities identified by these three tools are illustrated. Clair and Trivy collectively identified 500
CVEs, whereas Anchore only detected 450. Interestingly, the number of false positives generated in Anchore was
much less compared to Trivy. Trivy uses static analysis for image analysis, making it faster in installation and
dependable performance; Trivy is the preferred choice among these tools. Whereas Anchore uses both static and
dynamic analysis making it complex and less preferred. False positive comparison is shown in figure 4.

8 Senthilkumar Mathi / Procedia Computer Science 00 (2019) 000–000

Fig. 3. Comparison of static tools for detecting common vulnerability exposure in docker images

Fig 4. False positive comparison

5 Conclusion

Docker is a commanding technology, fulfilling the virtualization requisites developers sought. Its attributes,
including rapidity, portability, and efficiency, have endeared it to the developer community. Notwithstanding these
merits, security emerges as a salient concern. Within the context of this paper, a threat model is introduced, addressing
the potential for privilege escalation within a Docker-host system. This model spotlights attackers who exploit root
file access through sockets to gain unauthorized entry. To counter such risks, a defensive strategy advocating for non-

668	 Rajyashree R et al. / Procedia Computer Science 233 (2024) 660–669 Senthilkumar Mathi / Procedia Computer Science 00 (2019) 000–000 9

root user operations is proposed to thwart potential container breaches. The effectiveness of a privilege escalation
attack hinges upon the intricately woven connections and mutual impact between the kernel and the container. The
security of containers relies on the prudent selection and crafting of container images. Given the dynamic nature of
environments like Docker containers, proactive monitoring becomes essential. It necessitates the availability of
scalable, container-aware tools that exhibit rapid responsiveness. In the future, the incorporation of machine learning
techniques shows potential for keeping pace with changing landscapes. Furthermore, an avenue for enhancing security
lies in the potential adoption of Docker container encryption, strengthening their safeguarding measures.

References

[1] Aparna Tomar, Diksha Jeena, Preethi Mishra, Rahul Bisht.Docker Security: A Threat Model, Attack Taxonomy and Real-Time Attack
Scenario of DoS. International Conference on Cloud Computing, Data Science and Engineering (Confluence), IEEE, 2020.

[2] Vipin Jain, Baldev Singh, Medha Kenwar, Milind Sharma. Static Vulnerability Analysis of Docker Images. IOP Conference Series: Materials
Science and Engineering, 2021

[3] Ahmet Efe, Ulas Aslan, Aytekin Mutlu Kara. Securing Vulnerabilities in Docker Images. International Journal of Innovative Engineering
Applications, 2020

[4] Tao Lu, Jie Chan. Research of Penetration Testing Technology in Docker Environment. Advances in Engineering Research, 5th International
Conference on Mechatronics, Materials, Chemistry and Computer Engineering 2017.

[5] Jyoti Shetty, Raja Rajeswari, Sahana Upadhya, Shoba A State-of-Art Review of Docker Container Security Issues and Solutions. American
International Journal of Research in Science, Technology, Engineering & Mathematics, 2017.

[6] Kelly Brady, Seung Moon, Tuan Nguyen, Joel Coffman. Docker Container Security in Cloud Computing, IEEE Annual Computing and
Communication Workshop and Conference, 2020.

[7] Peiyu Liu, Shouling Ji, Lirong Fu, Kngjie Lu. Understanding the Security Risks of Docker Hub. Springer, 2020.
[8] Bhupinder Kaur, Aiman Hanna, Mathieu Dugre, Tristan Glatard. An analysis of security vulnerabilities in container images for scientific

data analysis.GigaScience, 2021.
[9] Jiang Wenhao, Vulnerability Analysis and Security Research of Docker Container. IEEE 3rd International Conference on Information

Systems and Computer-Aided Education, 2020.
[10] Suganthi Subramanian, SS Shylaja, Prasad P Honnavalli. Container Security: An Extensive Roadmap. Atlantis Highlights in Computer

Sciences, Proceedings of the 3rd International Conference on Integrated Intelligent Computing Communication & Security, 2021.
[11] Robail Yasrab. Mitigating Docker Security Issues. 2021.
[12] Pooja P, Puneeth.An approach of exploiting Docker container security. International Journal of Advanced Research in Engineering and

Technology,2020.
[13] Murugaiah Souppaya, John Morello, Karen Scarfone. Application Container Security Guide. NIST Special Publication 800-190.
[14] Ryotaro Nakata, Akira Otsuka. Evaluation of Vulnerability Reproducibility in Container-based Cyber Range. Proceedings of the 7th

International Conference on Information Systems Security and Privacy, 2021.
[15] Gu Ruijuin. A Lightweight Experimental Platform for Big Data Based on Docker Containers. Journal of Physics, 2020.
[16] Preeth EN, Mulerickal FJ, Paul B, Sastri Y. Evaluation of Docker containers based on hardware utilization. In 2015 International Conference

on Control Communication & Computing India 2015 Nov 19 (pp. 697-700). IEEE.
[17] Silva JP, Assis A, Martins M, Oliveira R. The Challenges of the Data Privacy in the Cloud using Docker: A Systematic Review. Anais da

IV Escola Regional de Informática do Piauí. 2018 Oct 16:190-5.
[18] Martin A, Raponi S, Combe T, Di Pietro R. Docker ecosystem–vulnerability analysis. Computer Communications. 2018, 122, 30-43.
[19]Manish Kumar Abhishek, Rajeswara Rao, “Framework to Secure Docker Containers”, Fifth World Conference on Smart Trends in Systems

Security and Sustainability, 2021.
[20] Vivek Sharma, Harsh Kumar, Akhilesh Kumar Singh. Docker for multi-containers web application. International Conference on Innovative

Mechanisms for Industry Applications, 2020.
[21] Devki Nandan Jha, Saurabh Garg, Premprakash Jayaraman, Rajkumar Buyya, Zheng li. A Holistic Evaluation of Docker Containers for

Interfering Microservices. IEEE International Conference on Services Computing, 2018.
[22] Priyanka Kumar, Maharishi Shah. To build scalable and portable Blockchain Application using Docker. International Journal of Computer

Networks & Communications, Springer Singapore, Singapore, 2020.
[23] Martin Kontsek, Marek Moravcik. Overview of Docker container orchestration tools. International Conference on Emerging eLearning

Technologies and Applications, 2020.
[24] Ana Duarte, Nuno Antunes. An Empirical Study of Docker Vulnerabilities and of Static Code Analysis Applicability. Latin-American

Symposium on Dependable Computing, IEEE, 2018.

	 Rajyashree R et al. / Procedia Computer Science 233 (2024) 660–669� 669 Senthilkumar Mathi / Procedia Computer Science 00 (2019) 000–000 9

root user operations is proposed to thwart potential container breaches. The effectiveness of a privilege escalation
attack hinges upon the intricately woven connections and mutual impact between the kernel and the container. The
security of containers relies on the prudent selection and crafting of container images. Given the dynamic nature of
environments like Docker containers, proactive monitoring becomes essential. It necessitates the availability of
scalable, container-aware tools that exhibit rapid responsiveness. In the future, the incorporation of machine learning
techniques shows potential for keeping pace with changing landscapes. Furthermore, an avenue for enhancing security
lies in the potential adoption of Docker container encryption, strengthening their safeguarding measures.

References

[1] Aparna Tomar, Diksha Jeena, Preethi Mishra, Rahul Bisht.Docker Security: A Threat Model, Attack Taxonomy and Real-Time Attack
Scenario of DoS. International Conference on Cloud Computing, Data Science and Engineering (Confluence), IEEE, 2020.

[2] Vipin Jain, Baldev Singh, Medha Kenwar, Milind Sharma. Static Vulnerability Analysis of Docker Images. IOP Conference Series: Materials
Science and Engineering, 2021

[3] Ahmet Efe, Ulas Aslan, Aytekin Mutlu Kara. Securing Vulnerabilities in Docker Images. International Journal of Innovative Engineering
Applications, 2020

[4] Tao Lu, Jie Chan. Research of Penetration Testing Technology in Docker Environment. Advances in Engineering Research, 5th International
Conference on Mechatronics, Materials, Chemistry and Computer Engineering 2017.

[5] Jyoti Shetty, Raja Rajeswari, Sahana Upadhya, Shoba A State-of-Art Review of Docker Container Security Issues and Solutions. American
International Journal of Research in Science, Technology, Engineering & Mathematics, 2017.

[6] Kelly Brady, Seung Moon, Tuan Nguyen, Joel Coffman. Docker Container Security in Cloud Computing, IEEE Annual Computing and
Communication Workshop and Conference, 2020.

[7] Peiyu Liu, Shouling Ji, Lirong Fu, Kngjie Lu. Understanding the Security Risks of Docker Hub. Springer, 2020.
[8] Bhupinder Kaur, Aiman Hanna, Mathieu Dugre, Tristan Glatard. An analysis of security vulnerabilities in container images for scientific

data analysis.GigaScience, 2021.
[9] Jiang Wenhao, Vulnerability Analysis and Security Research of Docker Container. IEEE 3rd International Conference on Information

Systems and Computer-Aided Education, 2020.
[10] Suganthi Subramanian, SS Shylaja, Prasad P Honnavalli. Container Security: An Extensive Roadmap. Atlantis Highlights in Computer

Sciences, Proceedings of the 3rd International Conference on Integrated Intelligent Computing Communication & Security, 2021.
[11] Robail Yasrab. Mitigating Docker Security Issues. 2021.
[12] Pooja P, Puneeth.An approach of exploiting Docker container security. International Journal of Advanced Research in Engineering and

Technology,2020.
[13] Murugaiah Souppaya, John Morello, Karen Scarfone. Application Container Security Guide. NIST Special Publication 800-190.
[14] Ryotaro Nakata, Akira Otsuka. Evaluation of Vulnerability Reproducibility in Container-based Cyber Range. Proceedings of the 7th

International Conference on Information Systems Security and Privacy, 2021.
[15] Gu Ruijuin. A Lightweight Experimental Platform for Big Data Based on Docker Containers. Journal of Physics, 2020.
[16] Preeth EN, Mulerickal FJ, Paul B, Sastri Y. Evaluation of Docker containers based on hardware utilization. In 2015 International Conference

on Control Communication & Computing India 2015 Nov 19 (pp. 697-700). IEEE.
[17] Silva JP, Assis A, Martins M, Oliveira R. The Challenges of the Data Privacy in the Cloud using Docker: A Systematic Review. Anais da

IV Escola Regional de Informática do Piauí. 2018 Oct 16:190-5.
[18] Martin A, Raponi S, Combe T, Di Pietro R. Docker ecosystem–vulnerability analysis. Computer Communications. 2018, 122, 30-43.
[19]Manish Kumar Abhishek, Rajeswara Rao, “Framework to Secure Docker Containers”, Fifth World Conference on Smart Trends in Systems

Security and Sustainability, 2021.
[20] Vivek Sharma, Harsh Kumar, Akhilesh Kumar Singh. Docker for multi-containers web application. International Conference on Innovative

Mechanisms for Industry Applications, 2020.
[21] Devki Nandan Jha, Saurabh Garg, Premprakash Jayaraman, Rajkumar Buyya, Zheng li. A Holistic Evaluation of Docker Containers for

Interfering Microservices. IEEE International Conference on Services Computing, 2018.
[22] Priyanka Kumar, Maharishi Shah. To build scalable and portable Blockchain Application using Docker. International Journal of Computer

Networks & Communications, Springer Singapore, Singapore, 2020.
[23] Martin Kontsek, Marek Moravcik. Overview of Docker container orchestration tools. International Conference on Emerging eLearning

Technologies and Applications, 2020.
[24] Ana Duarte, Nuno Antunes. An Empirical Study of Docker Vulnerabilities and of Static Code Analysis Applicability. Latin-American

Symposium on Dependable Computing, IEEE, 2018.

10 Senthilkumar Mathi / Procedia Computer Science 00 (2019) 000–000

[25] Mathi S, Srikanth L. A New Method for Preventing Man-in-the-Middle Attack in IPv6 Network Mobility. In Advances in Electrical and
Computer Technologies 2020 (pp. 211-220). Springer, Singapore.

[26] Mathi S, Joseph E, Advaith MS, Gopikrishna KS, Gopakumar R. A flattened architecture for distributed mobility management in IPv6
networks. Journal of Intelligent & Fuzzy Systems. 2020 Jan 1;38(5):6583-93.

[27] Shakil Muhammed, Bashir Ali Khasif, Arul Rajakumar. A novel dynamic framework to detect DDoS in SDN using metaheuristic clustering.
Transactions on Emerging Telecommunications Technologies, Vol. 33, 2022.

