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Abstract:  In this paper, A new approach is used to apply 

Haar’s measure theory to triangular fuzzy number theory for 

comprehending and generalizing the uniqueness of invariant 

measure when there are uncertainty and risk. If T
~

is a triangular 

fuzzy finite Topological group and X
~

 is its subgroup, X
~

 also 

being a triangular fuzzy number, then
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I. INTRODUCTION 

This Invariant measure plays an essential role in numerous 

fields of mathematical sciences, for instance, the uncertainty 

principle identified with Probability introduced in (R.M 

Dudley, 2002) does exclude any announcement around an 

invariant measure, but rather the measure assumes a critical 

part in demonstrating the probability theorem, as appearing in 

this paper, the structure of probability additionally offer 

ascent to probability distributions invariant measure. It is 

fascinating to perceive the method of generalizing the 

measure theory to probability distributions. 

The general hypothesis of measure and integration was 

conceived in the mid twentieth century. It is currently a vital 

tool in significantly various fields of mathematical sciences, 

including functional analysis, partial differential equations, 

harmonic analysis, probability theory and dynamical 

frameworks. Surely, it has turned into a combined theory. 

Many different topics can agreeably accompany a treatment 

of this theory. The companionship between integration and 

functional analysis and, in particular, between integration and 

weak convergence, has been fostered here: this is important, 

for instance, in the analysis of nonlinear partial differential 

equations. 

 

II.  PRELIMINARIES  

1. Definition: 

An invariant is the one which has no change under a set of 

transformations. 
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 2. Triangular Fuzzy Number 

 The fuzzy system of numeration that typically utilized in 

applications is that the triangular (shaped) fuzzy numbers [8]. 

 

2.1  Fuzzy set: [3] 

A fuzzy set L must the three axioms, 

i . L
~

 is a ordinary set. 

ii.   L
~

 is closed interval , for all ]1,0[  

iii.  L
~

, L
~0

  is bounded. 

 

2.2   Triangular Fuzzy Number: [13]  

 

A fuzzy numbers delineated with three points as: 

 321 ,,
~

lllL 
 

This illustration is taken as membership rule and holds the 

subsequent axioms 

 (i)  Increasing function is  1l  to 2l   

(ii)  Decreasing function is 2l to 3l   

(iii)  321 lll 
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2. 3. A  Triangular fuzzy number is positive is defined 

as
 321 ,,

~
lllL 

, here  

2.4  A Triangular fuzzy number is negative is defined 

as
 321 ,,

~
lllL 

, here  

2.5.    Two triangular fuzzy numbers L
~

and M
~

are 

identically equal, that is ML
~~

 , if and only if   

11 ml 
, 22 ml 

  and  33 ml 
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III.  HAAR’S MEASURE  

3.1 Definition of Left Haar’s measure: 

A Left Triangular fuzzy Haar’s measure 
~

on topological 

group T
~

is Radon measurable and is invariant under left 

translation 

(i.e)
Ttxxt
~~

)~()~~
(  
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3.2 Definition of Right Haar’s measure: 

A Right Triangular fuzzy Haar’s measure 


on topological 

group T
~

is Radon measurable and is invariant under right 

translation 

(i.e)
Ttxtx
~~

)~()
~~(  

 

where 
Tandx
~~

are triangular fuzzy numbers. 
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3.3 Lemma: 

The measure of a subgroup of a Triangular fuzzy invariant 

finite topological group is invariant 

Assumption: Let Triangular fuzzy Topological group be 

finite 

Let Triangular fuzzy invariant finite topological group be 

T
~

 

)
~

()~~
()

~~( TaTTa  
 by Triangular fuzzy Haar’s 

measure 

Identity: 

The identity element of T
~

be '~'e  

Here e~ is the triangular number so, 
)(~

321 eeee 
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So identity satisfied. 

Therefore the triangular fuzzy measurable group of a 

subgroup is invariant. 

 

3.4 Theorem:  

Measure of a subgroup of a triangular fuzzy finite 

topological group divides the measure of the groups. 

Proof: 

Consider x~ as the subgroup of T
~

(Here Tx
~~  ) 

and let 
Tofx
~~

 be finite 

If i) Tx
~~   it is obviously proved. 

 ii) Tx
~~   
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Every Triangular fuzzy left Haar’s measure is equal to right 

Haar’s measure of x in T. 

Since 
)~()~~( xxe  
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as x~  is the right Haar’s measure of x in T. 

Likewise 
....),........

~~(),~~(),
~~(),~~( dxcxbxax 

are 

right Haar’s measures of x in T 

So 

mxdxcxbxax ~)~(........)
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3333333 ..........)()()( mcxbxax  
Assume that k

~
 be the number of 

distinct Haar’s measure of x~ in T
~

  

Always the right Haar’s measure of disjoint sets induces a 

division of T
~
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(i.e) )
~
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Hence triangular fuzzy finite topological group divides the 

measure of the groups 

IV. CONCLUSION   

Applying Haar’s measure theory to triangular fuzzy measure 

theory is simple to know and generalize the invariant 

uniqueness in the real life situations. Hence, Triangular fuzzy 

measure of a subgroup of a triangular fuzzy finite subgroups 

divides the measure of the groups 
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