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ABSTRACT  

The estimation of the electromagnet relay remaining useful life is highly crucial to maintain reliability 

and avoid unscheduled breakdowns in various applications. The objective of this research work will be to 

design a model with much higher precision and efficiency utilizing PCA coupled with a hybrid deep 

learning architecture of Bi-LSTM along with Bi-GRU. The C-MAPSS dataset was of reduced 

dimensionality, since PCA has been applied to eliminate data redundancy while retaining crucial 

characteristics, and then K-means clustering is applied to classify the data; afterwards, the Bi-LSTM and 

Bi-GRU models are implemented for RUL relay prediction. The proposed method in comparison with 

typical deep learning models has a Mean Absolute Error of 0.021 and an R² of 0.996. Results developed 

reflect how the model can produce some very powerful prediction, however; what it really shows is great 

potential for this approach with respect to predictive maintenance of electromagnet relays. PCA may well 

amalgamate with Bi-LSTM and Bi-GRU models to achieve great scalability according to the maintenance 

engineering, which offers practical applications in improving the lifetime of the electromagnet relays. 

Keywords: Electromagnet Relay, Remaining Useful Life, Bidirectional Long Short Memory with 

Bidirectional Gated Recurrent Unit, Principal Component Analysis, K Means Clustering. 

 

1. Introduction  

The Electromagnetic Relay (EMR) is a complex part and is used for different electrical 

systems, and it includes critical safety applications and consumer products in industries such as 

aviation and nuclear power. Extensive studies have focused on the failure modes and 

mechanisms of EMR, particularly electrical contact degradation, to enhance process and 

material components (Yuming et al., 2023). Automation has contributed significantly to 

advancements in the manufacturing and reliability of Electromagnetic Relays. Methods with 

respect to population have been demonstrated to be a cost-effective solution for assessing the 

reliability of mass produced EMR. Commonly, incorporating EMRs into a condition monitoring 

program in operation and preservation budgets have been cost-prohibitive for different fields 

(Verstraete et al., 2017). Even so, advent of digital industrialization, there is now extraordinary 

to vast amounts of network and element monitoring data (Roman et al., 2017). 

Organizations focusing on enhancing the reliability of their assets have been investing in 

Prognostics and Health Management (PHM) systems to boost availability and reliability while 

reducing maintenance costs (Liu et al. 2024). A few studies have focused on leveraging data 

collected from Internet of Things assets and sensors to predict maintenance events, including 

fault prognostics, detection and diagnostics. In the PHM literature, different approaches, 

including statistical, machine learning (ML) methods and physics based, have been 

demonstrated to tackle the remaining useful life (RUL) prediction problem. Physics based 

methods involve creating mathematical modelling that represent the degrading model of failure 

mailto:marismuruganlec@gmail.com1*
mailto:reedaraja@gmail.com2
mailto:sridharsubbiah@gmail.com3
mailto:arjunmalligarjun6@gmail.com4


Murugan et al …                             Vol 6(1) 2024 : 715-729 

716 

 

mechanisms. These approaches necessitate prior understanding of degrading and provides 

precise RUL prediction when the failure can be characterized using its physical properties (Hu 

et al., 2023). In traditional ML, models require a sufficient amount of labelled historical data to 

achieve a high level of performance (Ding & He, 2017). Which need to deal with that 

collaborator with already implemented time-based maintenance on the benefits, which 

constructing the observation of run to failure behaviours very less than usual (Winkel et al., 

2023). To deploy the challenges, practitioners and researchers must construct methods to 

manage censored data or create additional data, resulting in imperfect models that may not 

exactly detect the real-world scenarios (Liu et al., 2018). While sufficient run to failure data is 

available, algorithms utilized on a specific dataset usually can’t be generalized to various 

datasets (Sateesh Babu et al., 2016). 

Prognostics and Engineering maintenance and are vital in various industries, including 

manufacturing, aerospace, heavy industry and automotive (Roman et al., 2021a). Conservative 

strategies like scheduled preventive maintenance and breakdown corrective maintenance are 

increasingly insufficient to meet the growing demands for reliability and efficiency (Zhang et 

al., 2020). Particularly, Smart PHM technologies, which are also known as condition-based 

maintenance, and are exhibiting the remarkable industrial applications (Wang et al., 2020). 

However, deep learning (DL) networks have come out as highly effective structures for various 

applications, giving significant ability to increase the performance in better prognostics. DL is 

respected by its deep network model, which involves stacking multi-layers to comprehensively 

capture representation information from raw input data (Zheng et al., 2016). Complex DL model 

captures high level data, enabling more efficient extraction of features when compared to ML 

networks (Qin et al., 2022). Given the high dimensionality of raw data from machinery health 

monitoring, and data in image processing research, DL architectures hold substantial promise 

for applications in PHM and RUL estimation. As EMR is an electrical actuator used widely in 

automation purposes the maintenance problem should not be there in automation field which 

may arise due to EMR, so the testing report may be sent by the production company but not 

actual life time. They may promise some life time for EMR but not achieved in practical. With 

the help of AI, we can predict the lifetime with the ample of data available the main objective of 

this paper is to product the failure free relay and the practically possible final lifetime of the the 

relays using the AI (Zeiler, 2014). 

 Robots are capable of learning to modify their performance in unexpected and changing 

circumstances (Robu et al., 2018). Internet of Things, machine learning, and the foundations of 

electronic health management and prognostics (Gan, 2020). Sliding window characteristics are 

used to construct models in both the more contemporary Convolutional Neural Network (CNN) 

method and more conventional regression-based approaches (Zheng et al., 2017). In recent 

years, prognostic performance evaluation has attracted a lot of interest. Concepts related to 

prognostics are currently poorly defined and subject to variable and unclear interpretations 

(Saxena et al., 2010). To handle the information management and prediction demands for 

meeting these goals, the field of prognostics and health management (PHM) is being formalised 

(Pecht, Mathew & Gullo, 2017). During the manufacture procedure, anode-to-cathode transfer 

created noticeable pips and craters that could result in premature relay failures (Leung & Lee, 

1991). Printed Circuit Board (PCB) designs are frequently neglected by circuit designers 

(Khater, 2020). However, thorough and meticulous PCB design methods are closely linked to 

both the performance of the circuits and the calibre of the measurements (Ghahramani et al., 

2020). These design methods can be used for almost any type of circuit, including digital, 

analogue, radio frequency, and power applications (Yin & Liu, 2020). A basic overview of the 

typical issues encountered while building high-performance and high-speed PCBs is given in 

this study (Yin & Huang, 2022). Although the fundamentals of PCBs are not covered in this 

tutorial paper, it does offer practical and widely used techniques for producing expert layouts 

(An et al., 2020). For circuits operating at up to 30 GHz, this entails researching bypass 

capacitors, different PCB architectures that provide strong signal integrity, and on-board 

transmission lines and their matching strategies (Motahari-Nezhad & Jafari, 2023). The term 

"smart manufacturing" describes optimization strategies applied to production processes through 

the use of sophisticated analytics techniques (Lei et al., 2018). There is a growing demand for 
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efficient and effective data management strategies due to the extensive use of industrial internet 

of things (IIOT) sensors in manufacturing operations (Deutsch & He, 2017). Using artificial 

intelligence and machine learning to leverage production data can result in intelligent and 

effective automation (Kirschbaum et al., 2020). 

 

2. Related Works 

(Sun et al., 2018), presented railway safety relay prediction using principal component 

analysis (PCA), fisher discrimination and back propagation network (BPN). Initially, the 

dimensionality was reduced by the PCA and fisher discrimination was used to validate the 

degradation parameter variation. Finally, the BPN was used for the prediction process and the 

accuracy value attained was 88.9%. (Li et al., 2021), developed EMR prediction approach using 

the long short term memory neural network (LSTM) with harris hawk algorithm (HHA). 

Initially, the signals were decomposed by empirical mode decomposition (EMD) and various 

sub elements and residual elements were captured. Then, the prediction process was performed 

by the LSTM, group handling model and HHA.  

(Li et al., 2018), designed an EMR prediction model using a convolutional neural 

network (CNN). To assist the CNN model is better feature extraction, the time windowing 

model was presented. The normalized data was utilized as input and C-MAPSS dataset was 

considered. The RMSE performance was analyzed by varying the number of layers and window 

size in CNN.  

(Kirschbaum et al., 2022), developed prognostics for EMR using Temporal Convolutional 

Network (TCN). The features were obtained from raw and large volume data and Monte carlo 

dropout was used for estimating uncertainty. Then, the TCN was used for analyzing long series 

of multivariate data. Finally, the performance was analyzed by sub-sample model, and then the 

RMSE and MAE values achieved were 287.2 and 242 respectively. (Zhao et al., 2017), 

presented a prediction of RUL for EMR using particle filter-based models. There were three 

characteristic features like less data parameter measurement, incompletion of run to failure data 

and no approach available for physical degrade model. Then, three major stages like estimating 

parameters, validation and prediction of RUL. Data from 9 relays were utilized to define the 

values of the initial parameter distribution. 

(Roman et al., 2021b), Only lately have electrochemical capacitors (ECs) been explored 

as a potential substitute power source for the telemetry sensors of drilling equipment used in oil 

and gas or geothermal exploration. Compared to other storage devices, such as Li-ion batteries, 

the lifespan analysis and modelling of ECs are not as well documented in the literature. Over the 

past ten years, deep learning applications have flourished in a variety of fields, such as computer 

vision and natural language comprehension (Fink et al., 2020). The availability of large amounts 

of data, algorithmic discoveries, and hardware developments have all contributed to the 

dynamic growth of deep learning. The use of deep learning techniques for identifying, 

diagnosing, and forecasting defects in complex industrial assets has been restricted, despite the 

fact that these assets have been widely monitored and that a significant volume of condition 

monitoring signals has been gathered. The current study offers a comprehensive assessment of 

the latest advancements, motivators, difficulties, prospective fixes, and research requirements in 

the area of deep learning applied to applications in prognostics and health management (PHM). 

(Zheng et al., 2014), Due to its wide range of applications in several fields, including 

bioinformatics and health informatics, time series classification—especially multivariate 

classification—has received a lot of attention in the literature. As a result, numerous algorithms 

have been created for this task. The state-of-the-art performance is attained by combining 

closest neighbour classification (especially 1-NNg) with dynamic time warping (DTW). 

However, the time consumption of 1-NN with DTW increases linearly with the size of the data 

set. Traditional feature-based classification techniques are typically more efficient but less 

effective than 1-NN with DTW since their effectiveness typically depends on the calibre of 

hand-crafted features. (Yang et al., 2015), Extracting useful information for activity 

identification is a crucial yet difficult challenge in this problem. The majority of current work 

uses shallow feature learning architectures and heuristic hand-crafted feature design, which are 

unable to identify the distinctive characteristics needed to correctly classify various activities. 
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We suggest a methodical feature learning approach for the HAR problem in this research. In 

order to automate feature learning from the raw inputs in a methodical manner, this approach 

uses deep convolutional neural networks (CNN). The learnt features are regarded as the higher-

level abstract representation of low-level raw time series signals through the use of the deep 

architecture. 

 

3. Proposed Methodology 

The aim of PHM is to enhance the operational availability, boost system reliability, and 

minimize maintenance costs and safety through continuous monitoring of facility conditions. 

Estimating the RUL based on historical data is crucial to optimize maintenance schedules to 

prevent engineering failures and minimize associated costs. This technique introduces a PCA 

for dimensionality reduction, KMC for identifying patterns and Bi-LSTM with Bi-GRU for 

RUL estimation of EMR as shown in Fig. 1. 

 

Fig. 1. Workflow of the suggested RUL prediction model 

 

3.1. Pre-processing and Feature Extraction 

PCA is a statistical model utilized for transforming a large group of parameters into a 

smaller one and retaining as more features as possible from the original set. The aim of PCA is 

to show differences and variances within the data and find patterns. In general, PCA is used to 

reduce dimension and it is used for screening the relation of features on sub-set of features. 

Although t-SNE and LDA were used to serve as a comparison for other dimension reductions, 

PCA was preferred since it can maximize variance that plays a key role in making the results of 

the cluster reliable. The orthogonal transformation is used for transforming the original features 

into a small set of features. This allows a reduced dataset to efficiently show the key 

information contained in the input data, hence achieving dimensionality reduction. 

a) The initial step involves standardizing the dataset’s attributes to overcome biased 

results. To tackle the issue of inconsistent weights in data because of significant variation in the 
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dimensions of sensitive features, the min-max normalization approach is deployed for 

normalizing the data. It is represented as: 

minmax

min'

ww

ww
w






               (1) 

where, w and 'w are the original and normalized values; minw  and maxw are the minimum and 

maximum values.  

b) The covariance matrix mC  of the 'w is determined.  
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where jw  and  are parameter of dataset 'w and mean vector. 

c) The Eigen value j of mC  and the respective Eigen vector jv  are computed and it is given as: 

njvAv jjj ,....,2,1,                 (3) 

d) The Eigen value is first principal component’s )1(PC variance and the Eigen vector is the 

transform matrix’s column vector. 

e) The Eigenvalues are arranged; the highest Eigenvalues are chosen and the respective 

Eigenvectors are utilized as row vectors for forming the Eigenvector matrix. 

f) The data is transformed to the new value; the minimum and maximum normalization are 

carried out on the 1PC . Preprocessing with the help of min-max normalization to make features 

play equally well for the process and then diminishing the biasing effects due to scales. 

Combining PCA has reduced computational complexity without an alteration in interpretability 

in transformed data. All data attributes were standardized to prevent biased outcomes and 

distribute equal weight during the process across all the features. 

 

3.2. Clustering Process 

K-means Clustering Algorithm is very efficient for partitioning of data with well-defined 

centers of clusters. It was therefore appropriate to identify homogeneous groups in the reduced 

PCA data. More over KMC does have excellent scalability with large datasets; this 

characteristic is important when applying multi-sensor data realized in the study. Other 

contenders were DBSCAN and hierarchical clustering but were not used since the size and 

complexity of the dataset was too large. The KMC is applied to PCA and the number of clusters 

is determined. Then, the data point is assigned to the clusters. Let us consider the m  data points 

},{ ,.....21 myyy  in dR , the process of reducing the variance in the dataset by splitting it into C  

clusters and it undergoes determining  points }{ jn  in dR . 
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1
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              (4) 

Here, the Equation (4) is minimized, ),( ji nyd  is the Euclidean distance among iy and in . The 

points }{ jn  is cluster centroid. The aim of the Equation (4) is to identify C  cluster centroid so 

that the mean square error among ,iy  and the near jn  . The process of PCA and Clustering is 

shown in Fig. 2, and in Fig. 3, for plotting KMC using PCA components, 1PC  and 2PC are the 

first two principal components derived from the original dataset. These components are linear 

combinations of the original features (columns) and are designed to capture the maximum 

variance in the data. 
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Fig. 2.  PCA with KCM process flow diagram 

 

Fig. 3.  PCA with KCM 

 

3.3. RUL Prediction 

After determining the cluster points, the DL model Bi-LSTM with Bi-GRU is used for 

predicting RUL for EMR. The parallel Bi-LSTM with Bi-GRU is used for capturing hidden 

features and proper RUL prediction for EMR. Fig, 4, states the structure of the Bi-LSTM with 

Bi-GRU. The multi- features extracted from KCM-PCA are fed into the Bi-LSTM with Bi-GRU 

network for obtaining multi-dimensionality features. These features from both networks are then 

integrated and fed into the regression layer for producing the prediction outcome. The BLSTM 

integrates different BLSTM layers to deeply extract the input data. Each pair of neighboring 

BLSTM layers is spatially connected to facilitate information transmission from the input to the 

output layer. Within every BLSTM layer, a bidirectional transmission model is developed, 

allowing the use of both past and future information. The main aim of BLSTM layers is the 

connecting between two LSTM layers with opposite directions (forward, backward) for 

generating the same output. Since it was capable of capturing both short-term and long-term 

dependencies in time-series data, the hybrid Bi-LSTM with Bi-GRU architecture was thus the 
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selected model. The benefits of a chosen model accrue from the strength of the LSTM ability in 

dealing with long-range temporal dependencies while the efficiency of the GRU stays in the 

processing sequence with lesser parameters hence fast training with lesser overfitting. The 

hybrid approach becomes more robust in terms of prediction of RUL as compared to using 

LSTM or GRU alone.  

It is mathematically expressed as: 
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where, )(
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  is the LSTM’s output at time 1l ,   is parameter, ofig UUUU ,,, and 

ofig bbbb ,,, are weighting parameters and bias values.   and   are the tanh and activation 

function. In the Bi-GRU network, different Bi-GRU layers are combined and the same like the 

Bi-LSTM layers, Bi-GRU layers are also have forward and backward directions. The output of 

the Bi-GRU in the n  Bi-GRU layer is represented as: 
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where, )(

1,

Q

lnH 

  is the GRU’s output at time 1l ,   is parameter, hhig UUUU ,,, and is the 

weighting parameters.   and   are the tanh and activation function.  

The concatenation layer is used for combining the hidden features from the networks like Bi-

LSTM layers and Bi-GRU layers. It is given as: 

 )(
,

)(
, ,

Q
ln

P
lnl HHH                     (11) 

At last, the regression layer is used for capturing feature maps and the RUL 

lr
of EMR is 

predicted as: 

rll UHr 
                     (12) 

where rU is the regression layer’s weight. 

 

 

Fig. 4.  The structure of Bi-LSTM with Bi-GRU 

 

4. Results and Discussions  

The following section states the results outcomes of the suggested RUL for EMR. The 

experimentation is demonstrated on the Python platform. The outcomes of the suggested Bi-

LSTM with Bi-GRU are compared over the DL models like RNN, LSTM, GRU, Bi-LSTM, Bi-

GRU models. The mean square error (MSE), root MSE (RMSE), mean absolute error (MAE) 

and R-squared (R2). Table 1 delineates the expressions for computing the RUL. 
Table 1 - Expressions for computing the RUL 
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where, qy  and 

qy
are actual and observed RUL values; q is the overall observations and 

qy is 

the mean actual values.  

 

4.1. Dataset Detail 

The suggested work is assessed using a prognostic dataset Commercial Modular Aero-

Propulsion System Simulation (C-MAPSS) program, and NASA introduced this dataset. It has a 

dataset that includes four sub-sets, each consisting of multivariate temporal data from twenty-

one sensors. Every sub-set has both training as well as a test set. The training set consists of run 

to failure sensor records from multi aero-engines, obtained by several operating conditions and 

fault conditions. Every engine unit is initiated by various levels of initial wear and manufacture 

difference, which are not known and set to be in a healthy stage. As time passes, the engines 

degrade till they undergo system failures, with the final data entry representing the cycle at 

which the engine is deemed unhealthy. Conversely, the sensor records in the test datasets end at 

a point before failure in the network, and the objective is for estimating the RUL of every 

engine in the test set. The original values of RUL for the test engine units are offered for 

validation purposes. This work conducted a series of evaluation of the suggested RUL over 

every four sub-sets (FD001, FD002, FD003, and FD004). 

 

4.2. Comparative Analysis 

The performance of the suggested Bi-LSTM with Bi-GRU is compared over the DL 

models like Bi-GRU, GRU, Bi-LSTM, LSTM, and RNN models. Table 2, and corresponding 

and Fig 5 to Fig 8 defines the comparative analysis on the four set like FD001, FD002, FD003, 

and FD004. It is observed from the Table that the all-comparative measures on all datasets 

achieved better MSE, RMSE, MAE and R2 and outperformed other models.  
Table 2 - Comparative Analysis. 

FD001 

Methods MSE RMSE MAE R
2
 

Bi-LSTM + Bi-GRU 0.002 0.001 0.100 0.983 

Bi-GRU 0.004 0.02 0.103 0.947 

GRU 0.007 0.03 0.130 0.923 

Bi-LSTM 0.004 0.02 0.121 0.931 

LSTM 0.008 0.04 0.245 0.901 

RNN 0.123 0.051 0.234 0.892 

FD002 

Methods MSE RMSE MAE R
2
 

Bi-LSTM + Bi-GRU 0.001 0.005 0.021 0.996 

Bi-GRU 0.007 0.02 0.074 0.978 

GRU 0.124 0.03 0.141 0.943 

Bi-LSTM 0.112 0.02 0.098 0.954 

LSTM 0.152 0.031 0.152 0.913 

RNN 0.171 0.032 0.171 0.896 

FD003 

Methods MSE RMSE MAE R
2
 

Bi-LSTM + Bi-GRU 0.003 0.004 0.021 0.993 

Bi-GRU 0.004 0.01 0.081 0.971 

GRU 0.005 0.033 0.135 0.935 

Bi-LSTM 0.004 0.01 0.091 0.939 

LSTM 0.009 0.041 0.138 0.915 

RNN 0.143 0.041 0.149 0.884 



Murugan et al …                             Vol 6(1) 2024 : 715-729 

724 

 

FD004 

Bi-LSTM + Bi-GRU 0.004 0.043 0.023 0.983 

Bi-GRU 0.009 0.041 0.071 0.947 

GRU 0.131 0.033 0.134 0.923 

Bi-LSTM 0.123 0.022 0.092 0.931 

LSTM 0.145 0.058 0.145 0.901 

RNN 0.241 0.052 0.147 0.892 

 
 

Fig. 5. Comparision MAE across different models 

 

 

Fig. 6. Comparision MSE across different models 
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Fig. 7. Comparision of R2 across different models 

 

 

Fig. 8. Comparision RMSE across different models 

 

 

Fig. 9.  Testing data with respect to RUL 

Fig. 9, states the prediction of RUL outcomes for the test engine units in C-MAPSS, 

based on the final data-point. For enhanced clarification and analysis, the test engine units are 

sorted in ascending order with respect to their labels. It is proved that the RUL values predicted 

by the suggested Bi-LSTM with Bi-GRU are generally near the actual values.  

Fig. 10, defines the prediction of RUL outcomes for the time (Cycle) in C-MAPSS. The 

time cycle is varied between 1 to 175 and the RUL values are plotted for suggested Bi-LSTM 

with Bi-GRU. As the number of cycles increases, the RUL typically decreases, and it indicates 
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the Bi-LSTM with Bi-GRU's degradation over time. It is noted that the RUL value is stable for 

50 times (cycle) and it decreased after the 50 times (cycle). 

 

Fig. 10. Time (cycle) with respect to RUL 

5. Conclusion  

This work presented an efficient model for predicting the RUL of EMR by integrating 

KMC-PCA with a hybrid Bi-LSTM with Bi-GRU. The major stage involved the extraction of 

multiple degradation features from C-MAPSS, dimensionality reduction using PCA, and the 

KMC was used to find various operational states. The hybrid Bi-LSTM with Bi-GRU 

effectively captured the features and RUL prediction. Here, the PCA effectively minimized the 

dataset’s complexity and retained critical information. Then, the KMC assists in finding various 

degradation states and failure modes, which are essential to maintain the underlying behaviour 

of the relays. The suggested Bi-LSTM with Bi-GRU considered the advantages of both BLSTM 

and BGRU architectures, and it results in better and more robust RUL predictions compared to 

other DL models. Future work may focus on extending this suggested methodology will be 

applied to other kinds of components and integrating additional environmental and operational 

factors for refining the prediction of RUL. 
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