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Abstract—Economic Emission Load Dispatch (EELD), the
combination of economic efficiency and environmental
sustainability in power system operation, has arisen as a
critical challenge in the current era of power generation and
distribution. This review paper provides an in-depth review of
the application of machine learning methods to tackle the
inherent complexity of EELD. It encompasses the latest
advancements and notable trends in this sector. The review
begins by explaining the essential concepts and goals of EELD,
highlighting the importance of balancing operating costs and
lowering greenhouse gas emissions. EELD solutions have been
built on traditional optimization approaches such as Linear
Programming and Genetic Algorithms. However, machine
learning techniques have recently gained popularity due to
their capacity to deal with power systems' complex, non-linear
interactions. This paper aims to analyze the strengths and
limits of several algorithms in optimizing generation schedules
while ensuring that they adhere to emission regulations.
Moreover, this paper explores the role of data-driven
methodologies in EELD, highlighting the importance of
precise data collection and preprocessing. This statement
elucidates the incorporation of exogenous variables, such as
meteorological predictions and energy consumption trends,
into EELD (Energy Efficient Load Dispatch) models,
emphasizing their influence on augmenting the efficacy of
decision-making procedures.
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LIntroduction

Electrical power generation predominantly relies
on thermal plants fueled by fossil fuels for -electricity
generation. Efforts should be made to regulate and reduce the
utilization of fossil fuels within electrical power-producing
systems. The availability of fossil fuel resources in the natural
environment is severely constrained and often poses challenges
in terms of accessibility[1]. These reserves are concentrated
within a limited number of nations, which may exert influence
or impose restrictions on the supply of fossil fuels. Researchers
are driven to investigate methods of reducing the reliance on
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fossil fuels in thermal power plants during electricity
generation due to the significant pollution to the environment
caused by the release of substantial quantities of polluting gas
particulates. Despite the development and implementation of
different choices, such as power generated using hydroelectric
and nuclear sources, fossil fuels remain the predominant source
of electricity generation. Therefore, the primary challenges
associated with using fossil fuels in power production systems
involve identifying an appropriate approach to reduce fuel
consumption simultaneously, associated costs, and the
emission of harmful pollutants[2]. The Combined Economic
Emission Dispatch (CEED) refers to a crucial challenge in the
operation of power systems. Its primary objective is
determining the most influential generation schedule for power
generators. This schedule is designed to minimize the operating
cost that comes with power generation while also seeking to
reduce the emission of greenhouse gases. In recent years, there
has been a growing utilization of machine learning algorithms
to tackle obstacles in the field of CEED[3].

The two aims are inherently contradictory and cannot be
effectively optimized. The presence of conflicting objectives in
this context leads to a problematic multi-objective optimization
issue referred to as the combined economic emission dispatch
(CEED) problem. In this Problem, both objectives are taken
into account and optimized simultaneously.[3] Researchers
have proposed many algorithms to solve these EELD
problems. Many optimization algorithms like Linear
Programming (LP), Quadratic Programming(QP)[4], Non
Linear Programming (NLP), Genetic Algorithm (GA)[5],
Particle Swarm Optimisation Algorithm(PSO)[6], Improved
Swarm Approach[7],Ant Colony Algorithm(ACO), Simulated
Annealing(SA)[8], Tabu Search(TS) [9]are utilized in solving
this NL problem. Hybrid approaches and dynamic
programming methods are adopted to get the most accurate
scheduling to solve the EELD problem.

In recent days, [9]Machine learning algorithms Ilike
Artificial neural network(ANN)[9], Support Vector
Machines(SVM)[10], Random Forest(RF), Gradient Boosting
Algorithm(GBA), Reinforcement Learning (ReL), K means
Clustering, K Nearest Neighbour(KNN), and many other Deep
Neural Networks (DNN) [11]are utilized in solving this EELD
problem.



Thermal power facilities, which utilize fossil fuels, continue
to serve as the primary source of electrical power generation.
The finite nature of fossil fuel reserves, the geopolitical control
over these resources, and the environmental harm caused by
emissions all present significant challenges that this reliance
must address. Although alternative energy sources such as
hydroelectric and nuclear power have made progress, fossil
fuels continue to be essential for electricity generation because
of their established infrastructure and ability to meet large-
scale demand.

The Combined Economic Emission Dispatch (CEED)
problem encompasses the intricate objective of determining the
optimal generation schedule that minimizes both emissions and
operating costs. This objective is a multi-objective optimization
problem due to its dual character, which seeks to reduce
environmental impact and reduce costs. Over the years,
researchers have endeavored to achieve a compromise between
these opposing objectives by developing and refining a variety
of optimization techniques.

Traditional Methods and Early Approaches:

Classic mathematical optimization techniques were initially
employed to address the EELD problem:

Cost-efficient power generation schedules were frequently
computed using Linear Programming (LP)[12], Quadratic
Programming (QP)[13], and Dynamic Programming (DP)[14].
Nevertheless, these methods were unable to adequately account
for the non-linear character of power systems and emissions.
While Non-Linear Programming (NLP) provided superior
capabilities for managing non-linearities, it necessitated
substantial computational capacity, which restricted its
application to smaller systems.

Although these methods established a strong foundation, they
were unable to address the progressively intricate demands of
contemporary power systems that incorporate renewable
energy sources and experience dynamic demand shifts.

Transition to Heuristic and Metaheuristic Algorithms

As the complexity of power systems increased, researchers
pursued more effective optimization tools:

GA: These algorithms, which were motivated by the process of
natural selection, gained popularity due to their capacity to
rapidly identify solutions that were nearly optimal. In an effort
to optimize power generation schedules with minimal cost and
emissions, GAs emulate the biological process of evolution by
selecting, crossing, and mutating solutions.

PSO: The collective behavior of birds and fish served as an
inspiration for PSO, which provided a more direct and
expeditious alternative to GAs. It allowed researchers to more
effectively optimize non-linear and multi-objective functions
by simulating a group of particles (solutions) that traverse the
solution space.

Simulated Annealing (SA), Tabu Search (TS), and Ant Colony
Optimization (ACO): These algorithms expanded the toolkit of
heuristic approaches by introducing a variety of mechanisms
for investigating the solution space and avoiding local optima.
For instance, ACO employed the concept of pheromone traces
to replicate the behavior of ants in identifying paths, which was
appropriate for resolving routing issues in power systems.

The emergence of multi-objective optimization

It was evident that the analysis of economic costs and
emissions in isolation was ineffective. This realization resulted
in the development of multi-objective optimization techniques:
Pareto-Optimal Solutions: These methods enabled operators
to evaluate a variety of alternatives that illustrated the trade-
offs between reducing emissions and minimizing costs. The
Pareto front solutions represented scenarios in which no single
objective could be enhanced without weakening another.

Fuzzy Logic Integration: This method facilitated decision-
making in uncertain environments by enabling more flexible,
human-like reasoning. In order to modify the objectives in
response to real-time data and evolving conditions, researchers
integrated fuzzy logic with PSO and other algorithms.

The Revolution in EELD Driven by Machine Learning
(ML):Machine learning has enabled the management of the
intricate, data-rich nature of EELD, with a significant
breakthrough:

Artificial Neural Networks (ANNs): As early ML models
were applied to EELD, ANNs were regarded for their capacity
to understand patterns from historical data. They were notably
effective in predicting optimal generation schedules by
analyzing historical scenarios and environmental conditions.
Support Vector Machines (SVMs) were employed due to
their capacity to classify various load dispatch strategies and
manage high-dimensional data, thereby ensuring that solutions
were more precisely tailored to the constraints of EELD issues.
Random Forests (RF) and Gradient Boosting Algorithms
(GBA) are ensemble methods that enhance prediction accuracy
by combining multiple decision trees. Their resilience rendered
them appropriate for managing fluctuations in power demand
and generation.

Developments in Deep Learning

The advent of deep learning resulted in the development of
more advanced models:

Recurrent Neural Networks (RNNs): These models were
notably influential in EELD due to their ability to
accommodate temporal dependencies and sequential data.
Researchers were able to more effectively manage fluctuations
in renewable energy supply and anticipate shifts in power
demand as a result of the use of RNNs.

Deep Neural Networks (DNNs): By capturing intricate, non-
linear relationships within extensive data sets, DNNs have
made substantial contributions. Their depth and multiple layers
provided a higher level of representation capacity, rendering
them valuable for adaptive scheduling and long-term load
forecasting.



Hybrrid Methodologies: Integrating Machine Learning and
Conventional Approaches

Researchers  acknowledged that hybrid models, which
integrated traditional optimization algorithms with machine
learring, produced superior outcomes:

The integration of ANNs with PSO is a method that employs
the predictive potential of neural networks to estimate initial
solutions, which can then be refined by PSO. This method
combined the learning capabilities of ANNs with the quickness
and adaptability of PSO, resulting in a more precise and
efficient scheduling process.

Heuristic Metheds Assisted by Machine Learning: In real-
time applications, machine learning models have enabled the
refinement of heuristic algorithms by learning from past
outcomes, thereby reducing the necessity for trial-and-error
analysis.

Adaptive and Real-Time EELD Models

Advancements in sensor technology, data availability, and
processing capacity have facilitated the development of real-
time models:

Adaptive Dispatch Systems: These systems have the potential
to optimize cost and emissions by adjusting generation
schedules in real-time, using data such as weather forecasts.
This was especially important for circuits that contained
renewable energy sources, which are inherently variable.
Reinforcement Learning (RL): RL models dynamically adapt
to shifting conditions by learning from continuous feedback.
This method facilitated the development of decision-making
that was more effective over time, as it was able to balance
emissions and costs as external conditions changed.

This article aims to give a clear explanation of EELD, its
constraints, advantages , Challenges faced, Methodologies
Adopted, Optimization Techniques (OT) used in solving
EELD, Machine Leaming Techniques (ML) for EELD

Problems, and comparison of OT and ML in solving EELD and
concluded with Future scope.

II. EELD Problem

The term EELD [15] typically pertains to
optimizing fuel cost and reducing hazardous gas emissions and
particulate matter while simultaneously meeting the overall
load demand and adhering to certain equality and inequality
limitations[16]. However, in addition to the aims above,
several researchers consider additional factors such as stability
level, load modification time, reserve capacity, and
transmission loss while addressing the EELD problem. The
EELD is commonly depicted as a quadratic cost function by
researchers and is characterized as such in eq,1

F(Pg)= X", aiPgi2 + biPgi+ ¢ (1)

The variable F represents the overall fuel cost per hour divided
by the generation cost in dollars. The coefficients a;, b;, and c;
correspond to the fuel cost of the i-th generating unit[16].
Furthermore, the Py represents the actual power generation of
the ith unit, measured in megawatts (MW), whereas the
variable n denotes the total number of generating units. The

emission dispatch problem is sometimes expressed as a
quadratic function, which can be defined as follows.

E(Py) = Y1, diPgi2 + eiPgi + fi )

The emission function, denoted as E and measured in
kilograms per hour (kg/h), and the emission coefficients of
the ith generating unit, represented as d;, e;, and fi. The two
aims are inherently incompatible and contradictory, leading
researchers to occasionally merge them into a singular
objective using a price penalty component. The economic
emission function Fr, which is measured in (§/h) and has a
penalty factor, can be defined as follows:

FT=Xi,{F(Pgi) + hiE(Pgi)} (3)

The penalty factor, denoted as h;, is expressed in units of
dollars per kilogram ($/kg).

Researchers must consider the many real-time and
practical restrictions present in power generation systems to
produce accurate and dependable power generation results
that can be used in power generation systems.

111 Elements of EELD
a.Power Balance Constraint(PBC):The PBC necessitates
that the aggregate power provided by all generating units
must be sufficient to meet the overall load demand.

P=)7,Pgi =PD + PL(4)

The variables P, P, Pp, and Py represent the total generated
power in all generating units, the total generated power in
generating unit I, the total power demand, and the total loss,
respectively.
b. Constraint due to Transmission loss(TLC): TLC
refers to the reduction in electrical power that occurs when
power generated in a power generation system is
transmitted to the grid. The phenomenon referred to as
transmission loss is a significant limitation in
EELD difficulties.
PL = ¥, XL, PgiBijPgj + XL, BioPgi + B0O(S)
The variables Bij, Bi0, and BOO represent the loss
coefficients in George's formula, the transmission loss
constant of generating unit i, and Kron's transmission loss
constant, respectively.
¢. Generator limit Constraint(GLC):

[16] Each unit's generated total powermust remain
between its upper and lower limits for reliable power
system operation. It can be characterized as follows:

Pgi, Min < Pgi < Pgi, max(6)
The variables Pgi,min, and Pgi,max represent the
lower and upper bounds of the power output of generating
unit 1.
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Figure 1:Elements of Economic Load Dispatch

d. Ramp Rate Constraint(RRC):The generator ramp rate
restriction imposes realistic constraints on the operational
range of all generating units. Consequently, they must
function within two contiguous and distinct operational
areas. To appropriately develop the EELD, [16]it is
imperative to consider the limitations imposed by the
generator ramp rate. Considering the ramp rate restriction,
each generating unit's power output can be expressed as
follows.
Max(Pgi, min, Pgi0 — DRi) < Pgi
< Min(Pgi, max, Pgi0 + URI)
(7)
The variable Pgjp represents the previous operating point of
generating unit i. Also, DRi and URi denote the down and
up rate limits of generating unit i, respectively.
e. Prohibited operating zones(POZ): POZ are common in
real power production systems, where the complete
operating range of a generating unit may not always be
accessible for operation. Specific units may experience
restricted operating zones due to physical operational
limitations, and operating inside these zones can potentially
result in instabilities[ 17]. Therefore, it is imperative that the
generation output refrains from operating within the
designated forbidden operating zones. The generating unit
should run within the feasible operating zones as described
below.
Pgi,min < Pgi < Pgil, 1 (8)
PgilU,j — 1 < Pgi < Pgil,, jj=2,3,...K; O]
PgiU,Ki < Pgi <
Pgi, max (10)
The symbol K; denotes the quantity of restricted operating
regions within the curve of generating unit i, with j being
the index of a specific restricted operating region for
generating unit i. The lower limit of the jth prohibited zone
denoted as P,ij*, and the upper limit of the (j-1)th prohibited
operating zone, denoted as Pgi j U, are the respective limits
for the generating unit i.
Pros of Accurate EELD
a, Economic Efficiency:The primary objective of the
EELD initiative is to reduce the operational expenses
associated with power generation. [18]Power utilities can
minimize fuel use and operational expenses by optimizing
resource allocation, significantly reducing costs.
b. Environmental Sustainability: The EELD framework
considers the concwrent mitigation of greenhouse gas

emissions. It facilitates the attainment of environmental
objectives [19]and mitigating the carbon emissions
associated ~ with  electricity = production,  following
international endeavors to address climate change.

¢. Optimal Resource Allocation: The EELD framework
aims to maximize the utilization of diverse generation
sources, encompassing conventional fossil fuels,
sustainable renewable energy, and advanced energy storage
technologies. This practice guarantees the efficient
utilization of resources, facilitating the integration of
cleaner energy sources into the power system.

d. Flexibility: The EELD system can effectively respond to
fluctuations in electricity demand, variations in fuel costs,
and the accessibility of renewable energy sources.
[[5]Flexibility allows for adjusting the generation mix to
respond to changing conditions effectively.

e. Compliance with laws: Numerous regions and countries
have implemented rules and standards to reduce emissions.
The EELD program assists electricity utilities in achieving
regulatory compliance while simultaneously ensuring cost-
effective operational practices.

f. Enhanced decision support: Economic and
environmental decision-making can benefit significantly
from EELD models since they offer vital insights into the
inherent trade-offs between these objectives[20]. The data
provided by the EELD facilitates the process of making
well-informed decisions on power generation and policy.

g. Integration of renewable energy:Incorporating
renewable energy sources, such as wind and solar, into the
generation mix can be efficiently achieved using
EELD[21]. The seamless integration of renewable energy
into the existing power grid is facilitated by strategically
optimizing clean energy use in conjunction with traditional
energy sources.

h. Reduced Fuel Consumption: The utilization of
EELD models has the potential to reduce the consumption
of fossil fuels by optimizing the dispatch of generators at
their optimal operating points. This leads to a decrease in
gasoline usage and reduced associated expenses.

The emphasis of CEED on the cost-effective production of
energy can reduce power costs for consumers, providing
advantages to both industrial and residential users.

Methodologies Adopted
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Figure 2: ELD Approaches

Numerous studies demonstrate that numerous
optimization algorithms have been used to resolve high-



complexity economic load dispatch problems. Basic
analytical approaches, such as Lambda iteration, Newton's
method, and The Lagrange multiplier approach, can address
the ELD problem with an assumption that the incremental
cost curves of the generating units exhibit a monotonically
glowing piecewise-linear pattern. Acknowledging that the
fiel cost function has non-convex characteristics in practice
is essential. Traditional methods based on classical calculus
are inadequate in effectively addressing this Problem. The
dynamic programming method can be employed to address
the issue at hand. Tt is challenging to handle the ELD
problem due to the presence of cost curves that are
intrinsically non-linear and discontinuous. However, the
computational aspect of solving this Problem remains a
significant obstacle. The algorithm exhibits high
complexity and is prone to encountering local optima due to
premature convergence.

However, to address the limitations associated
with the non-linear cost curves, one-way search, early and
late  convergence, and  sub-optimal solutions,
many stochastic and smart approaches were employed to
effectively solve the ELD Problem.[21]The [22] researchers
encompassed techniques to solve Multi-objective problems
consisting of GA, PSO, Evolutionary Programming (EP),
Differential Evolution (DE), ACO, Simulated Annealing
(SA),  Gravitational  Search  Algorithm  (GSA),
Biogeography-Based Optimization (BBO), Sequential
Quadratic Programming (SQP), etc. In contrast to classical
optimization methods, intelligent stochastic techniques
operate on a group of possible solutions within the search
space. This approach offers the advantage of finding
multiple suitable solutions in a single iteration. These
techniques are characterized by their ease of
implementation, robustness, and computational
performance. [19]By engaging in collaboration and
competition, these strategies increase efficiency in
identifying optimal solutions when applied to intricate
optimization issues such as the ELD problem. If the
Emission constraint is added to the conventional ELD
problem, then the problem becomes more non-linear. So,
the methodology finding of this kind of Problem continues.

The research indicates that any meta-heuristic
method employed to address the limitations of traditional
optimization methods exhibits weaknesses that hinder its
ability to attain the optimal solution. Several drawbacks can
be identified in the usual approach. [23]These include the
prolonged stagnation of the fitness function at a local
optimum, idle individuals in a dead loop, decreased fitness
quality across iterations, and slow search space exploration.
To address these restrictions more effectively and enhance
the efficacy of solutions, several hybrid approaches have
emerged that combine two or more soft computing
techniques. This approach effectively leveraged a certain
methodology's advantages while mitigating its limitations.
Several hybrid methods have been widely utilized in
addressing the challenges associated with the ELD
Problem. These approaches include GA-PSO, ABC-PSO,
PSO-GSA, DE-BBO, GA-DE-SQP, and GA-PSO-SQP.

[8]Some notable cons of optimization algorithms
are Non-linear objective function and high Dimensionality.
Non-convexity, Constraint Handling, Mixed Integer, Multi-
objective optimization, Data Uncertainty, Complex

Emission Modelling, Real-Time operation, Model
Complexity, Scalability, Regulatory and  Market
constraints, Human factors. To tackle these issues; it is
often necessary to employ a blend of sophisticated
optimization methodologies, algorithmic enhancements,
and interdisciplinary cooperation among professionals
specializing in power systems, mathematics, and computer
science. Researchers are actively engaged in developing
innovative strategies to address these difficulties and
enhance the effectiveness and sustainability of power
system operations using CEED optimization techniques.
Machine Learning Techniques to EELD Problems
The utilization of machine learning methodologies
in collaboration with, or as a substitute for, conventional
optimization strategies in the EELD presents numerous
benefits and has the potential to tackle various challenges
commonly encountered in optimization approaches.
[24]Severalbenefits are associated with utilizing machine
learning techniques for the EELD.
a. Handling Non-Linearity:[1]Machine  learning
algorithms, such as neural networks and Support Vector
Machines (SVMs), demonstrate exceptional proficiency in
capturing complex and non-linear associations among
variables. Traditional optimization methods are often less
effective in modeling the non-linear cost and emission
functions commonly seen in EELD challenges.
b. Data-Driven Solutions:[25] Machine learning utilizes
past data to acquire knowledge of patterns and correlations,
rendering it highly suitable for CEED challenges that
involve the availability of previous data about generator
behavior, fuel prices, and emissions. The utilization of a
data-driven methodology has the potential to result in
models that are more precise and flexible.
¢. Flexibility:[26]Machine learning models can effectively
adjust to fluctuations within the power system,
encompassing factors such as alterations in electricity
consumption, fluctuations in fuel prices, and the
incorporation of renewable energy sources. The retraining
of individuals can enable them to adapt to evolving
circumstances, thereby offering adaptability in addressing
solutions related to CEED.
d. Incorporating Uncertainty:[27]Machine learning
models can integrate probabilistic or uncertainty-based
methodologies to accommodate data uncertainty and
parameter fluctuations. The implementation of this
approach has the potential to improve the resilience and
effectiveness of CEED solutions significantly.
e. Multi-objective optimization: Machine learning
techniques have a greater capacity to address multi-
objective optimization effectively. Decision-makers can
efficiently investigate the balance between economic cost
and emissions reduction by approximating and modeling
the Pareto front.

Conclusion

This study provides a thorough examination of
contemporary advanced optimization algorithms that have
been developed to address the challenges associated with
solving EELD problems. The present study demonstrates
the categorization of several optimization approaches and
analyses their respective strengths and weaknesses. This
paper presents various formulation criteria for the



EELD problem and their significant restrictions. The aim is
to provide readers with a comprehensive understanding of
the actual CEED Problem. This work primarily
concentrates on utilising machine learning techniques to
address the multi-objective EELD issue, highlighting the
advantages it offers compared to traditional methods.

Reference

[11 M. H. Hassan, D. Yousr, S. Kamel, and C. Rahmann, “A
modified Marine predators algorithm for solving single- and
multi-objective  combined economic emission dispatch
problems,” Comput. Ind. Eng., vol. 164, no. April 2021, p.
107906, 2022, doi: 10.1016/j.cie.2021.107906.

2] A. Y. Abdclaziz, E. S. Ali, and S. M. Abd Elazim,
“Implementation of flower pollination algorithm for solving
economic load dispatch and combined economic emission
dispatch problems in power systems,” Energy, vol. 101, pp. 506—
518, 2016, doi: 10.1016/j.energy.2016.02.041.

3] M. H. Hassan, S. Kamel, L. Abualigah, and A. Eid,
“Development and application of slime mould algorithm for
optimal economic emission dispatch,” Expert Syst. Appl., vol.
182, no. April, p- 115205, 2021, doi:
10.1016/j.eswa.2021.115205.

(4] A. Sundaram, “Multiobjective multi verse optimization
algorithm to solve dynamic economic emission dispatch problem
with transmission loss prediction by an artificial neural
network[Formula presented],” 4ppl. Soft Comput., vol. 124, p.
109021, 2022, doi: 10.1016/j.a50¢.2022.109021.

[5] W. C. Yeh et al., “New genetic algorithm for economic dispatch
of stand-alone three-modular microgrid in DongAo Island,”
Appl. Energy, vol. 263, no. December 2018, 2020, doi:
10.1016/j.apenergy.2020.114508.

[6] P. Venkatesh and M. Poomima, “Combined economic emission
dispatch using particle swarm optimization,” Jut. J. Appl. Eng.
Res., vol. 10, no. 20, pp. 1887318876, 2015.

[71 C. Jeevakarunya and S. T. Suganthi, “Improved Swarm
Intelligence Approach To Multi Objective Ed Problems,” vol. 2,
no. 2, pp. 1203-1211, 2012.

[8] F. P. Mahdi, P. Vasant, M. Abdullah-Al-Wadud, V. Kallimani,
and J. Watada, “Quantum-behaved bat algorithm for many-
objective combined economic cmission dispatch problem using
cubic criterion function,” Neural Comput. Appl., vol. 31, no. 10,
pp- 5857-5869, 2019, doi: 10.1007/s00521-018-3399-z.

[9] A. B. Kunya, A. S. Abubakar, and S. S. Yusuf, “Review of
economic dispatch in multi-area power system: State-of-the-art
and future prospective,” Electr. Power Syst. Res., vol. 217, no.
September 2022, p- 109089, 2023, doi:
10.1016/j.epsr.2022.109089.

[10] P. Mohapatra, “Combined economic emission dispatch in hybrid
power systems using competitive swarm optimization,” J. King
Saud Univ. - Comput. Inf. Sci., vol. 34, no. 10, pp. 8955-8971,
2022, doi: 10.1016/j.jksuci.2022.08.022.

(1] T. H. Lee, A. Ullah, and R. Wang, “Bootstrap Aggregating and
Random Forest,” Adv. Stud. Theor. Appl. Econom., vol. 52, pp.
389429, 2020, doi: 10.1007/978-3-030-31150-6_13.

[12] G. Ciulla and A. D’Amico, “Building energy performance
forecasting: A multiple linear regression approach,” Appl.
Energy, vol. 253, no. Aprl, p. 113500, 2019, doi:
10.1016/j.apenergy.2019.113500.

[13] A. Graa, I. Ziane, F. Benhamida, and S. Souag, “Dynamic
Economic Load Dispatch Using Quadratic Programming:
Application to Algerian Electrical Network,” World Acad. Sci.
Eng. Technol. Int. J. Energy Power Eng., vol. 2, p. null, 2015,

[Online]. Available:
https://www.semanticscholar.org/paper/6c5b11d1 fecde55a088b2
472265764¢158b0c0c5

[14] T. Niknam, F. Golestane, and B. Bahmanifirouzi, “Modified
adaptive PSO algorithm to solve dynamic economic dispatch,”
2011 IEEE Power Eng. Autom. Conf., vol. 1, pp. 108-111, 2011,
doi: 10.1109/PEAM.2011.6134807.

[15] D. Gonidakis and A. Vlachos, “A new sine cosine algorithm for
economic and emission dispatch problems with price penalty
factors,” J. Inf. Optim. Sci., vol. 40, no. 3, pp. 679-697, 2019,
doi: 10.1080/02522667.2018.1453667.

[16] F. P. Mahdi, P. Vasant, V. Kallimani, J. Watada, P. Y. S. Fai,
and M. Abdullah-Al-Wadud, “A holistic review on optimization
strategies for combined economic emission dispatch problem,”

(171

(18]

[19]

(20]

(21]

[22]

(23]

[24]

(23]

(26]

[27]

Renew. Sustain. Energy Rev., vol. 81, no. March, pp. 3006—
3020, 2018, doi: 10.1016/].rser.2017.06.111.

A. Rajagopalan, P. Kasinathan, K. Nagarajan, V. K.
Ramachandaramurthy, V. Sengoden, and S. Alavandar, “Chaotic
self-adaptive interior search algorithm to solve combined
economic emission dispatch problems with security constraints,”
Int. Trans. Electr. Energy Syst., vol. 29, no. 8, pp. 1-26, 2019,
doi: 10.1002/2050-7038.12026.

S. Hazra and P. K. Roy, “Quasi-oppositional chemical reaction
optimization for combined economic emission dispatch in power
system considering wind power uncertainties,” Renew. Energy
Focus, wvol. 31, no. 00, pp. 45-62, 2019, doi:
10.1016/j.ref.2019.10.005.

D. C. Secui, “Large-scale multi-area economic/emission
dispatch based on a new symbiotic organisms search algorithm,”
Energy Convers. Manag., vol. 154, no. November, pp. 203223,
2017, doi: 10.1016/j.enconman.2017.09.075.

S. Arunachalam, T. AgnesBhomila, and M. Ramesh Babu,
“Hybrid particle swarm optimization algorithm and firefly
algorithm based combined economic and emission dispatch
including valve point effect,” Lect. Notes Comput. Sci.
(including Subser. Lect. Notes Artif. Intell. Lect. Notes
Bioinformatics), vol. 8947, pp. 647-660, 2015, doi:
10.1007/978-3-319-20294-5_56.

H. Liang, Y. Liu, F. Li, and Y. Shen, “A multiobjective hybrid
bat algorithm for combined economic/emission dispatch,” Inz. J.
Electr. Power Energy Syst., vol. 101, no. November 2017, pp.
103-115, 2018, doi: 10.1016/j.ijepes.2018.03.019.

C. R. Edwin Selva Rex, M. Marsaline Beno, and J. Annrose, “A
Solution for Combined Economic and Emission Dispatch
Problem using Hybrid Optimization Techniques,” J. Electr. Eng.
Technol., no. 0123456789, 2019, doi: 10.1007/s42835-019-
00192-z.

Y. A. Gherbi, F. Lakdja, H. Bouzeboudja, and F. Z. Gherbi,
“Hybridization of two metaheuristics for solving the combined
economic and emission dispatch problem,” Neural Comput.
Appl, wvol. 31, no. 12, pp. 8547-8559, 2019, doi:
10.1007/s00521-019-04151-7.

V. P. Sakthivel, M. Suman, and P. D. Sathya, “Combined
economic and emission power dispatch problems through multi-
objective squirrel search algorithm,” Appl. Soft Comput., vol.
100, p. 106950, 2021, doi: 10.1016/j.as0¢.2020.106950.

A. Chatterjee, S. P. Ghoshal, and V. Mukheree, “Solution of
combined economic and emission dispatch problems of power
systems by an opposition-based harmony search algorithm,” Int.
J. Electr. Power Energy Syst., vol. 39, no. 1, pp. 9-20, 2012, doi:
10.1016/j.ijepes.2011.12.004.

Q. Niu, H. Zhang, X. Wang, K. Li, and G. W. Trwin, “A hybrid
harmony search with arithmetic crossover operation for
cconomic dispatch,” Int. J. Electr. Power Energy Syst., vol. 62,
pp. 237-257, 2014, doi: 10.1016/j.ijepes.2014.04.031.

K. Bhattacharjee, A. Bhattacharya, and S. H. N. Dey,
“Oppositional Real Coded Chemical Reaction Optimization for
different economic dispatch problems,” Int. J. Electr. Power
Energy  Syst, vol. 55 pp. 378-391, 2014, doi:
10.1016/j.ijepes.2013.09.033.



