March 2011

il fibre
ring

In Situ
sorption
g Two
ipplied

ph W

parison
il palm
isearch

sound
waste

itional

GBhat
es of
fibre

lon of
jound
.70,

fty of
ity of

1 the
ption
Jod,

ISSN - 0973 - 1334 National Journal of Technolagy, Vol.7, No.1, March 2011

ABSTRACT

In this paper, we address the problem of mining
closed sets from four-dimensional datasets,
Several algorithms have been proposed for
mining frequent closed sets from transactional
datasets. However, these algorithms are limited
to two-dimensional datasets and three-
dimensional datasets. The collected data in the
context of transactional database contains much
interesting useful information spanning several
dimensions. These multiple dimensions used
for analyzing and knowledge discovery in
database system induced to present the
QuadMiner algorithm, an efficient algorithm
for mining closed four-sets from four-
dimensional datasets. Experimental results
involving several synthetic datasets show that
the algorithm takes less running time than the
recently proposed DataPeeler algorithm.

Keywords : Association Rule Mining Data Mining
Knowledge Discovery Closed 4-set.

LINTRODUCTION

The mining of frequently occurring sets plays an
portant role in many data mining tasks. Frequent set
mining can produce a large number of frequent sets and many
of them are redundant, which reduce the efficiency and
effectiveness of the mining process. For many applications,
mining all the frequent sets is not necessary, and mining the
closed sets too will provide the same amount of information,
Rather than frequent set mining, frequent closed set mining
will generate less number of sets, improves the efficiency and
effectiveness of the mining tasks. Different techniques and
algorithms have been proposed to solve this problem in both
2D and 3D space. Several algorithms have been proposed
including FP-Close [7], A-Close, AFOPT-Close 9], B-
Miner & C-Miner [2], and DCI-Close [6]. These algorithms
are all limited to 2D dataset analysis. The gene-time dataset,
gene-sample dataset in biological micro array analysis, and
the transaction-itemset datasets in market basket data
analysis are example of 2D datasets. To enumerate all the
closed 3-sets (also known as frequent closed cubes) from 3D
dataset, several algorithms have been proposed including
RSM (Representative Slice Mining) [1], Cube-Miner [1] and

TRIAS [5].

EFFICIENT MINING OF CLOSED SETS FROM
HIGH DIMENSIONAL DATASETS
'R.V. Nataraj and’S.Vinoth Kumar

Department of Information Technology, PSG College of Technology, rvn@ieee.org
Computer Science Corporation, Chennai csevino@gmail.com, Coimbatore-641004, TamilNadu, India

The RSM framework generates 2D representative
slices from the 3-dimensional dataset. A fter generating the
representative slices, the framework uses 2D closed set
algorithm to mine 3-dimensional closed sets. 3D closed sets
are generated by combining each 2D closed set with heights
contributing to its representative slices. Finally, post-pruning
strategy removes all the unclosed 3-dimensional sets, This
framework is efficient, only if one of the dimensions is small.
Unlike RSM algorithm, the Cube-Miner algorithm generates
frequent closed cubes on 3-dimensional space directly.
Cube-Miner algorithm is efficient for large datasets.
However, forth-mentioned algorithms are limited to 3D
datasets. The gene-sample-time micro array data and
ransaction-itemset-time in market basket analysis are
examples of 3D datasets. Nowadays, due to advancement in
technology, multidimensional datasets are very common and
hence efficient algorithms are required to mine closed sets
from datasets greater than 3-dimensions. The Data Peeler [4]
isarecently proposed algorithm to enumerate closed set from
datasets greater than 3-dimensions,

In this paper, we propose an algorithm for mining
frequent closed sets from 4-D datasets. The rest of this paper
is organized as follows, Section 2 presents the basic notations
and the problem definition associated with this paper.
Section 3 presents QuadMiner algorithm, the pseudo code
and its description while section 4 analyzes the experimental
results comprehensively. The paper is concluded in section
5.

2.PRELIMINARIES

In this section, we present the basic notations and
definitions that we will be using throughout this paper. A
dataset D is a quadset, D= (D, D, D,and D,) where D={c,
€, ...,¢;}denotes a set of columns, D,= {r, r, ...,r,}denotes a
setofrows, D, = {h, h, ...,h, }denotes a set of heights, D, =
{91 gq.} denotes a set of cubes, Then a four dimensional
dataset can be represented by kxIxmxn binary
multidimensional matrix O= D, x D, x D, x D, Each cell
O,.... corresponds to the relationship among cubes g, height
h,row r, and column ¢,. The presence of "0’ indicates that qh,
r and c are not connected, whereas '1' indicates that they are

connected. A sample four dimensional dataset is shown in
Table 1.

ISSN - 0973 - 1334 National Journal of Technology, Viol.7, No.1, March 2011

Table 1: An Example 4-Dimensional Dataset

q 9

hy h,

cl|c2|c3 cl|c2|¢c3
rl{1 |0 [0 rl|1 |10
o] FLTR s 1 | 2|0 |1
h2 h2

cl|e2|c3 cl|c2|e3
ri|0 |0 |1 rl|0 |1 |0
2|1 |1 |1 "4 b |

Definition 2.1 Closed 4-set: Given a set of dimension
p,/'cD,D,cD,D,cDandD, <D, ad-setS=(D,'x D;'x
D,'> D,') is defined as a closed 4-set when it satisfies the
following, (2) D,= D,(D, x Dyx D), (b) D= DD, % D;* D)),
(c) D= DD, * D,x D)y and (d) D= D(D, * D,x D,). (a), (b),
(c) and (d) are referred to as “closed” in column set, row set,
height set and quad set respectively.

Definition 2.2 Frequent Closed 4-set: A d-set S=(D, *
D, x D;x D,)e O is called as frequent closed 4-set if D,
support |D, (D, x Dyx D,), D,support | D,(D,' x Dy/» D), D,
support | D, (D, * D,x D,)| and D,support |D, (D, x D, D)
are higher than the user defined minimum D, support
(min_s_D,), minimum D,support (min_s_D,), minimum D,
support (min_s_D,) and minimum D, support (min_s_D,)
respectively.

Table 2: Closed 4-sets

Sl No Closed 4-sets
1 q2:hlh2:rlr2:¢c2
2 qlg2:h2:r2:clc2e3
3 ql:h2:rlr2:c3

4 ql : h1h2:12: c2¢3
5

6

qlq2:hlh2:12:¢2
qlq2:hl:rl:cl

Problem Definition: Given a 4-dimensional dataset,
the problem is to enumerate all the closed 4-sets satisfying
the user specified minimum size constraints.

3. QUADMINER ALGORITHM

In this section, we present the QuadMiner algorithm,
which enumerates the closed 4-sets and operates directly on

 a 4D-set containing all 0's having an element from

the 4-dimensional datasets. The quad-miner algorithm i
inspired from the cube-miner [1] algorithm and generates
quad tree from the input dataset. The root node of the quad
miner algorithm tree consists of all the elements of 2
dimensions. The algorithm is based on '0' removing principl
(note that a closed 4-set is a 4D set with all 1's i.. all the
elements are in relation with each other) and starting from the
root node, the child nodes are generated by removing zeros
For removing zeros, the cutter concept [5] is used. A cutteris

dimension except the first dimension which may contain
more than one element from the column set. Set A(D,', D', D
and D,") is called a “cutter” as a whole and each atom (D/', Dy,
D,', D,) are called as the extreme left atom, middle left atom
middle right atom and extreme right atoms respectively. Nok
that, an element of the cutter is referred to as an atom
Applying the cutter on a node results in four child nodes
namely, the extreme left child, middle left child, middle right
child and extreme right child. The extreme left child node
generated by removing the quad element of cutter and the
middle left child node is generated by removing heigh
element of cutter. Similarly, the middle right child node is
generated by removing row element of cutter and the extrem
right child is generated by removing the column elements o
cutter.

For example, the root node consists of entire 4-stl
attributes (Column, Row, Height, quad) as shown in Fig |
The cutter for the root node is ql: hl: rl: c2¢3 and th
resulting extreme right child, the middle right child, middl
left child and the extreme left child of the root node are ER
(glg2, h1h2, rir2, cl), MR (gl1q2, hik2, r2, clc2c3), ML
(qlg2, h2, rir2, clc2c3) and EL(q2, hlh2, rir2, clcld
respectively. While generating the child nodes, the algorithm
does several checking to ensure the size, uniqueness and th
closeness of the node. If these conditions are satisfied,
there is no further cutter applicable for a node, the algoriths
concludes the node as a closed 4-set. For example, Table
shows all the closed 4-sets for the example dataset giveni
Tablel, In the following section, we propose track checking
to remove duplicates (unicity checking) and closenes
checking to remove subsets.

3.1 Removing duplicates

While generating the quadtree using the cuti
concept, a duplicate closed 4-set pattem may also b
generated. While generating the child nodes (the extren
right, middle right, middle left and extreme left), we perfom
the following to remove duplicate 4-sets.

(1) Extreme Left track checking

This checking is done only for extreme left chil
node from middle left branch, middle right branch an
extreme right branch. In extreme left track checking, U
extreme left atom of the current cutter is compared with the
extreme left atom of the set of cutters of the path from the rod

4-set
Fig 1.
id the
niddle
re ER
), ML
le2¢3)
yrithm
nd the
|, then
srithm
able 2
ven in
scking
SENESS

cutter
Iso be
ktreme
erform

1 child
th and
ng, the
iith the

theroot

ISSN - 0873 - 1334 National Journal of Technology, Vol.7, No.1, March 2011

node. For example, the extreme left atom g/ of cutters (g1,
12, rl, ele), (g, hl, r2, cl)and (gi, k1, r2, cl) has already
cut the path of middle left child node EL (g2, h2, rir2,
¢clc2c3)(al in level 2), middle right child node EL (g2, h1h2,
r2, clc2¢3) (a2 in level 5) and extreme EL (g2, h1h2, rir2,
¢l)(a3 in level 2) respectively. Hence, the following are to be
pruned-off as the subset of node EL (g2, h1h2, rir2, elc2e3):
al from the middle left child node branch, a2 from the middle
right child branch and a3 from the extreme right child branch.

(2)Middle left track checking

This checking is done only for middle left child node
from middle right branch and extreme right branch. In
middle left track checking, the middle left atom of the current
cutter is compared with the middle left atom of the set of
cutters of the path from the root node. For example, the

middle left atom Al of cutter (gl, hi, r2, cI) has already cut
the path of middle left child node ML (q/¢2, h2, r2, clc2c3)
(b1 inlevel 5), MR (glq2, h2, rir2, el)(b2inlevel 1). Hence,
the following are to be pruned-off as the subset of node ML
(g1q2, h2,r2, clc2c3). bl,b2, b3, b4and bJ.

(3)Middle Right Track checking

0 This checking is done only for middle right child
node from extreme right branch. In middle right track
checking, the middle right atom of the current cutter is
compared with the middle right atom of the set of cutters of
the path from the root node. For example, the middle right
atom r1 of cutter (g2, h2, rl, ¢3) has already cut the path of
extreme right child node ER (g/q2, h2, r2, ¢3) (¢! in level3).
Hence ¢l should be pruned off as a subset which may

Level {qlq2, bk, rird, cle2ed)

ML{qlq2, h2, rlr2, clc2ed)

EL(g2, k12, rle2, cle2ed)

MR(glqZ,
el) - ke
1) / St

EL{gl, h2,
rlr2, c3)

ER{gZhih2,
wlrd, eled)

h2,
rlr2, ele2ed)
/

/

MR(glq2, kb2, i2, cle2cd)

ER(glq2, h1h2, 1122, c1)

ER(glq2. h2,
fir2, 3)

g

(e1) F EL;

1h2 MLiqlq2,
x]) hi.rl, el)

ql, hl. 12, ¢l)
h2, k2, ER(glq2, h1h2,
7, il G) 2, e2c3)

(&) o1

ER(glq2,
EL(ql, hik2, hih,
se e ""‘%}“‘ 2,
=) o

ML{g2h2,
rleled)

MRigihih2, ER(g2 hik2,

rir, c2)

rl.ele2)

Quad Tree
Figure 1: The Quad Tree Generated by the QuadMiner Algorithm

ISSN - 0973 - 1334 National Joumnal of Technology, Vol.7, No.1, March 2011

3.2 Removing subsets

Closeness checking is required to remove subsets.
This closeness checking operations are done only in the leaf
nodeas follows

(a) Quad set closeness checking: In quad set
closeness checking, the elements that are not present in the
quad set of leaf nodes are checked against the other
dimension elements such as height set, row set and column
set. For example, the node MR (g2, h2, r2, cle2e3) (uq in
level 7) is not closed in quad set because there exists another
node MR (g1q2, h2, 2, clc2e3) (2 node in level 2) which is
a superset to uq (in level 7). It is to be noted that, addition of
ql to MR (g2, 2, r2, cle2c3) (ugin level 7) makes it aclosed
4-set. Hence, this node should be pruned.

(b) Height set closeness checking :. In this checking,
the elements that are not present in the height set of leafnodes
are checked against the other dimension elements such as
quad set, row set and column set. For example, the node ER
(g2, h2, rlr2, c2) (uh in level 7) is not closed in height set
because there exists its another node ER(q2, h1h2, rir2, c2)
(3" node in level 8) which is superset to uh (in level 7). Itisto
be noted that, addition of h1 to ER(g2,h2, rir2, ¢2) (uh in
level 7) makes it a closed set. Hence, this node should be
pruned.

(c) Row set closeness checking : In row set closeness
checking, the elements that are not present in the row set of
Jeaf nodes are checked against the other dimension elements
such as quad set, height set and column set. For example, the
node ER (g2, h1h2, r2, ¢2) (url inlevel 6) is not closed inrow
set because there exists another node ER (g2, h1h2, rir2, c2)
(3" node in level 8) which isa supersettourl (in level 6). It is
to be noted that, addition of r1 to ER (g2, h1h2, r2, c2) (url in
level 6) makes it a closed set. Hence, this node should be
pruned-off. Node ER (g2, h1h2, r1, c2) (ur2in level 9) is also
to be pruned-off, since addition of 12 to ER (g2, h1h2, 1, c2)
(wr2inlevel 9) makes it a closed 4-set.

3.3 QuadMiner Pseudo Code

INPUT : D, (set of columns), D, (set of rows), D; (set of
heights), D, (set of quad) and minimum size constraints
min_s_D,,min_s_D,,min_s_D,,min_s_D,.

OUTPUT: setof frequent closed sets

1. Initialize D, D, D, D, (column, row, height, quad)
2. set QC,HC and RC to NULL

3. construct the n-dimensional input dataset in the main
memory

4. D,=D,'=D,'= D,'=NULL// cutter initialization
5. Call QuadMiner(D, D, D, D)

6.QuadMiner(D, D, D, D)

e §

8. while(true)

9. generate cutter for current dimensions

10. if{cutter present) then

T update QC, HC,RC, D, D,", D," and D/
12. Hgenerate ER child node

13. ifmin_s_D,<|D\D," then

4. pushD\D,, D, D, D,and OC, HC, RC tostack
15. endif

I6. Hgenerate MR child node

17. ifmin_s_D,<|D,\D,’| then

18. if D,'"RC !=NULL then// MR track check
19. discard the MR child node as duplicate
20. else

21. pushD, DD, D, D,and OC, HC, RC tostack
22, endif

23. endif

24. //generate ML childnode

25. ifmin_s_D,<|D,\D,'| then

26. if D,'~HC I= NULL then// ML track check
27, discardthe ML child node as duplicate
28. else

29, push D, D, D,\D,’. D,and OC, HC, RC tostack
30. endif

31 endif

32 /lgenerate EL childnode

33 ifmin_s_D,<|D\D,| then

34. if D, QC!=NULL then//EL track check
35 discardthe EL child node as duplicates
36. else

37, pushD,, Dy D, D\D,'and OC, HC, RC tostack
38. endif

39. endif

40. else// cutter does not exits

41. call C_Checking(D, D, D, D)

2. endif

43, /lpopping from the stack

44. if(stack!=NULL)

45. popfrom thestackto D, D, D, D,and OC, HC, RC
46. continue

47. else

48. break
49. endif
50. endwhile
51}

‘ack

i

istack

=

stack

C RC

ISSN - 0973 - 1334 Mational Joumnal of Technology, Viol.7, Mo.1, March 2011

3.4 Closeness Checking Pseudo Code

1. C_Checking(D, D, D, D,)

2.

3. if—-3d,e(D\D,)&&d,.D,. D, D,istrue

4. if -3d, e (D,\D,) && D, .d,, D,, D, is true

5 if ~3d,e(D\D,) && (D,, D,.d,. D, is true
6. output D,: D,: D,: D, as aclosed 4-set
7. endif

8. endif

: endif

10.}
3.5Description

The QuadMiner Algorithm is a depth-first method to
mine closed 4-sets from 4-dimensional datasets. The
algorithm generates a quad tree while processing the input
dataset and a subset of the leaf nodes forms closed 4-sets.
This algorithm takes a 4-dimensional input dataset and takes
the size constraint for each dimension as input parameters.
The algorithm is recursive, and the execution of algorithm is
controlled by maintaining an artificial stack. Initially, the
algorithm generates a cutter for the current node, which are
D, D;, D, and D, (line no 10). It should be noted that the
cardinality of D,', D,', D, is 'I'and the cardinality of D,
depends on the dataset i.e. D', D,'and D,' containing only one
element whereas D,' may contain more than one element. The
cutter is applied on the current node and the four child nodes
are generated as follows: the extreme right (D\\ D, D,, D,,
D)), middle right (D,, D,\ D,', D,, D,), middle left (D,, D,, D)\
Dy, D,) and extreme left(D,, D,, D,, D)\ D) (line no 12-29).
The extreme right child node is generated by removing
extreme right atom (D,") of the cutter (line no 14), The middle
right child node is generated by removing middle right atom
(D;) of the cutter (line no 21). The middle left child node is
generated by removing middle left atom (D,") of the cutter
(line no 29). Similarly, the extreme left child node is
generated by removing extreme left atom (D,") of cutter (line
no 37). The size constraint check is done on the
corresponding dimensions i.e., for the extreme right child
node, the size constraint check is done on the first dimension;
for the middle right child node, the size constraint check is
done on the second dimension; for the middle left child node,
the size constraint check is done on the third dimension; for
the extreme left child node, the size constraint check is done
on the fourth dimension. All the three nodes, except the
extreme left child node are pushed to the artificial stack.
When the recursive call returns, the corresponding 4-set is
popped from the stack and the extreme left is continued.

The above-explained cutting phase goes on repeating
until no more cutters are available or the node is found tobe a
duplicate. The duplicate checking is carried out as follows:
For the extreme left nodes, a cutter list QC is maintained
which contains all the extreme left cutters, which were used
in the path of current node from the root node. Let (gc, ke, rc,
cc) be the cutter generated for the current node. If gc N QC is
not empty, then the left extreme left child node for the current
node is a duplicate and need not be generated. For the middle
left nodes, a cutter list HC is maintained, which contains all
the middle left cutters, which is used in the path of the current
node from the root node. If he N HC is not empty then the
middle left child node of the current node is a duplicate and
need not be generated. For the middle right nodes, a cutter list
RC is maintained which contains all the middle right cutters,
which is used in the path of the current node from the root
node. Ifrc A RC is not empty then the middle left track for the
current node is a duplicate and need not be generated. Once a
leaf node is generated, it needs to be checked for closeness
and this has to be done for each of the dimensions -D,, D,and
D,.Let(D,, D,, D,, D,) be aleaf node 4-set. If there exists an
elementd, of third dimension such thatd, x D, x D,x D, is true
andd3 & D, then the leafnode is not closed. Ifthe leafnode's
4-set is closed in all dimensions then it is outputted as a
closed 4-set. Once a leafnode is processed, the top element of
the stack is popped and the processing is continued. The
algorithm terminates once the stack becomes empty.

4.Implementation and Result Analysis

We implemented QuadMiner using C language and
the code was compiled using 32-bit Microsoft Visual C++
compiler. We have used Boolean data type to store the
datasets. For our experiments, we have used four datasets and
their characteristics are given Table 3. All the datasets are
generated from the IBM synthetic dataset generator. All the
experiments are run on Pentium 4 machine with 1GB of main
memory.

Table 3: Datasets Used

Dataset Total | Number of instances
Dimensi-ons
4 138 |2 |1
Dataset-1 4 3 (8 |15 | 100
Dataset-2 4 3 |3 |15 500
Dataset-3 4 3 |3 |15 1000
Dataset-4 4 3 |3 |15 [5000

ISSN - 0973 - 1334 National Journal of Technology, Vol.7, No.1, March 2011

To get the accurate time to the extent possible, we
have made sure that no other programs were running in the
background while conducting the experiments. Table 4-7
show the running time in seconds for both QuadMiner and
DataPeeler algorithm. For fair comparison, the datapeeler
algorithm has also been implemented using C language and
the data structures used in both algorithms are same. The
QuadMiner is based on zero removing principle whereas the
datapeeler algorithm is based on 1 growing principle. In
almost all cases, the experimental results shows that
QuadMiner takes less running time when compared to
datapeeler algorithm and this is mainly due to the following
two reasons. In QuadMiner, many elements are removed
while generating the child nodes whereas in datapeeler
algorithm one element is chosen to generate the two child
nodes. 2) each and every node of QuadMiner consists of
only one 4-set whereas two 4-sets are present in the nodes of
DataPeeler enumeration tree.

Table 4: Total running time in Seconds for
QuadMiner and Data Peeler algorithm for dataset-1

Minimum suppori] Total Running time in Seconds|
D4 [D3 D2 |D1
QuadMiner Data Peeler
1 |1 [1 |1 [i.806 3.1605
1 |1 2 [2 [1.606 2.8105
1 |1 [3 |3 [1.324 2317
1 |1 [4 [4 [o.998 1.7465
] P B |0.6'm 1.1725

Table 5: Total running time in Seconds for
QuadMiner and Data Peeler algorithm for dataset-2

Minimum support|Total Running time in Seconds|
D4 |D3 |D2 |D1
QuadMiner Data Peeler
R SR) B B0) 31.801
R S B PR § e s 30.681
1 11 3 |3 [l6.616 29.078
1 |1 |4 |4 |15.229 26.65075
1 1 5 |5 13109 22.94075

Table 6: Total running time in Seconds for QuadMiner and
Data Peeler algorithm for dataset-3

Minimum support| Total Running time in Seconds
D4 [D3 |D2 [D1
QuadMiner Data Peeler
1 |1 |1 |1 |68877 103.3155
1 |1 |2 [2 [68.829 103.2435
1 1 3 |3 |68369 102.5535
1 1 |4 [4 [66.432 99.648
1 |1 |5 |5 [61.874 92.811

Table 7: Total running time in Seconds for QuadMiner and
Data Peeler algorithm for dataset-4

Minimum support| Total Running time in Seconds|

D4 (D3 |D2 |D1
QuadMiner |Data Peeler

1 |1 |1 |1 [178.264 267.396

1 |1 12 |2 |120.112 180.1785

1 |1 3 |3]119.008 178.512

1 |1 |4 |4 |116.079 174.1185

1 |1 |5 |5 [108.377 162.5655

5. CONCLUSION

We have proposed Quad-miner algorithm, which
operates on four-dimensional datasets directly and uses a
quad- tree enumeration strategy for generating closed 4-sefs.
Our comprehensive experimental results here show that
QuadMiner algorithm outperforms DataPeeler in most cases.
In our future work, we have planned to create real datasetsto
analyze the algorithm performance. In addition, we are
further working on to improve the performance by
optimizing the code and the data structures used in the
algorithm.

Acknowledgments

We wish to thank Liping Ji, who has kindly provided
executables of RSM and CubeMiner. We would like to thank
authors Loic Cerf, Jérémy Besson Céline Robardet, and
Jean-Frangois Boulicaut for providing us the executables of
Datapeeler algorithm and responding to our numerous
queries.

March 2011

liner and

&l

, which
1uses a
dd-sets.
ow that
istcases.
tasets to
we are
nce by
1 in the

rovided
tothank
fet, and
ables of
lmerous

REFERENCES

10.

ISSN - 0973 - 1334 National Journal of Technology, Vol.7, No.1, March 2011

Liping, Ji, Tan, K.L. and Tung, AK.H. "Mining
Frequent ClosedCubes in 3D datasets,” Proc. 32nd
int. conference on very large databases, 2006

Liping, Ji, Kian-Lee Tan,K H. Tung, "Compressed
Hierarchical Mining of Frequent Closed Patterns
from Dense Data Sets," IEEE Transaction on
Knowledge and Data Engineering, Vol 19, No.9,
Sept2007.

Liping, Ji “Mining Localized Co-expressed Gene
Patterns from Microarray Data,” PhD dissertation,
School of Computing., Na-tional University of
Singapore, June 2006.

Loic Cerf, Jeremy Besson, Celine Robardet, and
Jean-Francois Boulicaut, “Data Peeler: Contraint-
Based Closed Pattern Mining in nary Relations”,
Proceedings of the 2008 SIAM International
Conference on Data Mining, pp. 37-48, Atlanta,
Apr-2008.

Robert Jaschke, Andreas Hotho, Christoph
Schmitz, Bernhard Ganter, Gerd Stumme "TRIAS An
Algorithm for Mining Iceberg Tri-Lattices"
Proceedings of the Sixth International Conference on
Data Mining (ICDM'06).

Lucchese,C. Orlando, S. and Perego, R. "Fast and
Memory Efficient Mining of Frequent Closed
Itemsets”, IEEE Transactions on Knowledge and
Data Engineering, VOL 18, No 1, pages 21-36,
January 2006.

Grahne,G,, Zhu, J. “Fast Algorithms for Frequent
Itemset Mining Using FP-Trees”, IEEE
Transactions on Knowledge and Data Engineering,
Vol 17, No 10, pages 1347-1362, October 2005.

Grahne, G. Zhu, J. “Fast Algorithms for Frequent
Itemset Mining Using FP-Trees”, IEEE
Transactions on Knowledge and Data Engineering,
Vol 17,No 10, pages 1347-1362, October 2005.

Liu, G. “Supporting Efficient and Scalable
Frequent Pattern Mining,” PhD dissertation, Dept. o f
Computer Science., Hong Kong University.,
May 2005

Pan, F., Cong,G., Tung, A.K.H., Yang, J.and Zaki, M.
J. “CARPENTER: Finding Closed Patterns in
long Biological Datasets™, SIGKDD-03, 2003.

Gao Cong, Kian-Lee Tan, Tung, A. K. H. and Feng
Pan, Mining Frequent Closed Patterns in
Microarray Data”, ICDM'04, Vol 1, Issue 4, pp:
363-366, Nov2004.

12.

13.

14.

15.

Besson, J., Robardet, C. and Boulicaut, J.F.
"Constraint based mining of formal concepts in
trasactional data, PAKDD'04 pp. 615-624, 2004,

Ben Yahia, S., Hamrouni,T. and Mephu Nguifo, E.
"Frequent Closed itemset based Algorithms: A
through structural and analytical survey," SIGKDD
Explorations, Vol. 8, issue 1, pages 93-104 2006.

Besson, J., Robardet, C., Boulicaut JF. and S.
Rome,”Constraint Based Concept Mining and its
Application to Microarray Data Analysis”, Journal o f
Intelligent Data Analysis, pp. 59-82,2005

Wang,J., Han J.,andpei, J. "CLOSET+: searching
for the Best Strategies for Mining Frequent Closed
Itemsets”, Proc. 2003 ACM SIGKDD Int. Conf.
Knowledge Discovery and Data Mining, pages
236-245, Aug 2003.

