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A B S T R A C T   

The pursuit of advanced materials with enhanced or tailored properties has indeed been a crucial focus in various 
industries. From aerospace to automotive, and from nuclear power to space exploration, the need for materials 
that can withstand extreme conditions, offer improved performance, and ensure safety is paramount. Safety 
standards are vital in industries where materials are subjected to extreme conditions or where failure could have 
catastrophic consequences. Therefore, research in advanced materials not only focuses on enhancing properties 
but also ensuring that these materials meet rigorous safety standards. Friction stir processing (FSP) emerges as a 
transformative methodology, facilitating the achievement of superplasticity, enhanced ductility, heightened 
strength, toughness, and hardness, all while preserving the structural integrity of the material. In recent years, 
notable advancements have been witnessed in preparing magnesium (Mg) alloys, Mg composites, and functional 
Mg materials. This comprehensive review encompasses the latest developments, global significance, adherence to 
standards, and innovative strides in Mg alloys from 2011 to 2023. It includes the FSP processing techniques, 
governing mechanism, advantageous properties, grain size, dislocations and their impacts, corrosion, wear 
behaviour, formability studies, cryogenic FSP, underwater FSP and friction stir additive manufacturing. Readers 
will gain critical insights, receive constructive suggestions, and discern future directions from this extensive 
review, as it encapsulates the trajectory of advancements in Mg alloys and delineates promising horizons with 
potentially transformative impacts in materials science research. Prospects and potential areas would deem help 
upcoming researchers to pursue with new advanced materials.   

1. Introduction 

Mg and its alloys, distinguished from steel and Aluminium (Al) by a 
density of 78% and 40% lower respectively, have emerged as compelling 
alternatives for steel and Al alloys. Mg alloys exhibit a harmonious 
amalgamation of qualities, including comparable strength, an impres-
sive weight-to-strength ratio, facile castability, efficient machinability, 
exceptional formability, recyclability, pronounced damping character-
istics, and a notable weight-to-stiffness ratio, positioning them as 
formidable contenders to displace Al alloys across a broad spectrum of 
industrial applications [1–4]. Spanning a historical timeline of two 

centuries, the evolution of Mg alloys unveils four distinct phases: an 
initial 80-year period of laboratory testing, followed by a 40-year phase 
of semi-technical expansion, succeeded by 30 years of robust commer-
cial and industrial utilization, culminating in their diverse deployment 
across fields encompassing medicine, industry, and scientific technol-
ogy, albeit with inherent challenges [5]. China, a dominant player, 
spearheads the global supply chain of Mg alloys, profoundly influencing 
the material’s market dynamics [6,7]. Illustrated in Fig. 1, a compre-
hensive array of fabrication processes encapsulates the manufacturing of 
Mg alloys and Mg metal matrix composites, reflecting their versatility 
and adaptability to various application demands. In summation, the 
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trajectory of Mg alloys as compelling substitutes is underscored by their 
distinctive properties, historical progression, and burgeoning integra-
tion into the industry, poised to reshape material engineering guided by 
their exceptional attributes and China’s strategic role in shaping their 
global prominence. 

Mg alloys have garnered widespread utilization across diverse in-
dustrial sectors, serving as indispensable components in various appli-
cations. These applications encompass a broad spectrum, ranging from 
brackets for braking and clutch systems [8], transmission housing, 
landing gear for aircraft [9], rotor fittings in helicopter, gearbox 
enclosure, high-speed textile machinery [10], commercial luggage, hand 
tools, computer casings, and ladders [11]. Mg alloys and composites 
have found a niche in electronics, contributing to the production of 
housing and packaging, hard disk arms, and cell phones. The rationale 
for adopting Mg alloys over plastics is their exceptional endurance 
strength and low density, rendering them conducive to dynamic loading 
conditions [12,13]. Moreover, these alloys offer superior heat dissipa-
tion, electromagnetic shielding, and minimal radio frequency interfer-
ence [14]. Notably, Mg alloys extend their impact to biomedical 
applications, encompassing cardiovascular stents, orthopedic devices, 
and wheelchairs, underpinned by their commendable biocompatibility 
and absorbability [15,16]. However, challenges persist, encompassing 
and discharging capacities alongside a heightened degradation rate 
[17]. Despite making inroads into vehicular applications such as Jeep, 
Mercedes-Benz, Ford light trucks, and Renault 18 Turbo vehicles limi-
tations in strength and plasticity hinder the broader integration of Mg 
alloys in large-scale contexts [18]. To surmount these challenges, sur-
face coatings enhance strength, plasticity, and corrosion resistance, 
enabling them to compete with traditional materials effectively. 

Table 1 provides a comprehensive compilation of published ISO 
standards pertaining to Mg and its alloys since 1972, encapsulating the 
evolving regulatory landscape of this material. 

The pursuit of enhancing material properties finds realization 
through meticulous surface modification techniques, including high- 
energy laser beam irradiation, spraying, cast sintering, laser melt in-
jection, electron beam irradiation, and innovative FSP [19–22]. The 
methodologies aforementioned, excluding FSP, constitute liquid-state 
processing methods executed at elevated temperatures. However, their 
effectiveness is curtailed by two primary limitations: (a) the intricate 
control of process parameters (b) the formation of detrimental surface 
states due to suboptimal interfacial reactions between the matrix and 
reinforcing components. Addressing these concerns, FSP emerges as a 
compelling alternative characterized by solid-state processing principles 
that prevent the challenges associated with liquid-state techniques 
[23–25]. FSP orchestrates the continuous agitation of hard particulates 
or reinforcing materials across the substrate, generating significant 
thermal energy that engenders transformative structural modifications 
within the substrate. A mature solid-state welding technique, involves 
temperature, mechanics, metallurgy and interactions [26], and severe 

Fig. 1. Mg alloys/composites fabrication processes.  

Table 1 
ISO standards-Mg and Mg alloys (1972–2021).  

Standard Description Publication 
Year 

ISO 23700:2021 Rolled Plate and sheets – Wrought Mg and Mg 
alloy (ed.1) 

March 2021 

ISO 8287:2021 Chemical composition - Mg and Mg alloy, 
Unalloyed Mg (ed.4) 

June 2021 

ISO23694:2021 Wrought Mg and Mg alloy alloy-Espoused 
Rods/Bars and tubes 

January 2021 

ISO 26202:2019 Cast anodes of Mg and Mg alloys (ed.2) October 2019 
ISO 20260:2019 Determination of mercury - Mg and Mg alloy July 2019 
ISO 3116:2019 Wrought Mg and Mg alloys (ed.5) May 2019 
ISO 20258:2018 Determination of lithium - Inductively coupled 

plasma optical emission spectrometric 
method- Mg-Lithium alloys. 

August 2018 

ISO 16220:2017 Mg alloy ingots and castings (ed.3) August 2017 
ISO 16374:2016 Evaluation method for cleanliness of Mg and 

Mg alloy ingots(ed.1) 
January 2016 

ISO 10204:2015 Determination of Mg in Iron ores-Flame 
atomic absorption spectrometric method 
(ed.3) 

August 2015 

ISO 17403:2014 Determination of Mg of field and concentrated 
natural rubber latices by titration method 
(cyanide-free method) (ed.1) 

March 2014 

ISO 13933:2014 Determination of calcium and Mg in Steel and 
Iron- Inductively coupled plasma atomic 
emission spectrometric method (ed.1) 

July 2014 

ISO 23079:2013 Mg and Mg alloy-returns-requirements, 
classification and acceptance 

December 
2013 

ISO 8287:2011 Unalloyed Mg - Mg and Mg alloy–Chemical 
composition 

November 
2011 

ISO 11707:2011 Determination of lead and cadmium- Mg and 
Mg alloy 

August 2011 

ISO 11852:2011 Determination of Mg content of field and 
concentrated natural rubber latex by titration 
method (ed.1) 

November 
2011 

ISO 11876:2010 Determination of calcium, copper, iron, 
potassium, Mg, manganese, sodium, nickel 
and zinc in cobalt metal powders-Flame 
atomic absorption spectrometric method 
(ed.1) 

August 2010 

ISO 27085:2009 Determination of calcium, sodium, 
phosphorus, Mg, potassium, iron, zinc, copper, 
manganese, cobalt, molybdenum, arsenic, lead 
and cadmium by ICP-AES – Animal feeding 
stuffs (ed.1) 

April 2009 

ISO 26202:2007 Cast anodes of Mg and Mg alloy (ed.1) September 
2007 

ISO 3116:2007 Wrought Mg alloys (ed.4) April 2007 
ISO 21869:2006 Rubber compounding ingredients-Mg oxide- 

methods of test (ed.1) 
April 2006 

ISO 3750:2006 Determination of Mg content-Flame atomic 
absorption spectrometric method – Zn alloys 

June 2006 

ISO 10204:2006 Determination of Mg-Flame atomic absorption 
spectrometric method- Iron ores (ed.2) 

June 2006 

ISO 23079:2005 Mg and Mg alloy-Returns-Requirements, 
classification and acceptance (ed.1) 

March 2005 

ISO 16220:2005 Ingots and castings of Mg and Mg alloy March 2005 
ISO 16220:2002 Ingots and castings of Mg and Mg alloy February 

2002 
ISO 6233:2001 Determination of calcium and Mg contents in 

Manganese ores and concentrates- EDTA 
titrimetric method 

June 2001 

ISO 7980:1997 Determination of calcium and Mg-Atomic 
absorption spectrometric method- water 
quality 

January 1997 

ISO 1178:1976 Determination of soluble Zr-Alizarin 
sulphonate photometric method (ed.2) 

March 1976 

ISO 794:1976 Determination of copper content- 
Oxalyldihydrazide photometric method 

February 
1976 

ISO 121:1995 Mg–Al–Zn alloy ingots and alloy castings- 
Chemical composition and mechanical 
properties of sand cast reference test bars 

February 
1995 

ISO101363:1993 Analysis of extract solutions-Part 3: 
Determination of calcium oxide and Mg oxide 

July 1993 

(continued on next page) 
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plastic deformation and corresponding frictional/deformation heat 
contributed to solid-state and microstructural modification has inhibited 
the growth of recrystallized grains effectively to obtain fine-grain mi-
crostructures [27]. 

In alignment with this objective, this review article explores recent 
advancements in friction stir processed Mg alloys. This comprehensive 
analysis delves into multifaceted dimensions, encompassing mechanical 
and metallurgical enhancements, wear behavior elucidation and 
correction, deformation responses, the influence of distinct cooling 
conditions ranging from underwater to cryogenic settings and the 
augmentative potential of additive FSP techniques. By elucidating the 

evolving landscape of FSP applied to Mg alloys, this review contributes 
to an enriched understanding of the potentiality and its pertinent im-
plications across diverse applications. 

2. Overview of friction stir processes and their effectiveness 

This section provides a comprehensive exposition of the friction FSP 
methodologies and their profound efficacy in effecting surface modifi-
cations within the substrate. Fig. 2 visually delineates the FSP process, 
an evolutionary offshoot derived from friction stir welding (FSW). 
Employing a non-consumable, revolving tool comprised of a pin and 
shoulder, the FSP method intricately embeds itself within the workpiece, 
meticulously refining surface grains while preserving the underlying 
substrate phase [28,29]. The mechanism underpinning this process re-
lies on generating elevated frictional heat and localized plasticity within 
the material, culminating in a consequential enhancement of material 
properties. Supplementary advancements manifest by strategically 
introducing reinforcing materials, such as SiC, Alumina, and TiB2 [30]. 
When judiciously inserted within grooves or holes, these reinforcing 
elements solidify within the FSPed region, synergistically intermingling 
with the substrate’s grain structure as the tool transverses [31,32]. Fig. 3 
visually illustrates the preparation of a friction stir composite replete 
with fillers. Notably, this process aligns with the principles of green 
manufacturing, circumventing concerns associated with arc flash, 
emissions, and dispersion. 

The realization of improved material properties hinges upon 
attaining uniform and equiaxed grain distribution across the surface. 
This intricate balance is intricately governed by a constellation of fac-
tors, wherein the geometrical parameters of the tool and the intricacies 
of the processing regimen take center stage. Rotational speed, feed rate, 
tool geometry, number of passes, groove design, and filler material 
collectively compose the repertoire of process parameters [29,34–36]. 
Conversely, the probe’s shape, dimensions, shoulder configuration, and 
diameter encompass the geometrical properties integral to the process. 
These parameters collectively orchestrate localized plastic flow, grain 
refinement, and consequential alterations in material properties 
[37–40]. This ventures forth by delving into the nuanced interplay be-
tween process parameters and tool geometry, dissecting their impacts on 
the overall FSP methodology. 

The efficacy of FSP is contingent upon a triad of influential factors, 
encompassing tool-related parameters, machine-related parameters, 
and material-related parameters. Central to the friction stir tool’s 
operation are two pivotal components the pin and the shoulder both 
integral in engendering frictional heat and facilitating localized plastic 
deformation within the material. Notably, the shoulder assumes a dual 
role, serving as both the source of frictional heat generation and the 
mechanism for imparting pressure onto the substrate [41–43]. For a 
comprehensive depiction of the interplay between FSP process param-
eters, refer to Fig. 4, which elucidates a cause-and-effect diagram. 

The stirring tool’s significance in FSP, particularly concerning Mg 
alloys composites, cannot be overstated. In the realm of Mg alloys 
composites, the choice of stirring tool design and material becomes even 
more critical due to the inherent characteristics of Mg-based materials. 
Mg alloys are known for their lightweight properties, high specific 
strength, and excellent machinability, making them desirable for 
various applications, including aerospace, automotive, and biomedical 
industries [44]. However, they also pose specific challenges during 
processing, such as low thermal conductivity, high reactivity with oxy-
gen, and tendency to form brittle intermetallic phases. To effectively 
address these challenges in Mg alloys composites, stirring tool designs 
are tailored to promote efficient material flow, minimize thermal effects, 
and mitigate the formation of detrimental intermetallic compounds. 
Various tool configurations, such as specialized pin geometries and 
shoulder profiles, are optimized to facilitate uniform plastic deformation 
and grain refinement in Mg alloys composites [45,46]. Moreover, the 
selection of tooling materials is carefully curated to withstand the 

Table 1 (continued ) 

Standard Description Publication 
Year 

by flame atomic absorption spectrometry 
(ed.1) – Glass and Glassware 

ISO 9916:1991 Liquid penetrant inspection (ed.1) -Al alloy 
and Mg alloy castings 

February 
1991 

ISO 9668:1990 Determination of Mg content-Flame atomic 
absorption spectrometric method (ed.1) - 
Pulps 

February 
1990 

ISO 7980:1986 Determination of calcium and Mg-Atomic 
absorption spectrometric method (ed.1) 
-Water quality 

May 1986 

ISO 7953:1985 Determination of calcium and Mg contents- 
Flame atomic absorption spectrometric 
method-Manganese ores and concentrates 

December 
1985 

ISO 5399:1984 Determination of water-soluble Mg salts — 
EDTA titrimetric method(ed.1) - Leather 

February 
1984 

ISO 7773:1983 Mg alloys round bars and tubes-Dimensional 
tolerances(ed.1) 

August 1983 

ISO 2107:1983 Al–Mg and their alloys-Temper designations 
(ed.1) 

June 1983 

ISO 4194:1981 Determination of zinc content – Flame atomic 
absorption spectrometric method(ed.1) – Mg 
alloys 

January 1981 

ISO 7242:1981 Chemical analysis of light metals and their 
alloys – Statistical interpretation of inter- 
laboratory trials (ed.1) 

January 1981 

ISO51962:1980 Mg alloys-Determination of thorium-Part 2: 
Titrimetric method 

January 1980 

ISO51961:1980 Mg alloys-Determination of thorium-Part 1: 
Gravimetric method 

January 1980 

ISO 4058:1977 Determination of nickel-Photometric method 
using dimethylglyoxime - Mg and Mg alloy 

September 
1977 

ISO 3335:1977 Extruded solid profiles in Al-zinc- Mg alloy Al 
Zn4,5 Mg1 (7020) — Chemical composition 
and mechanical properties (ed.1) 

December 
1977 

ISO 3256:1977 Determination of Mg in Al and Al alloys- 
Atomic absorption spectrophotometric 
method (ed.1) 

May 1977 

ISO 794:1976 Determination of copper content- 
Oxalyldihydrazide photometric method(ed.1) 
- Mg and Mg alloy 

February 
1976 

ISO 2354:1976 Determination of insoluble zirconium-Alizarin 
sulphonate photometric method (ed.2) – Mg 
alloys 

April 1976 

ISO 3255:1974 Determination of Al – Chromazurol S 
photometric method - Mg and Mg alloy 

August 1974 

ISO 791:1973 Determination of Al-hydroxyquinoline 
gravimetric method (ed.1) - Mg and Mg alloy 

January 1973 

ISO 809:1973 Determination of manganese-Periodate 
photometric method(Manganese content 
between 0.01 and 0.8%)(ed.1) 

January 1973 

ISO 810:1973 Determination of manganese-Periodate 
photometric method(Manganese content less 
than 0.01%)(ed.1) 

January 1973 

ISO 1975:1973 Determination of silicon – Spectrophotometric 
method with the reduced silico-molybdic 
complex (ed.1) 

January 1973 

ISO 1783:1973 Determination of zinc-Volumetric method January 1973 
ISO 2355:1972 Determination of rare earths – Chemical 

analysis of Mg and Mg alloy-Gravimetric 
method (ed.1) 

January 1972  
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Fig. 2. Schematic illustration of the FSP technique.  

Fig. 3. Friction stir composite: (a) sectional view of pre-grooved plate (b) closing the groove using a pin less tool (c) processing using a tool with a pin [33].  

Fig. 4. Cause and effect diagram of FSP process parameters.  
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unique demands imposed by Mg alloys composites. While H13 steel 
remains a preferred choice for its robustness and versatility, researchers 
also explore alternative materials with enhanced wear resistance and 
thermal stability, specifically tailored for processing Mg alloys com-
posites [47–49]. Notably, to reinforce the tool’s robustness, a selection 
of hard materials has been harnessed. Poly-cubic boron nitride (PCBN), 
tungsten carbide (WC), cobalt (Co) alloys, SiC, Alumina and cermets are 
some materials attempted on this topic of research. 

For a comprehensive overview of diverse FSP tool profiles, refer to 
Fig. 5. In the context of FSP, the synergistic interplay of the aggressive 
stir action imparted by the FSP tool, along with the ensuing severe 
plastic deformation of the material, culminates in the development of a 
composite layer spanning the range of 0.1–6 mm. 

The FSP procedure yields discernible microstructure zones within 
the substrate, as delineated in Fig. 6. The stir zone (SZ), synonymous 
with the tool probe region, exhibits a distinctive recrystallized grain 
structure resulting from the dual effects of intense deformation and 
frictional heat. Termed the Nugget zone, this region boasts finely equi-
axed recrystallized grains alongside sub-grain boundaries. The thermo- 
mechanically affected zone (TMAZ) is proximate to the nugget zone, 
characterized by a dominant influence of dissipated heat and conse-
quential plastic deformation. Adjacent to the TMAZ, the heat affected 
zone (HAZ) materializes as a consequence of the thermal cycle, devoid of 
significant plastic deformation. This zone manifests larger grain sizes 
compared to the substrate [50]. 

Based on the characteristics of the FSP process, several inherent is-
sues arise, leading to defects in the processed area. These defects can 
significantly affect the mechanical properties and integrity of the pro-
cessed surface. Here are the three main issues and potential solutions.  

• Voids/Porosity: Voids or porosity can occur in the processed material 
due to insufficient material flow or entrapment of gas bubbles during 
the stirring process. This defect can weaken the material and reduce 
its mechanical properties. Optimization of process parameters such 
as rotation speed, traverse speed, and tool geometry can help 
improve material flow and minimize the formation of voids. Addi-
tionally, vacuum or inert gas environments can be employed to 
reduce gas entrapment [52].  

• Surface irregularities: Irregularities on the surface of the processed 
material, such as ripples or groove-like patterns, may occur due to 
improper tool geometry or inadequate control over process param-
eters. Selecting an appropriate tool design with optimal shoulder and 
pin dimensions, along with precise control of process parameters, 
can help minimize surface irregularities. Adjustments in tool traverse 
speed and tool tilt angle can also contribute to achieving a smoother 
surface finish [53,54].  

• Thermal damage: Excessive heat generation during FSP can lead to 
thermal damage in the form of grain growth, softening, or even 
localized melting, especially in heat-sensitive materials [55]. 
Implementing effective cooling strategies, such as using chilled 
backing plates or applying cryogenic cooling techniques, can help 
control the temperature rise and mitigate thermal damage. 
Furthermore, reducing the processing temperature or employing 
multi-pass processing can help distribute heat more uniformly and 
minimize thermal effects [56,57]. 

Various methodologies are employed within the ambit of FSP, 
encompassing friction stir surface cladding (FSSC), friction stir com-
posites, ultrasonic-assisted FSP, multi-pass FSP, friction stir extrusion 
(FSE), and FSP additive manufacturing technology, as delineated in the 
literature [58]. A novel technique, FSSC has emerged, drawing inspi-
ration from FSP principles, with its primary objective being the depo-
sition of thin-clad material layers onto substrates [59]. Composites that 
undergo surface modification via FSP are classified as friction stir 
composites, with this approach currently applied to both ex-situ and 
in-situ nanocomposites [60,61]. In pursuit of enhanced microstructural 
refinement and elevated mechanical properties, ultrasonic energy can 
be judiciously introduced into the stir zone, a methodology referred to as 
ultrasonic vibration-assisted FSP, exemplified in Fig. 7 [62,63]. 

The technology involves a tool laden with reinforcement material 
and fillers, which, upon dispersion, culminate in forming a composite 
film on the substrate. The implementation of multiple or sequential 
passes has been considered to achieve finer structural attributes. In cases 
of overlapping passes, each travel witnesses full or partial interpene-
tration of stirring, resulting in the uniform thickness formation of a 
composite layer featuring homogenized ultra-fine grain dimensions 
[64]. The distinct stages of FSP overlap are portrayed in Fig. 8 [65]. 

FSE, constituting another solid-state process, amalgamates mechan-
ical and thermo-mechanical processing within a singular step [66], as 
illustrated in Fig. 9. Baffari et al. [67] have underscored the potential 
utility of this approach in the production of Mg alloys. 

Venturing into innovative terrain, submerged FSP, as depicted in 
Fig. 10, orchestrates severe plastic deformation upon a sample immersed 
in liquid, culminating in enhanced fine grain attributes and corre-
spondingly augmented material strength [68]. Cryogenic friction stir 
processing (CFSP) introduces a cryogenic (LN2) element during FSP, as 
elucidated in Fig. 11, manifesting a unique avenue of exploration [69]. 

3. Published research on FSP of Mg alloys and composites 

Within this section, a comprehensive presentation and discourse are 
undertaken regarding the outcomes encapsulating properties, micro-
structural analysis, corrosion rate, wear characteristics, and super 

Fig. 5. FSP tool pin profiles a) Cylindrical b) Conical c) Threaded cylindrical d) Square e) Triangular and f) Threaded cylindrical flutes.  
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plasticity behavior of FSPed Mg alloys and Mg composites, as docu-
mented and elucidated within the corpus of published literature. Initial 
literature survey was conducted with search keywords “friction stir 
processing”, “Mg alloys”, “Mg composites” and further filtered with “FSP 
of Mg alloys”. Fig. 12 depicts the articles published within demographic 
area. It is drawn from the search that India, Iran, and China have most 
publications in the arena of FSP of Mg alloys. As China and India are the 
prominent suppliers of Mg alloys, more research on welding technolo-
gies have been conducted. Other countries, including Malaysia, Saudi 

Arabia, Canada, Nigeria, South Africa, Turkey, the UAE, Germany, 
Indonesia, and Australia, have also made intermittent but notable con-
tributions to the research landscape. 

3.1. Mechanical and microstructural improvements in FSPed Mg alloys 

The requisite heat input for successful FSP is contingent upon the 
interplay of the substrate material’s melting point and thermal con-
ductivity. A lower material melting point corresponds to a reduced heat 
input requirement for FSP implementation [70]. Thermal conductivity, 
an inherent material property, governs the heat flow rate across a given 
area. Notably, Mg alloys, characterized by the lowest melting point 
among alkaline earth metals, exhibit distinct attributes in this regard. 
Specifically, their melting point (923 K) and thermal conductivity (156 
W/mK) stand below those of Al and Cu alloys. This disparity translates 
into a diminished heat input necessity for FSP in Mg alloys, consequently 
reducing associated surface modification costs. For a visual represen-
tation of the thermal conductivity and ultimate strength profiles of Mg 
alloys and composites, refer to Fig. 13. 

The interaction of thermal effects and severe plastic deformation 
within metallic substrates yields pronounced advancements in the 
microstructure of Mg alloys. Notably, a recrystallized configuration has 
been substantiated within the stir zone, alternatively termed the 
dynamically recrystallized zone (DXZ). A compendium of ongoing 
research endeavors centered on FSP-treated Mg alloys is catalogued in 
Table 2. This segment is dedicated to the presentation and comprehen-
sive discussion of observed enhancements in microstructure and me-
chanical properties following FSP. 

However, while FSP has emerged as an effective avenue for insti-
gating fine-grain development across diverse Mg alloys encompassing 
the AZXX, AMXX, and ZKXX series, a particularly promising avenue for 
refining the texture of Mg alloys resides in the incorporation of rare- 
earth (RE) metals such as Ce, Gd, Y, Nd, and others [90,91]. Note-
worthy scholarly efforts have recently explored the intricate texture 
mechanisms inherent in RE-Mg alloys [92,93]. The judicious inclusion 
of minute quantities of RE elements alleviates impurities and refines the 
microstructural attributes of Mg alloys [94]. Furthermore, certain RE 
elements, such as Y and Ce, exhibit the potential to augment flame 
retardancy and elevate the ignition temperature of Mg alloys [54,95]. 
The average grain size documented during FSP across distinct Mg-RE 
compositions is elucidated in Table 3. 

Research by Yousefpour et al. [112] demonstrated a significant 
reduction in average grain size, from 61.6 μm in the as-cast sample to 
less than 10 μm in the FSPed AZ91 alloy, attributable to dynamic 
recrystallization (DRX). Utilizing FSP, Zhang et al. [113] also refined the 
microstructure of the AZ91 alloy, where DRX and fragmentation of the 
plate-like beta phase led to the formation of fine equiaxed grains around 
3 μm in size within the α-Mg grains. Similar outcomes were observed in 
FSP treatments of cast AZ61 [114] and ZKX50 [115] alloys, resulting in 
considerable structure refinement. In another study, Wang et al. [116] 
conducted FSP on cast Mg–6Zn–1Y0.5Zr alloy, dissolving the coarse 

Fig. 6. Typical cross-sectional OM images showing various zones of FSPed sample [51].  

Fig. 7. Ultrasonic assisted FSP [62].  

Fig. 8. Multi-pass FSPed samples with different numbers of passes [65].  
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eutectic I-phase network and refining grains, thus enhancing tensile 
characteristics. Jin et al. [117] investigated the influence of FSP on the 
microstructure and mechanical properties of as-cast Mg–Al-RE alloy, 
reporting improved mechanical performance post-FSP. Furthermore, 
Luo et al. [114] noted significant grain size refinement in the as-cast 
AZ61 plate due to DRX induced by FSP, with potential further refine-
ment in subsequent treatments and detection of heterogeneous micro-
structures in the plate’s periodic transition zones. 

Transmission electron microscopy (TEM) observations have revealed 

that during FSP, a substructure of dislocations can be generated [6,27, 
28]. In a study focusing on an AZ31 alloy processed via friction stir, 
Fig. 14 presents TEM images of the SZ [118]. Fig. 14a depicts conditions 
with a rotation speed of 1000 rpm. Notably, a significant proportion of 
sub-grains is observed within the SZ, with a low density of dislocations 
confined inside the grains. Conversely, Fig. 14b corresponds to condi-
tions with a rotation speed of 5000 rpm. Here, the fraction of sub-grains 
appears reduced, yet there is a notable increase in dislocation density 
both within the grains and along the grain boundaries. Furthermore, it is 

Fig. 9. Schematic diagram of Friction stir extrusion process [66].  

Fig. 10. Schematic representation of Submerged FSP [68].  
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evident that the grain size under these conditions (Fig. 14b) is larger 
compared to the previous setting (Fig. 14a) [118]. These findings shed 
light on the intricate microstructural changes occurring during FSP 
processes and their correlation with processing parameters. 

FSP induces significant alterations in the distribution and density of 
dislocations, as well as in the characteristics and distribution of phases 
and precipitations, marking a noteworthy evolution in material struc-
ture. Notably, the microstructural changes brought about by FSP can be 

observed in Fig. 15, which depicts TEM images and selected area elec-
tron diffraction (SAED) patterns of the SZ in the LZ91 alloy [119]. 
Fig. 15 showcases the SZ of the friction stir processed LZ91 alloy, 
revealing its composition of two distinct phases: α-Mg and β-Li. The 
interface between these phases, as well as the SAED patterns corre-
sponding to zones A and B, are elucidated in the figure. Upon close in-
spection, it becomes evident that a minority of dislocations are situated 
near the boundary of the α-Mg phase, as depicted in Fig. 15a. Further-
more, the alternating black and white zones observed in Figs. 15b and c 
correspond to the α-Mg phase with a hexagonal close-packed (HCP) 
structure and the β-Li phase with a body-centered cubic (BCC) structure, 
respectively. The density of dislocations within the α-Mg phase appears 
notably higher compared to the β-Li phase, indicating a preference for 
plastic deformation within the latter during the FSP process [119]. This 
observation underscores the intricate interplay between microstructural 
features and mechanical behavior during FSP-induced transformations. 

As we discussed earlier, FSP induces extensive alterations in the 
microstructure, substructure, and texture of materials. It was noted that 
FSP has the capability to convert the material surface into a composite, 
suggesting significant variations in the mechanical properties of friction 
stir processed materials. When alloys such as Mg alloys undergo FSP, 
several strengthening mechanisms come into play [120–122].  

1. Grain Refinement Strengthening, also known as grain boundary or 
Hall–Petch strengthening, is observed. This process results in the 
formation of a fine-grained or ultra-fine-grained structure in the SZ 
[123]. Consequently, the Hall–Petch coefficient, which governs 
boundary pinning, significantly increases, leading to enhanced 
strength.  

2. Orowan Strengthening is activated when secondary particles are 
dispersed within the microstructure through FSP. These particles, 
whether precipitates formed prior to FSW/FSP or induced during 
composite fabrication, trigger dislocation-particle interactions, 
known as the Orowan mechanism [124]. Notably, these precipitates 
or phases can exist in fine or ultrafine states, intensifying 
dislocation-particle reactions and thereby strengthening grain 
boundaries.  

3. Solid Solution Strengthening occurs as precipitates and secondary 
phases potentially dissolve within the matrix phase during FSP. 
Additionally, homogenization effects associated with these processes 
contribute to the concentration of alloying elements within the ma-
trix phase [125]. This increase in alloying element concentration 
further enhances the material’s strength. 

Fig. 11. Schematic arrangements of Cryogenic friction stir welding process [69].  

Fig. 12. Research articles published on FSP of Mg alloys and composites.  

Fig. 13. Thermal conductivity and ultimate strength of some Mg alloys.  
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In general, it is important to note that the strengthening mechanisms 
discussed above not only impact yield strength but also affect tensile 
strength, ductility, and fracture energy. Research has shown that 
increasing tool rotation and decreasing welding speed enhances joint 
strength [126]. Additionally, studies confirm that among tool materials 
such as stainless steel, high-speed steel, armor steel, mild steel, and high 
carbon steel, superior tensile properties are observed in tools made of 
high carbon steel (specifically, threaded pins with a shoulder diameter 
of 18 mm) [127]. 

3.2. Corrosion and wear behaviour of FSP 

Mg alloys are pivotal in the production of a diverse range of com-
ponents; encompassing pressure die castings, body structures, and 
power train elements such as gearbox and engine components-cylinder 
bore and crankcase, where the interplay of relative sliding motion pre-
cipitates material loss attributed to friction and wear. Given the para-
mount significance of corrosion and wear resistance requirements, this 
discourse examines the studies and inquiries on the corrosion and wear 
resistance characteristics of FSPed Mg alloys. 

Barathi et al. [128] embarked on a study delving into the effect of 
ageing duration and temperature on the corrosion resistance of FSPed 
AZ31 alloy. Their findings highlighted that heat-treated FSP Mg alloy 

Table 2 
Details of previous research on FSPed Mg alloys.  

Researcher(s) Material 
used 

Observations 

Del Valle et al. 
(2015) [71] 

AZ31 Mg 
alloy 

Authors controlled temperature at SZ and 
produced a grain size close to 0.5 μm. Super- 
plastic behaviour was observed at high 
temperature. 

Zang et al. (2017) 
[72] 

AZ31 Mg 
alloy 

Authors obtained grain size of 10.4 μm from 
1 pass, 10.4 μm in 2 passes, and 13.6 μm in 
three passes of FSP. 

Raja et al. (2018) 
[73] 

AZ91 Mg 
alloy 

Authors used 720 rpm and 150 mm/min and 
reported that alpha phase of Mg dendrites in 
100 μm was reduced to 2 μm by FSP. 

MD and Panigrahi 
et al. (2018) [74] 

QE22 Mg 
alloy 

The interest of the authors was to investigate 
the high-temperature tensile deformation 
behavior of FSPed ultrafine-grained QE22 
alloy at strain rate of 5 × 10− 4 to 1 × 10− 2 

and temperature of 300 to 450 ◦C. They 
reported that it has shown high strain 
superplasticity at 450 ◦C with the highest 
elongation of 1630% at 1 × 10− 2 s− 1. This 
result has been considered as a dual mode 
super plasticity demonstrated at high 
temperature and low strain rate. 

Shang et al. (2019) 
[75] 

AZ31 Mg 
alloy 

Authors introduced profuse extension twins 
to the SZ of FSPed AZ31 alloy and reported 
that yield strength was increased from 96 to 
122 MPa. Authors applied FSP after FSW was 
done on the material and hence it was a two- 
layered structure in SZ. This approach would 
work well for curved surfaces and hollow 
extruded 3D objects. 

Zhang et al. (2019) 
[76] 

AZ31 Mg 
alloy 

Authors conducted FSP and surface 
mechanical attrition treatment (SMAT) on 
twin-roll cast plates. It was 6 mm thickness 
to improve the mechanical properties. They 
reported that FSP increased elongation 
higher than 40% and micro-hardness from 
~60HV (base material) to more than 80 HV 
for FSPed surface. Also reported that yield 
strength was increased from ~52 to 70 Mpa 
after SMAT (34.6% increment). 

Vasua et al. (2019) 
[77] 

ZE41 Mg 
alloy 

Authors reported that friction stir processing 
has reduced the grain size from 100 μm to 5 
μm. Supersaturated grains were observed 
after FSP. 

Peng et al. (2019) 
[78] 

AZ31 Mg 
alloy 

Authors investigated the microhardness at 
different depth of SZ of the processed Mg 
alloy and reported that top layer shows 
highest hardness as it had maximum 
dislocations. 

Jin et al. (2019) [79] AE42 Mg 
alloy 

Authors reported the decrease of grain size 
from 81 μm to 7.4 μm. It is also reported that 
new Al2RE phase appear after aging 
treatment as Mg17Al12 and Al11RE3 phases 
disappear after FSP. 

Luo et al. (2019) 
[80] 

AZ61 Mg 
alloy 

Author’s tensile tested AZ61 Mg alloy at 
strain rate of 1 × 10− 2 to 3 ×10− 5 and 
temperature of 473 to 673 K. Authors 
obtained grain size of 7.8 ± 6.4 μm after 
multi-pass FSP and reported the highest 
elongation of 211% at 623 K and 3.3 × 10− 4 

s− 1. It was caused by lower intensity of 
texture at that direction. 

Seifiyan et al. (2019) 
[81] 

AZ31B Mg 
alloy 

Authors prepared samples by single-pass FSP 
and investigated their corrosion resistance 
using 35% NaCl. The best grain size from 
single-pass FSP was 15.9 ± 5.6 μm and the 
best from multi-pass FSP was10.2 ± 2.4 μm. 
Authors reported that exposure of chloride 
ions in a non-oxidizing Mg leads to pitting 
and corrosion is influenced by micro- 
constituents. 

Fashami et al. (2020) 
[82] 

AZ91 Mg 
alloy 

Authors investigated the optimum FSP 
parameters for a defect-free sample. It was 
reported that 1200 rpm and 60 mm/min are  

Table 2 (continued ) 

Researcher(s) Material 
used 

Observations 

optimum, where 23% increase in micro 
hardness, a 29% increase in tensile strength, 
and a 33% increase in creep strength at room 
temperature were observed. Subsequently 
investigation at 210 ◦C reported the tensile 
strength and creep strength increase by 31 
and 47 %, respectively. 
Besides, high-speed processing (low heat 
generation) could lead to tunnel and groove 
defects, while low-speed processing (high 
heat generation) could result flash defects. 

Sing et al. (2020) 
[83] 

AZ91 Mg 
alloy 

Authors reported that square pin profile is 
better than round pin profile as it uniformly 
distributes β-Mg17Al12 phase particles 
during corrosion resistance of AZ91 alloy. 

Liu et al. (2020) [84] AZ31 Mg 
alloy 

Authors reported that four pass FSP has 
improved the corrosion resistance, but not 
tensile properties. It was reported that 
corrosion potential and corrosion current 
was increased from − 1.56 to − 1.19 V, and 
from 1.55 × 10− 4 to 5.47 × 10− 5 

respectively. 
Babu et al. (2020) 

[85] 
ZE41 Mg 
alloy 

The interest of authors was to investigate 
FSPed ZE41 Mg alloy for orthopedic 
implants. Weight lost due to deposition of 
more Ca/P mineral phase and reduced grain 
size from 107 ± 6.7 μm to 3.5 ± 1.5 μm was 
reported. 

Patel et al. (2020) 
[86] 

AZ31B Mg 
alloy 

Authors reported that no external cooling is 
required when Cu backing plate was used in 
FSP. Hardness increase by 80% and tensile 
strength by 24% was observed. 

Luo et al. (2020) 
[87] 

AZ61 Mg 
alloy 

Authors reported that appearance of 
β-Mg17Al12 phase in grain boundaries reduce 
the mechanical properties. FSP samples get 
higher because of dissolution of the large 
β-Mg17Al12 phase. 

Kumar et al. (2021) 
[88] 

Mg alloy Authors reported that lower wear rate was 
found on friction stir processed sample at 
600 rpm, where they evidenced grain size of 
25 μm and hardness of 81 HV. 

Wu et al. (2023) [89] WE43 Mg 
alloy 

Authors reported FSP effectively reduces the 
average grain size in WE43 alloy, enhancing 
its microstructure. It was 15.3% increase in 
hardness and 5% decrease in corrosion 
compared to the base material.  
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subjected to FSP at 1200 rpm and 60 mm/min displayed remarkable 
improvement in corrosion resistance. Subsequently, Qin et al. [129] 
researched FSPed ZK60 Mg alloy supplemented with nano hydroxyap-
atite (HAp). Their investigation unveiled that the effects of reduced 
surface energy and grain refinement collectively bolstered corrosion 
resistance. Nano HAp disrupts the continuity of Mg grains, forming a 
protective layer over the FSPed sample. 

Addressing a distinct corrosion phenomenon, stress corrosion 
cracking (SCC), characterised by crack propagation in corrosive envi-
ronments such as chloride or H2S settings, emerged as a focal point of 

Huang et al. [130] study. Their research on FSPed A80 Mg alloy 
encompassed fine-grained (2.7 μm) and coarse-grained (7.1 μm) sam-
ples, revealing analogous basal texture attributes in both cases. Notably, 
FSPed Mg alloy demonstrated heightened corrosion and SCC resistance 
within a 3.5 wt% NaCl solution. Further investigations have unveiled 
nuanced distinctions in corrosion rates between FSPed AZ31B alloy 
specimens featuring step shoulder tools and those with concave shoulder 
tools, as underscored in Table 4. 

Liu et al. [131] investigated a uniform corroded morphology in 
morphology in FSPed AZ91Mg alloy. Similarly, the corrosion resistance 
of FSPed and heat treated AZ91C alloy was systematically assessed by 
Hassani et al. [132] through the utilization of potentiodynamic polari-
zation and immersion testing methodologies. Notably, both FSP and 
heat-treated specimens exhibited commendable corrosion resistance 
within the context of AZ91C alloy. 

Undertaking an insightful inquiry, Huang et al. [133] meticulously 
analyzed the corrosion resistance of FSPed AZ80 Mg alloy, further 
subjected to subsequent ageing heat treatment. Employing potential 
dynamic polarization and immersion techniques, their study discerned 
compelling attributes, including super grain refinement, swift β-phase 
dissolution, and a noteworthy deviation of the c-axis from the transverse 
direction and processing direction. These observations collectively 
contributed to augmented static corrosion resistance and SCC resistance. 

Zhu et al. [134] examined the metallurgical mechanisms and per-
formance evolution of Mg–Li alloys during thermo mechanical pro-
cesses. They observed that the alloy, when subjected to FSP with the 
highest heat input, demonstrated a significantly reduced corrosion 
current density of 6.10 × 10− 6 A/cm2, representing only 25% of that 
observed in the base metal. This improvement in anti-corrosion prop-
erties can be attributed to the dispersion and uniform distribution of 
precipitated particles induced by FSP. These particles act to impede 
micro-galvanic corrosion and facilitate the formation of a compact 
surface film, resulting in minimal and uniform corrosion across the 
material. Liu et al. [135] offered a noteworthy perspective by high-
lighting the superior corrosion resistance of single-pass FSP compared to 
the multi-pass FSP of ZK60 alloy. It is reported that the FSP effectively 
refines ZK60 alloy grains and enhances surface properties. However, 
multiple FSP passes don’t further reduce grain size in the SZ and may 
increase grain size in the alloy. Additionally, additional FSP passes 
negatively affect the alloy’s corrosion resistance and have limited pos-
itive impact on wear resistance in ZK60 plates. 

Table 3 
Summary of Grain Size in FSP on Mg-RE alloys.  

Rare Earth 
(RE) Mg alloy 

FSP parameters Grain 
size 
(μm) 

References 

Rotational 
speed (rpm) 

Travel 
speed 
(mm/ 
min) 

Shoulder 
diameter 

Mg–Mn–Ce 400 50 16 9.0 [96] 
Mg-Gd-Y-Zr 800 100 5 6.1 [97] 
Mg-Gd-Y-Zr 800 25, 50, 

and 100 
20 5.6 [98] 

Mg–Zn–Y–Zr 800 100 20 5.2 [99] 
ZK60-Y 800 25, 50, 

and 100 
20 4.7 [100] 

Mg–Zn–Y–Zr 1500 100 20 4.5 [101] 
Mg-2Nd- 

0.3Zn-1.0Zr 
800 200 22 3.8 [18] 

EV31A 400 102 25.4 3.4 [102] 
GW103 800 50 20 3.0 [103] 
Mg-Gd-Y-Zn-Zr 1500,2000, 

2500,3000 
25 20 2.8 [104] 

Mg-1.2Zn- 
1.7Y-0.53Al- 
0.27Mn 

500 101.6 11.5 2.8 [105] 

WE43 275,300, 
600 

100 24 2.2 [106] 

WE43 630 63 16 2.1 [107] 
Mg-5.9Y-2.6Zn 450 50 20 2.0 [108] 
Mg–Zn–Y–Zr 800 200 16 1.65 [109] 
Mg–2Y-1.5Zn 1200 100 18 1.0 [110] 
Mg-4.37 wt% 

Y-2.9 wt% 
RE-0.3 wt % 
Zr. 

800 and 
1250 

63 16 1.98 [111]  

Fig. 14. TEM images of dislocations distribution at SZ of the friction stir processed AZ31 alloy: (a) rotation speed of 1000 rpm and (b) rotation speed of 5000 
rpm [118]. 
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Liu et al. [136] reported the corrosion resistance of cast Mg–9Al-xRE 
alloys upon immersion in a 3.5 wt% sodium chloride solution and 
exhibited notable deficiencies. This was attributed to the presence of 
coarse precipitated strips of Al-RE in the samples. Following FSP of 
Mg–9Al-xRE alloys, a distinct enhancement in corrosion resistance was 
observed, particularly evidenced in Fig. 16, where the alloy containing 
6 wt% RE reinforcement displayed noteworthy corrosion resistance. 

Arora et al. [137] conducted an investigation into the wear rate of 
FSP-treated AE42 alloy under varying loads (5–20 N) and velocities 
(0.33–3 m/s). Their findings underscored a maximum wear rate at the 
lowest velocity and highest load, revealing diverse wear mechanisms in 
the FSPed AE42 alloy, as depicted in Fig. 17. Rathinasuriyan and Sankar 
[138] elucidated that cryogenic FSPed AZ31B alloy exhibited a 20% 
reduction in wear rate compared to its cast Mg alloy counterpart. 
Adopting a spiral tool path strategy for FSP on AZ91D alloy, Kumar et al. 
[139] illustrated how tool rotation influenced the occurrence of tunnel 
defects, with tool shoulder overlaps aiding in defect mitigation. They 
identified the wear rate under optimized conditions and observed higher 

wear on the non-FSPed AZ91D sample compared to FSPed samples. 

3.3. Formability studies conducted on FSPed Mg alloy 

Mg alloys exhibit limited formability at ambient temperatures due to 
their inherent hcp crystalline structure. However, the implementation of 
FSP imparts notable enhancements in ductility and formability. Note-
worthy investigations have been undertaken to discern the effects of FSP 

Fig. 15. TEM image and SAED patterns at SZ of the friction stir processed LZ91 alloy: (a) bright field image, (b) SAED pattern of A zone, and (c) SAED pattern of B 
zone [119]. 

Table 4 
Corrosion rate of FSPed AZ31B alloy.  

Tool profile Speed (rpm) feed (mm/min) Corrosion rate (mm/yr) 

Concave shoulder 500 20 0.0313938 
710 20 0.0153703 
1000 20 11.332273 

Step shoulder 500 20 92.538 
710 20 112.73 
1000 20 84.702  

Fig. 16. Corrosion rate of Mg–9Al-xRE alloys [136].  
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on these attributes. 
Hutsch et al. [140] systematically evaluated formability behaviour in 

a study employing a multiline sample configuration, as depicted in 
Fig. 18. Their findings indicated a progressive enhancement in form-
ability with increasing processing speed. Delving into superplasticity, 
Cavaliere and Marco [141] explored the superplastic performance of an 
FSPed AZ91 Mg alloy. The study attributed the exceptional ductility to 
attaining an ultrafine grain structure through the FSP process. Exam-
ining optimal parameters for enhanced formability and heightened 
mechanical properties, Venkateswarlu et al. [142] established that a 
shoulder diameter of 18 mm and an overlapping ratio of 1 yielded a 
homogenized and equiaxed surface conducive to formability. Their 
study encompassed critical parameters such as limiting dome height, 
strain hardening rate, and work hardening capacity. Fig. 19 graphically 
represents the outcomes, indicating that an overlapping ratio of 1 ex-
hibits superior formability compared to alternative ratios. 

Venkateswarlu et al. [143] explored the formability of AZ31B alloy 
after FSP. This investigation assessed crucial formability attributes, 
including the maximum limiting dome height and strain limits. These 
characteristics were analyzed using forming limit diagrams and 

statistical models, yielding insightful predictions. 
In a parallel study, Wang et al. [144] delved into the superplastic 

deformation exhibited by FSPed AZ80 Mg alloy. The process engendered 
a distinctive transformation in texture alongside significant grain 
refinement within the AZ80 Mg alloy. This enhanced texture and refined 
grain structure conduced to a favorable environment for superplastic 
deformation, facilitated by the initiation of prismatic and pyramidal 
slips. 

In corresponding work, Ramesh Babu et al. [145] undertook FSP on 
AZ31B alloy, explicitly focused on altering key process parameters such 
as traversing speed, axial force, and rotational speed in FSP of AZ31B 
alloy and observed noteworthy reductions in forming time, achieving an 
approximate 18.5-fold decrease compared to the base material. The goal 
was to attain a dome height of 31.5 mm under specific conditions of 
350 ◦C and 0.4 MPa. The pertinent details, including forming temper-
ature, strain rate, and the super-plasticity behaviour of FSPed Mg alloys, 
are systematically presented in Table 5. 

3.4. Nano particles reinforced Mg metal matrix composite through FSP 

FSP presents a versatile avenue for fabricating Mg metal matrix 
composites (MMC) by strategically incorporating nanoparticles within 
the surface region. This methodology imparts localized strengthening 
effects while fostering a homogenized microstructure. Diverse strategies 
have been employed to disperse reinforcing phases within the metal 
matrix, leading to the creation of MMCs via FSP (refer to Fig. 20). A 
prevalent approach involves embedding secondary particles into pre- 
machined grooves on plate surfaces before engaging in the FSP pro-
cedure [69]. 

The integration of nanoparticles, such as SiC [152,153], Al2O3 [154, 
155], TiC [156], Ti [157], and carbon nano tubes [158,159], into Mg 
alloys via FSP has demonstrated the capacity to enhance the mechanical 
properties of the Mg alloy matrix in localized regions. Introducing 
ceramic particle reinforcements or secondary phases plays a pivotal role 
in augmenting the occurrence of critical dynamic recrystallization dur-
ing FSP [160,161]. Consequently, the stacking fault energy (SFE) 
emerges as a critical determinant governing the microstructural 
behaviour of MMCs, exerting a substantial influence over the ensuing 
material characteristics [162]. 

In this context, the integration of nanoparticles within the matrix 
triggers the particle-stimulated nucleation (PSN) recrystallization 

Fig. 17. Wear map for the FSPed AE42 alloy [137].  

Fig. 18. Singe pass and multi-pass specimen [140].  
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mechanism. This phenomenon is instrumental in instigating pronounced 
Zener-pinning effects, ultimately culminating in developing ultrafine- 
grained microstructure. Despite its remarkable potential, it is note-
worthy that FSP remains relatively underutilized as a method for surface 
treatment. This situation underscores the yet-to-be-explored avenues 
and untapped potential that FSP holds in enhancing material properties 
and optimising structural characteristics. The intrinsic capacity of FSP to 

harness the synergistic effects of nanoparticles and advanced processing 
techniques suggests a promising realm for further research and appli-
cation across diverse industrial domains [163]. 

The enhancement in tensile strength observed in Mg MMCs can be 
attributed to the combined effects of finer grains and the pinning phe-
nomenon induced by the incorporation of reinforced particles during the 
FSP [164,165]. A scanning electron microscope micrograph of the pro-
cessed zone of a Mg alloy reinforced with TiC nanoparticles is presented 
in Fig. 21, showcasing various levels of nanoparticle volume addition. 
Notably, Fig. 21 (c and d) highlights the distinctive characteristics of a 
refined Mg-matrix with finely dispersed TiC nanoparticles, illustrating 
the potential for grain refinement through the reduction in mean size 
and increase in reinforcement particle volume fraction. 

TEM image of 5 vol% TiC reinforced Mg composite is shown in 
Fig. 21a. It evidences the fine and continuous rings of TiC particles over 
the selected area diffraction pattern. This observation is further 
corroborated by the bright and dark field TEM micrographs, which also 
emphasize the fine grain size of the Mg matrix. 

Consequently, a comprehensive summary of research endeavors 

Fig. 19. Impact of overlapping ratio (a) LDH (b) strain hardening rate [142].  

Table 5 
Super-plasticity behaviour of FSPed Mg alloys.  

Mg 
Alloys 

Temperature 
(◦C) 

Strain rate 
(s− 1) 

Super-plasticity 
behaviour 

References 

AZ91 350 2 × 10− 2 High Strain Rate Super- 
plasticity (HSRS) 

[113] 

AZ91 300 5 × 10− 4 LTSP [146] 
AZ61 300 1 × 10− 4 – [147] 
AZ31 450 1 × 10− 2 HSRS [148] 
AZ80 300 1.4 × 10− 4 – [149] 
WE43 375 3 × 10− 4 – [150]  

Fig. 20. Strategies of secondary phase incorporation [151].  
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involving FSP of Mg alloys reinforced with various particles is compiled 
in Table 6. The data presented in Table 6 collectively underscore the 

profound impact of FSP on mechanical and tribological properties in 
particles-reinforced Mg alloys. 

4. Potential areas to be explored in coming years 

Though we understand that substantial research pinning to FSP of 
Mg alloy has been conducted in the past, there are some avenues, still 
many research findings have not been explored or identified. This sec-
tion explores them and opens up some of the key areas that the research 
must be taken up in the future. 

4.1. Influence of FSP underwater medium 

A spectrum of conditions encompassing water, cold water, hot water, 
and cryogenic environments have been explored in FSP, each yielding 
distinct enhancements in microstructure and mechanical properties. 
This segment is dedicated to elucidating the outcomes of research efforts 
on underwater FSP, delving into its discernible effects on pivotal me-
chanical parameters including tensile strength, yield strength, hardness, 
grain size, and elongation percentage. 

Sankar et al. [172] conducted a comprehensive investigation 
wherein conventional FSP in air and submerged friction stir processing 
(SFSP) were evaluated regarding their impact on microhardness. This 
inquiry systematically explored varying rotational speeds ranging from 
500 to 1000 rpm, coupled with different welding speeds spanning 
50–350 mm/min. The findings contribute to an enriched understanding 
of the distinct effects elicited by the SFSP paradigm. Three distinct cy-
lindrical (CL) pin profiles namely, scrolled stepped square (SSSQ), 
scrolled stepped (SSCL), and scrolled (SCL) pins were meticulously 
examined. The SSSQ tool configuration notably demonstrated height-
ened hardness within the stir zone relative to the alternative pin profiles, 

Fig. 21. SEM image of AZ31/TiC Composite (a) 0 vol% TiC (b) 6 vol% TiC (c) 12 vol% TiC (d) 18 vol% TiC [156].  

Table 6 
Nanoparticles reinforced FSPed Mg alloy.  

Base 
Material 

Reinforcing 
Particles 

Conclusion/Remarks Reference 

AZ91 SiC Increase in tensile strength and 
elongation was reported as SiC 
nanoparticles had a significant 
impact on the SZ’s grain 
refinement 

[166] 

AZ91 Al2O3 Increase in wear characteristics 
and hardness was reported as 
homogeneous distribution of 
Al2O3 particles was achieved 

[167] 

AZ91C SiO2 Improved mechanical strength 
was reported after multi pass FSP 
with SiO2 reinforcement 

[168] 

WE43 Hardystonite Reduced corrosion rate was 
reported as Hardystonite 
significantly reduced localized 
corrosion of the WE43 alloy after 
FSP 

[169] 

AZ91 SiC Reported that refined surface 
composite layer of AZ91/SiC can 
be achieved by an increase in tool 
rotating speed 

[170] 

ZK60 nano- 
hydroxyapatite 
(nHA) 

Reported that addition of second 
phase particles effect the high 
corrosion resistance 

[171] 

AZ31 TiC Reported that increase in 
mechanical properties can be 
achieved by clustering TiC in SZ 

[156]  
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as illustrated in Fig. 22. This phenomenon can be attributed to the 
pulsation effect, inducing a more pronounced plastic deformation within 
the processed material. 

Asadi et al. [173] ventured into the realm of in-process water cooling 
effects on the mechanical and microstructural attributes of FSPed AZ91 
Mg alloy. Their study revealed a concurrent elevation in hardness 
alongside a reduction in grain size within the water-cooled processed 
specimens. Similarly, an exploration by Ramaiyan and Kumar [174] 
centered on SFSP, explicitly focusing on hot-rolled AZ31B Mg alloy. The 
outcome showcased a superior microstructural refinement, which 
augmented tensile properties and microhardness within the processed 
material. 

Further insights were provided by Alavi Nia et al. [175], who 
investigated the interplay of water cooling conditions, pin profiles, and 
traverse speed during FSP of AZ31 Mg alloy. The cooling action 
engendered a discernible reduction in grain size coupled with height-
ened hardness, strength, and ductility. Additionally, an optimal speed of 
58 mm/min was identified, yielding the highest mechanical properties 
when contrasted with 28 and 40 mm/min. Darras and Kishta [176] 
extended their investigation to encompass water and air environments, 
conducting FSP on AZ31 Mg alloy. Their study scrutinized the effects of 
thermal fields, grain size, and tensile properties within these contexts. A 
comprehensive overview of tensile properties across unprocessed and 
SFSP scenarios encompassing air, hot water, and cold water environ-
ments is systematically presented in Fig. 23. 

Luo et al. [177] investigated mechanical properties of SFSPed Mg 

samples with single-pass and double-pass. Table 7 summarizes tensile 
properties for BM, single-pass, and double-pass SFSP specimens. 

The study conducted by Cao et al. [178] entailed a meticulous ex-
amination of macrographs of Mg–Nd–Y alloys subjected to both sub-
merged and conventional FSP techniques. Remarkably, the width of the 
SZ was 6.59 and 6.73 mm for submerged FSP and ordinary FSP, 
respectively. Notably, the implementation of submerged FSP was found 
to induce an advanced cooling effect, resulting in improved outcomes. 
An investigation by Huang et al. [130] further delved into the structural 
and property alterations in underwater FSPed AZ80 Mg alloy. The 

Fig. 22. Micro-hardness of SFSP with different pin profiles (a) 800 rpm (b) 1000 rpm (c) 1200 rpm [172].  

Fig. 23. Tensile behaviour of SFSPed AZ31 alloy [176].  
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processed zone resulting from air-based FSP was notably more minor 
than the water-based FSP samples. This disparity was attributed to the 
accelerated cooling rates characteristic of SFSP. Fig. 24 visually captures 
the macrostructural discrepancies between air and water specimens. 

Moreover, the work undertaken by Chai et al. [179] involved the 
utilization of SFSP on AZ31 alloy, exploring fixed traverse settings while 
varying rotational speeds. The investigation additionally scrutinized the 
effect of rotational speeds on the resulting microstructures of the pro-
cessed samples. The study unveiled notable insights regarding grain 
sizes, wherein the underwater FSP samples exhibited grain sizes of 2.8, 
3.3, and 3.8 μm at 1100, 1300, and 1500 rpm, respectively. The 
observed trend indicated an increase in grain size with escalating rota-
tional speeds. The authors concluded that SFSP demonstrates a distinct 
potential for producing fine-grained materials. 

In a related exploration, Cao et al. [180] embarked on SFSP, focusing 
on Mg–Y-Nd alloy under controlled conditions of a constant speed of 
600 rpm and a feed rate of 60 mm/min. The experimental setup 
encompassed a tool with a tilt angle of 2.5◦, a threaded conical pin with 
a diameter of 4 mm, and a shoulder diameter of 15 mm. The results 
highlighted the efficacy of SFSP, with a grain size of 1.3 μm—a sub-
stantial improvement compared to the base alloy with a grain size of 54 
μm. This significant grain size reduction was attributed to the acceler-
ated cooling effect inherent in SFSP. 

Further exploration by Chai et al. [181] encompassed both FSP and 
SFSP of AZ91 alloy revealed a pronounced disparity in the volume 
fraction of β-Mg17Al12 particles between normal FSP and SFSP speci-
mens. This disparity was attributed to the heightened cooling rates 
characteristic of SFSP, thus contributing to the observed variation. Luo 
et al. [182] established a comprehensive correlation between the tensile 
properties and microstructural attributes of multi-pass SFSPed AZ61 Mg 
alloy. The analytical study unveiled a distinctive grain size of 3.7 μm for 
the multi-pass SFSP samples. Notably, the application of rapid water 
cooling effectively suppresses the re-precipitation of the β-Mg17Al12 
phase. Consequently, a limited presence of precipitation particles was 
observed near grain boundaries, a phenomenon highlighted in Fig. 25. 

The empirical implications of prior research findings concerning 
SFSP are elaborated below, encompassing the domains of temperature 
distribution, corrosion resistance, wear behaviour, and super plasticity 

tendencies across various Mg materials: 
In a comprehensive investigation conducted by Chai et al. [183] 

revealed that SFSP approach exhibited a notably lower peak tempera-
ture and a significantly accelerated cooling rate when contrasted with 
conventional FSP. Similarly, Iwaszko and Kudła [184] delved into FSP of 
AZ91-D Mg alloy in air and underwater environments. The wear testing 
was particularly interesting, which facilitated a direct comparison of 
wear performance between FSP under air and water conditions. 
Notably, the FSP underwater medium specimen demonstrated enhanced 
wear resistance as opposed to the FSP specimen in an air-based envi-
ronment. Exploring the effects of wear behaviour on water-cooled FSPed 
samples, scrutinized load and sliding velocities variations, utilizing Mg 
alloy AE42 as the focus material. Remarkably, the FSP specimens 
exhibited a substantial reduction in wear rate, a phenomenon attributed 
to microstructural alterations leading to improved microhardness and 
ductility within the processed samples. 

Ramaiyan et al. [185] meticulously explored FSP within an under-
water environment, employing the L27 orthogonal array approach for 
AZ31B alloy. The investigation encompassed tool pin profile, rotational 
speed, and processing speed. Remarkably, a notably low corrosion rate 
of 0.011748 mm/year was achieved under specific conditions: a pro-
cessing speed of 1.0 mm/s, a rotational speed of 1000 rpm, and the 
stepped square pin profile utilization. Furthermore, Cao et al. [180] 
successfully demonstrated the exceptional super plasticity of SFSPed 
Mg–Y-Nd alloy. This achievement was underscored by an impressive 
elongation of 900 % observed at 758 K, coupled with a strain rate of 2 ×
10− 2 s− 1. The observed enhancement in elongation can be attributed to 
the synergistic effects of the fine-grained microstructure and superior 
thermal stability. The nuanced relationship between elongation and 
strain rate for the SFSPed samples is visually depicted in Fig. 26. 

Cao et al. [186] in their other research examined the dynamic evo-
lution of microstructure and superplastic behaviour within Mg–Y–Nd 
alloys. Their study demonstrated the successful achievement of 
fine-grained structures through SFSP conducted underwater. This 
refined microstructural configuration proved pivotal in attaining a 
remarkable maximum elongation of 967 %. Similarly, Datong et al. 
[187] investigated the tensile and super-plastic properties inherent to 
underwater FSP of Mg–9Al–1Zn alloy. Their comprehensive study yiel-
ded favorable results, including a notable strain rate response and an 
impressive elongation of 990 % in the FSPed material. The graphical 
representation of nominal stress reduction at strains exceeding 0.6 and 
the visual depiction of tensile specimens is illustrated in Fig. 27. 

In summary, this section underscores the pronounced influence of 
the medium on the heat dissipation process. It is evident that water 
exhibits a superior heat capacity compared to air, resulting in a notable 
acceleration of the cooling rate during SFSP in contrast to the conven-
tional FSP conducted in an air medium. This divergence is manifested by 
a reduction in the peak temperature observed during SFSP. The strategic 
manipulation of heat energy within the processed zone and the 
heightened cooling rate induced by the underwater environment are 
pivotal factors in mitigating grain growth within the processed zone. 
This meticulous control not only engenders a refined microstructure but 
also underscores the attainment of enhanced mechanical properties, 
thus reinforcing the interplay between controlled thermal dynamics and 
resultant microstructural enhancements. 

4.2. Cryogenic-cooling friction stir processing (CFSP) 

A review of FSP under cryogenic medium (LN2) and relevant litera-
ture deals with LN2 is provided below. 

An empirical investigation focusing on torque, temperature, and 
grain size reduction in cryogenic condition was undertaken by Ammouri 
et al. [188]. An analysis of FSP under air-cooled specimens revealed a 
decrease in impact strength and tensile strength and an increase in 
elongation at cryogenic temperatures. A remarkably fine-grained 
microstructure of approximately 300 nm was achieved using FSP 

Table 7 
Mechanical properties in different conditions.   

Yield Strength 
(MPa) 

Ultimate Tensile Strength 
(MPa) 

% of 
elongation 

Base material 74 115 9.21 
Single pass 

FSP 
108 289 28.13 

Double pass 
FSP 

100 286 37.21  

Fig. 24. Macroscopic image (a) FSP (b) SFSP [130].  
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within a liquid nitrogen medium [189]. The enhanced cooling effect 
contributed to developing a refined grain structure with a smoother 
interface, resulting in improved ductility and reduced cleavage fracture, 
thus enhancing overall material performance. Investigating the micro-
structural effects of FSP and SFSP on Mg alloy, another study utilized a 
constant speed of 800 rpm and a feed rate of 40 mm/min, employing a 
tool with a 15 mm diameter shoulder [190]. The SFSP samples exhibited 
superior strength and elongation than the standard FSP samples. The 
temperature, torque, and mechanical properties of cryogenically pro-
cessed Mg alloy were explored by a study conducted by Rao and Naik 
[191] revealing a decrease in impact strength and tensile strength 
alongside an increase in elongation. Furthermore, FSP was conducted on 
AZ31B Mg alloy under varied cooling conditions [192]. The findings 
illustrated in Fig. 28 showcased the effects on elongation, tensile 

strength, and hardness across three different processing conditions. The 
cryogenic FSPed sample exhibited a slight reduction in tensile strength 
and hardness but an increase in elongation compared to the SFSPed 
sample. 

In a notable study, Chang et al. [193] identified a significant chal-
lenge rooted in their prior experience with FSP, namely the critical issue 
of heat dissipation during the process. To mitigate this challenge, they 
ingeniously employed a thin copper mould as a heat sink and harnessed 
the cooling capabilities of liquid nitrogen. Their innovative approach 

Fig. 25. a) Macroscopic morphology of cross section of SFSPed alloy, and the microstructure of b) BM and c) SFSPed samples [182].  

Fig. 26. Elongation with strain rate for the SFSP samples at different temper-
atures [180]. 

Fig. 27. Normal stress Vs Normal strain graph of super-plastic tensile behaviors 
of SFSP specimen [187]. 
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yielded an ultrafine and uniformly grained microstructure. This 
achievement of ultrafine grains contributed to a notable improvement in 
the hardness of the processed sample. In a similar vein, Du and Wu [194] 
undertook FSP with the utilization of a rapid heat sink, aiming to ach-
ieve fine grain refinement in AZ61 alloy. Their efforts resulted in a 
microstructure characterized by grains as small as 300 nm. Moreover, 
strategically employed cryogenic cooling to enhance the grain size in 
FSPed AZ31B Mg alloy, further illustrating the ongoing exploration of 
cryogenic techniques in this field of research [195]. The finer and ho-
mogeneous microstructure was observed from cryogenically cooled 
specimens than the room-temperature samples. For instance, the grain 
size for the cryogenically cooled FSP was 6 μm when these authors 
applied multiple-pass FSP. The resulting grain sizes under different 
cooling conditions are summarized in Table 8 for reference. 

In a comprehensive study by Mohammed [196] reported the effect of 
cryogenic cooling on the corrosion rate of FSPed AZ91 alloy. Authors 
reported that increase in microhardness after cryogenic cooling is 
caused by the enhancement in grain structure and the distribution of 
β-phase constituents. Similarly, Ammouri et al. [188] conducted a 
comprehensive assessment of the impact of liquid nitrogen on the FSP 
process applied to AZ31B alloy. The experimental campaign involved 
varying rotational and welding speeds while assessing pertinent pa-
rameters such as thrust force, torque, temperature, and grain size. 
Specifically, grain sizes of 8 μm (F2: 550 mm/min, 1600 rpm) and 7.7 
μm (G3: 800 mm/min, 1800 rpm) were achieved for room temperature 
specimens. 

This section underscores that FSP coupled with rapid cooling is an 
efficacious approach for achieving ultra-fine grain refinement and 
consequential enhancement of mechanical properties. Recent years have 
witnessed a heightened research focus on utilizing diverse coolants 
within the FSP, including liquid CO2, cooling oil, and brine solution. 
Additionally, there has been substantial discourse on grain size and 
texture evolution in conventional FSP. 

In a study by Mosayebi et al. [197], FSP was conducted at varying 
traverse speeds ranging from 30 to 90 mm/min while maintaining a 
constant rotation speed to investigate the interplay between textural 

characteristics and grain growth performance of a Mg alloy subjected to 
FSP. The presence of the typical {0001} 〈uvtw〉 texture component was 
reported in the FSPed Mg alloy. A cold source-assisted FSP approach was 
employed by Xu et al. [198] on Mg alloy sheets, utilizing a rotational 
speed of 600 rpm and traverse speed of 400 mm/min. A liquid CO2 
cooling nozzle was positioned adjacent to the tool, synchronized with 
the processing speed. This configuration induced discernible impacts on 
the microstructure and mechanical attributes. 

Furthermore, a study by Chandran et al. [199] encompassed FSP 
under distinct cooling media—water, brine solution, and cooling oil 
applied to AZ31 alloy. The investigation delved into the effects of these 
different cooling mediums on parameters such as hardness, percentage 
of elongation, and tensile strength. Notably, the study unveiled higher 
hardness under the coolant medium and comparatively diminished 
values in the water medium (as depicted in Fig. 29). 

4.3. FSP for biomedical industries 

Interestingly, bio absorbable Mg and its alloys have been employed 
as metallic biomaterials in orthopedic implants because of their me-
chanical properties closely match with properties of human bones. In the 
development of implants, the major concern is stress shielding which 
could be avoided by matching the stiffness of the implants with stiffness 
of the bone. Titanium and Stainless steel are most used metals in or-
thopedic applications. But stress shielding issue is still existing with 
unsolved research problem. FSP stands out as a highly efficient tech-
nique for crafting bio-composites through the integration of bioactive 
particles into a metallic matrix [200,201]. Notably, the process of dy-
namic recrystallization during FSP leads to a finer grain structure within 
the matrix. Moreover, the severe plastic deformation applied during FSP 
induces the fragmentation and even distribution of secondary phase 
particles. These transformative microstructural alterations significantly 
enhance the characteristics of bioabsorbable Mg alloys [202,203]. 

In a study conducted by Mehdizade et al. [204], wollastonite 
(CaSiO3) was utilized as a bioactive particle to create Mg-based bio--
composites through the FSP method. Fig. 30 illustrates the technique 
used to integrate the biomaterial with the Mg alloy during the FSP 
process. The researchers found that the ultimate compression strength of 
the Mg matrix was significantly enhanced by applying six passes of FSP 
and incorporating wollastonite bio-ceramic particles. This improvement 
was attributed to the grain refinement of the Mg matrix, as well as the 
fragmentation and uniform redistribution of the secondary phase 
particles. 

A study compared the properties of Mg-based biocomposites 
enhanced with HA and Ag particles, using FSP and coating techniques 
[205]. The findings demonstrated that the in-vitro biodegradation rate 
of the composites created via FSP was reduced by 72% compared to 

Fig. 28. Mechanical properties of FSP under various mediums [192].  

Table 8 
Average grain size of CFSP under various cooling conditions.  

Case Description Locations Average grain 
(μm) 

1 Cryogenic cooling underneath the fixture 
bottom 

Bottom 0.5–2 
Middle 5–10 
Top 8–10 

2 Cryogenic cooling on top as well as 
underneath the fixture bottom 

Bottom 0.5–1 
Middle 3–5 
Top 8–10  Fig. 29. Hardness of SFSP under different medium [199].  
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those produced using the coating method. Yousefpour et al. [206] 
employed a multi-pass FSP method to produce AZ91/HA and AZ91/HA 
+ Ag bio-nano composites. Their findings indicated that increasing the 
number of FSP passes led to greater grain refinement and more uniform 
dispersion of additive particles. These changes in grain refinement, 
texture, and dispersion of HA particles significantly improved the 
strength and ductility of the composites. Another research effort 
involved fabricating Mg-based biocomposites with the addition of HA, 
ZnO, and Cu/ZnO particles through the application of six passes of FSP 
[207]. Additionally, Thakur et al. [208] incorporated Zn and Mn 
micropowders into an Mg matrix, creating Mg-based biocomposites and 
reporting significant enhancements in the mechanical properties of the 
biocomposites through FSP. Kundu and Thakur [201] developed friction 
stir processed nano-HAp/AZ91D Mg matrix surface composite, and re-
ported that the improved mechanical and biological performances of 
composites compared to the base Mg alloy. In another work, In their 
recent study, Shunmugasamy et al. [92] unveiled a breakthrough in 
orthopedic implant technology with the development of a fine-grained 
Mg–Zn–RE–Zr alloy. This innovative material, produced through FSP, 
represents a significant advancement in the field. The findings of their 
research showcase the remarkable potential of the processed 
Mg–Zn–RE–Zr alloy for facilitating osseointegration during bone tissue 
healing. 

4.4. Friction stir additive manufacturing 

Additive manufacturing (AM) stands as a transformative process, 
enabling the creation of objects from 3D model data through the fusion 
of materials using a high-energy beam as a heat source, thus layer by 
layer [209]. The methodology involves the melting and solidifying of 
successive metal layers, a technique that has revolutionized various 
industries [210]. However, when it comes to low-density metals such as 

Al and Mg alloys, traditional AM technologies face a significant chal-
lenge due to the high reflectivity of these materials. This limitation has 
hindered the successful AM of Al and Mg alloys using conventional 
methods. For solid-state AM or repair approaches, large structures were 
directly manufactured via wire-based friction stir additive 
manufacturing (W-FSAM) without kissing bonds induced by interfacial 
alternations. Microstructures in the deposited layers were characterized 
as uniform, fine and equiaxed grains. The main grain refinement 
mechanism involves dynamic recrystallization, which is primarily 
related to severe plastic deformation during the repeated stirring of 
thermo-plasticized materials [211,212]. 

In particular, Mg alloys prepared using established AM techniques, 
such as laser cladding [213] and selective laser melting [214], have 
exhibited certain drawbacks, primarily manifested in solidification 
flaws. Furthermore, the resulting metallic structures have displayed 
suboptimal static and dynamic mechanical properties [215], indicating 
a need for innovation in this domain. Emerging as a novel solution to 
address the shortcomings of conventional manufacturing approaches, 
Friction stir processing additive manufacturing (FSPAM) has garnered 
attention. This innovative technique is tailored explicitly for fabricating 
robust bulk Mg surface composites. The paramount objective of FSPAM 
is to transcend the limitations of traditional manufacturing techniques, 
ushering in improved mechanical properties and creating a densely 
packed, residual-free microstructure [216]. 

Conceptually derived from FSW/FSP, FSPAM deploys a non- 
consumable rotating tool. As it traverses along a substrate, this tool 
generates frictional heat and exerts intense shear stresses, leading to the 
plasticization of the material. Situated at the core of the tool is a 
mechanism for extruding solid or discontinuous feedstock. This extru-
sion occurs in precise alignment with designated process parameters, 
either above the substrate or atop the preceding layer [217,218]. FSPAM 
technology is shown in Fig. 31. 

Fig. 30. Schematic representation of the fabrication process of Mg-based biocomposites via FSP [204].  
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The evolution of the microstructure in FSPAM can be understood 
through a tripartite process. The initial phase involves preheating as the 
material exits the tool head, wherein the material’s temperature expe-
riences a notable increase owing to heat conduction emanating from the 
material-substrate interface. During the subsequent deposition phase, 
the material undergoes compression and shearing at elevated tempera-
tures, with peak temperatures typically hovering between 0.5 and 0.9 of 
the material’s melting point [220,221]. This intricate interplay of 
thermal dynamics and material manipulation constitutes the foundation 
of FSPAM, leading to its distinctive capacity for creating enhanced Mg 
alloys through advanced AM principles. 

The field of FSPAM for Mg alloys has, thus far, been relatively 
underexplored concerning the comprehensive investigation of diverse 
process variables. While this realm exhibits a burgeoning potential, the 
research landscape is characterized by a scarcity of studies delving into 
the multifaceted effects of varying process parameters. Nonetheless, 
notable contributions have begun illuminating the promise of FSPAM for 
Mg alloys. 

In a pivotal study by Kandasamy et al. [222], the FSPAM technique 
was harnessed to fabricate bulk AZ31 Mg alloy from powdered feed-
stock. This seminal research not only underscored the viability of 
FSPAM in generating defect-free and densely structured bulk Mg alloys 
but also illuminated its potential for inducing severe plastic deformation 
in the alloy. A remarkable outcome of this endeavour was the conspic-
uous refinement of grains within the material, characterizing a hallmark 
microstructure intrinsic to the FSP methodology. Joshi et al. [223] 
embarked on a complementary exploration into the realm of FSPAM, 
centering their investigation on the AZ31-B Mg alloy. With a keen focus 

on elucidating the intricate interplay of process parameters, their study 
delved into the effects of pivotal variables such as tool linear velocity, 
deposition material feed rate, tool residence time, and feed material 
deposition time. By meticulously dissecting these factors, authors un-
veiled a nuanced understanding of the resultant microstructure, phase 
composition, and crystallographic texture. A striking observation 
emerged from their work, revealing that the feed material (AZ31B) and 
the additively produced samples exhibited a shared α-Mg phase. 
Notably, the additively produced samples distinguished themselves 
through an equalized grain structure, a manifestation attributed to the 
fortification of the basal crystallographic texture. 

While the landscape of FSPAM for Mg alloys remains in its formative 
stages, these pivotal studies by Kandasamy et al. [222] and Joshi et al. 
[223] mark crucial milestones in advancing our comprehension of this 
burgeoning technology’s potential. Their inquiries into process vari-
ables, material behaviour, and resulting microstructures provide a solid 
foundation for further explorations, potentially unravelling new ave-
nues for engineering enhanced Mg alloys via FSPAM. 

5. Summary and future perspectives 

This comprehensive review has provided an insightful analysis of 
current trends and advancements in FSP across diverse coolant me-
diums. FSP emerges as a compelling method for improving the proper-
ties of Mg alloys, serving as an effective surface modification technique. 
The complex interplay of cooling and heating within the FSP thermal 
cycle significantly influences the resulting grain structure and material 
properties, emphasizing the importance of well-engineered thermal 

Fig. 31. a) Schematic of FSPAM technology and b) Processing method of friction surfacing layer deposition [219].  
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processes for optimising Mg alloy performance. 
Utilizing FSP in underwater environments has led to notable en-

hancements in mechanical properties, grain size, corrosion resistance, 
and wear resistance of Mg alloys. This promising research direction 
holds the potential to revolutionise Mg-based component materials. The 
synthesis of knowledge from previous investigations indicates that 
cryogenic FSP shows promise for applications in cold climates, partic-
ularly in automotive and aerospace sectors where increased hardness is 
advantageous. However, the higher manufacturing cost of cryogenic FSP 
compared to SFSP underscores the importance of aligning coolant me-
dium choice with regional requirements. SFSP offers a cost-effective 
option, especially in equatorial regions, while cryogenic FSP provides 
compelling performance advantages in specific contexts. Furthermore, 
FSPAM shows potential application in Mg composites, warranting 
further research. This comprehensive review highlights the diverse 
research avenues and progress within FSP, emphasizing the importance 
of tailoring FSP methodologies to suit varying geographical and eco-
nomic considerations. As advancements continue, FSP’s role in 
enhancing Mg alloy properties is poised to impact diverse industrial 
sectors significantly. 

By addressing future research directions and challenges in this 
article, we deem the researchers would unlock new opportunities and 
ultimately drive innovations in materials science. Suggested some of the 
future works are.  

i. Numerical studies on textural evolution: There is a notable gap in 
numerical investigations concerning to the textural evolution of 
FSPed Mg alloys. A comprehensive exploration of this aspect 
could provide valuable insights into the microstructural devel-
opment and mechanical properties of FSPed materials. Contin-
uous dynamic recrystallization (CDRX) phenomena during FSP is 
to be delved. Understanding governing mechanism of CDRX and 
its impact on the resulted microstructure would be a pivotal for 
optimising FSP parameters and fostering the development of 
high-performance Mg alloys.  

ii. Study of novel coolant materials: Experimental investigations 
employing innovative coolant materials, particularly sustainable 
coolants hold significant promise for achieving nano-fine grain 
structures in FSPed Mg alloys. Novel coolant formulations, such 
as nanofluids or cryogenic fluids, could enhance heat dissipation 
rate and facilitate finer-grain formation. The experiments could 
potentially yield tailored cooling strategies, improved mechani-
cal properties and performance of FSPed Mg alloys.  

iii. Development of predictive models: It is imperative to create 
predictive models capable of accurately estimating heat genera-
tion and material flow during FSP. This investigation would 
broadcast optimum process parameters and the respective 
microstructural characteristics. This is one of the good research 
areas to explore, because optimising process parameters and 
predicting resultant microstructural characteristics is essential 
for productivity.  

iv. Strategies for friction stir additive manufacturing: Combination 
of FSP and AM is a cutting-edge technology that leverages the 
advantages of both techniques to produce advanced materials 
with tailored properties. In this integrated approach, instead of 
relying solely on the layer-by-layer deposition of build materials, 
strategic refinement and enhanced material properties can be 
obtained. The further research on the best strategy in utilizing the 
supremacy of FSP and AM is warranted. 
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