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Abstract— Big data is a group of data used for examining and extracting the useful information in recent days. Big data analytics is the 

application of advanced analytic methods against large data comprising structured, semi-structured and unstructured data. The main aim is 

to store, access and manipulate the data at one place. MapReduce (MR) is the principle of Big Data Processing model with distributed 

large datasets. Prefetching is a suitable technique for transferring the memory objects in memory hierarchy before required by processor. 

Many researchers carried out their research on the mapreduce method for responding to the user requested task through removing 

repeated tasks. But, the job completion time was not reduced using existing techniques as data prefetching was not carried out in existing 

methods. In order to address these problems, the existing prefetching and map reduce techniques are reviewed and drawbacks of 

techniques are listed in this paper. 

Index Terms— Big data, Job completion, MapReduce, Memory hierarchy, Prefetching, Unstructured data, User Query Processing.  

——————————   ◆   —————————— 

1 INTRODUCTION                                                                     

ig data is the high-volume, high-velocity and high-variety 

information that demand cost-effective for decision 

making. Big data computing has large impact in recent years 

as MapReduce and cloud computing methods are widespread. 

MapReduce is the fundamental infrastructure of service when 

public cloud experienced vulnerability problem. Prefetches are 

started through explicit fetch operation within the program or 

through logic that monitors the processor referencing pattern 

to infer prefetching opportunities.  

This paper is organized as follows: Section 2 explains the 

review on different prefetching and mapreduce techniques for 

user query processing, Section 3 explains the study and 

analysis of existing prefetching and mapreduce techniques. In 

section 4, possible comparison of existing methods is made. 

Section 5 gives the discussion and limitations of the existing 

prefetching and mapreduce techniques for user query 

processing are discussed with future direction and Section 6 

concludes the paper  

2 LITERATURE SURVEY 

A prefetching service based task scheduler termed High 

Performance Scheduling Optimizer (HPSO) was designed in 

[1] with prefetching to enhance the data locality for 

MapReduce jobs. The designed method minimized map tasks 

causing the remote data delay and enhanced Hadoop clusters.  

 

But, job completion time was not reduced using HPSO. A 

Merkle tree-based verification method (MtMR) was 

introduced in [2] to guarantee high result integrity of 

MapReduce jobs. MtMR sampled the small portion of task 

input/output records on the private cloud and performed 

Merkle tree-based verification on all task input/output 

records. But, the prefetching was not carried out at earlier 

stage to minimize the job completion time. 

 

A scalable pipeline of components constructed on the 

Spark engine for large-scale data processing in [3]. The main 

aim was to collect the data from dataset access logs for 

organizing them into weekly snapshots and predictive 

techniques to forecast the datasets. But, the latency was not 

minimized because prefetching was not carried out. An 

envisioned future large-scale computing architecture were 

adapted in [4] for batch processing of big data application in 

MapReduce model. But, computational complexity was not 

minimized by future large-scale computing architectures. 

 

The big data processing framework was designed in 

[5] to join the climate and health data and to find the 

correlation between the climate parameters. But, prefetching 

was not performed in big data processing framework. A novel 

intermediate data partition scheme was designed in [6] to 

reduce the network traffic cost for MapReduce job. Every 

aggregator reduced the merged traffic from multiple map 

tasks through addressing the aggregator placement issue. 

However, the data partitioning was not carried out efficiently 

through intermediate data partition scheme. 
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 High-Level MapReduce Query Languages was built 

in [7] on MR that converted the queries into an executable 

native MR jobs. But, the complexity was not minimized 

through High-Level MapReduce Query Languages. A new A* 

algorithm introduced in [8] reduced the Map and Reduce 

tasks for running the path computation on Hadoop 

MapReduce framework. The designed framework enhanced 

the feasibility and reliability. A* algorithm minimized 

computation time. However, MapReduce tasks was not 

performed by A* algorithm. 

 

 A novel approach was designed in [9] to improve the 

metadata management performance for Hadoop in 

multitenant environment based on the prefetching 

mechanism. However, the map reduce function was not 

employed in the multitenant environment. A new efficient 

pattern mining algorithm was introduced in [10] by using 

MapReduce framework and Hadoop open-source 

implementation in the big data. A maximal AprioriMR 

algorithm was designed for mining condensed frequent 

patterns. But, the execution time was not minimized using 

efficient pattern mining algorithm. Secured Map Reduce 

(SMR) Layer was designed in [11] between the HDFS and MR 

Layer for improving the security and privacy. The designed 

model provided the privacy and security through resolving 

scalability problems of privacy for data miners. Though 

security problem was addressed, prefetching was not carried 

out in the SMR Layer. 

3 PREFETCHING AND MAPREDUCE TECHNIQUES FOR 

USER QUERY PROCESSING 

Prefetching in computer science is a method for increasing the 

speed of the fetch operations whose result is predictable at the 

earlier stage. MapReduce is the parallel programming model 

and employed as distributed system on the cluster. Every 

request by user is termed as job. Each job is divided into 

multiple tasks. MapReduce comprised one master and 

number of workers. The master manages the whole 

computation through managing the jobs, scheduling the tasks 

and preserving the load balance. Every job recovered the input 

data from DFS and stores the result after job completion. Each 

MapReduce job comprised three phases, namely map phase, 

shuffle phase and reduce phase. Tasks performed in map and 

reduce phase are termed as map tasks and reduce tasks 

respectively. In map phase, input data are collected from DFS 

and partitioned into many blocks. Each data block allocated to 

one map task and processed separately. Every map task 

comprised the collection of records with the <key, value> pairs 

format. Records in every task result are arranged by the key 

values. In reduce phase, every reduce task processes map task 

output records with the particular keys. The map task output 

allocated depending on the key in record termed shuffle 

phase. Every reduce task collect their input and perform the 

reduce function to aggregate input record into reduce task 

output termed final job output.  

 
3.1 Scheduling Algorithm Based on Prefetching in 
MapReduce Clusters 
 

High Performance Scheduling Optimizer (HPSO) employed 

prefetching service based task scheduler to enhance the data 

locality for MapReduce jobs during prefetching process. The 

key objective was is to forecast the suitable nodes for future 

map tasks depending on the current pending tasks and 

preload the required data to the memory without delay on 

launching new tasks. The prefetching accuracy was an 

essential factor that affects the performance. In MapReduce 

clusters, task scheduler identified the mapping between tasks 

and nodes. The execution time of map tasks were forecasted 

and identified the series where the nodes free the busy slots. 

Based on node sequence, HPSO forecasted and allocated the 

suitable map tasks to the nodes time. When the scheduling 

decisions were taken, nodes preloaded associated input data 

from remote nodes to memory before launching the tasks. An 

input data prefetching was carried out with data processing 

where the data transfer overhead was overlapped with the 

data processing in time dimension. HPSO combined the task 

scheduler, prediction and prefetching mechanism to develop 

the data locality and to minimize the network overhead. 

HPSO was to overlap the data transmission process of next 

map task with data processing of running map task. The 

architecture diagram of HPSO was described in Fig 1.  

 

 
Fig 1. Architecture Diagram of HPSO 

 

HPSO comprised three main parts, namely prediction 

module, scheduling optimizer and prefetching module. 

Scheduling optimizer forecasted the suitable tasktracker nodes 

where the future map tasks get allocated. When scheduling 

decisions were taken before map tasks get scheduled, HPSO 
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activated the prefetching module to load the expected input 

data. The designed method discovered underutilized disk 

bandwidth or network bandwidth in CPU-intensive process. 

The pipelining hided the data transfer latency. The prediction 

module in every tasktracker node predicted the remaining 

execution time of map tasks for pipelining and evaluated the 

sequence where slots become idle. The prefetching module 

used the master-slave architecture with one prefetching 

manager in JobTracker and set of workers positioned at the 

TaskTrackers. Prefetching manager was responsible for 

monitoring the workers status and for coordinating the 

prefetching process for map tasks. Each worker completed the 

loading data block by itself before receiving the map task. 

When prefetching manager attained prefetching instructions 

from scheduling optimizer, prefetching manager trigger 

workers to load data to the memory. Prefetching manager 

submitted the scheduling optimizer to data blocks in Task 

Tracker prefetching buffer. 

 

3.2 MtMR: Ensuring MapReduce Computation Integrity 
with Merkle Tree-based Verifications 
 

Merkle tree-based verification method (MtMR) was 

introduced to provide better result integrity of MapReduce 

jobs. MtMR was MapReduce on hybrid cloud environment 

and used two round of Merkle tree-based verifications on pre-

reduce phase as well as reduce phase correspondingly. 

Depending on MtMR design, theoretical studies were carried 

out to improve security and overhead performance. MtMR 

was promising method in terms of the higher integrity and 

lesser overhead. 

 

Merkle tree-based verification framework was 

introduced to boost the integrity results of the MapReduce 

computations. MtMR constructed the hybrid cloud 

architecture based on the benefits of the private cloud and 

public cloud. The public cloud acquired additional computing 

and storage resources. The public cloud executed the majority 

of computation but not guaranteed the result integrity. The 

private cloud was controlled by computing trusted task 

owner. The private cloud failed to possess many resources and 

it used to perform security-critical computations. In MtMR, 

master and less number of workers termed verifiers was 

deployed on private cloud. In addition, other workers were 

deployed on public cloud. Workers on the public cloud 

completed majority of the work. The master and verifiers on 

private cloud managed the result integrity.  

 

The key objective was to retain the control at home 

while assigning the resource-intensive computation to the 

public cloud. Depending on the hybrid cloud architecture, 

MtMR used Merkle-tree based verifications on various phases 

of MapReduce job. MtMR used two rounds of Merkle tree-

based verification on pre-reduce phase and reduce phase 

correspondingly. MtMR sampled small portion of task 

input/output records and performed Merkle tree based 

verification on all task input/output records. A semi-honest 

worker not guaranteed successful cheating under MtMR 

framework. The record error number was functioned with the 

sampled record ratio. The optimal value for sampled record 

ratio attained lowest error number under particular security 

restrictions.  

 

3.3 Dataset Popularity Predictions for Caching of CMS 
Big Data 
 

Predictive models based on statistical learning techniques are 

suitable for studying the performance and scalability of 

complex computing infrastructures. The training process 

requires abstract features from variety of measurements 

collected through historical logging activities and to devise 

relevant metrics for estimating the behavior of the system 

under investigation. Log analysis related to the processing of 

structured or unstructured information collected through 

several layers of monitoring architectures is a promising 

research field. 

 

The scalable dataset popularity prediction pipeline 

was employed to highlight the process chain from the raw 

data ingestion and preparation step up to the ML component 

producing the machine learned model. The designed model 

was introduced by PPC strategy driving dataset caching in 

various CMS sites. The main components were described for 

implementing the pipeline for data preparation and 

popularity classifier training. A scalable data mining pipeline 

on CMS Hadoop data store was employed to forecast the 

popularity of new datasets accessed by jobs processing any 

event types stored in distributed CMS infrastructure. The 

dataset accesses problem were casted to binary classification 

problem. The predictive models improved the accuracy 

denoting the ability to separate datasets from unpopular ones. 

 

A new intelligent data caching policy termed 

Popularity Prediction Caching (PPC) was carried out to attain 

the popularity predictions by classifier for optimizing the 

eviction policy at every site of CMS infrastructure. The 

efficiency of caching policy was computed through measuring 

the hit rates attained by PPC and caching the baselines like 

Least Recently Used (LRU) in handling dataset access 

requests.  

 
4 PERFORMANCE ANALYSIS OF PREFETCHING AND 

MAPREDUCE TECHNIQUES FOR USER QUERY 

PROCESSING  
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In order to compare the prefetching and mapreduce 

techniques for user query processing, number of user 

requested tasks is taken to conduct the experiment. Various 

parameters are used for improving the user query processing 

using prefetching and mapreduce techniques.  

 

4.1 Job Completion Time 
 

Job completion time is defined as the amount of time taken for 

completing the jobs. It is the difference of starting time and 

ending time of job completion. It is measured in terms of 

milliseconds. It is formulated as, 

  

          

From (1), job completion time is calculated. When the job 

completion time is lesser, the method is said to be more 

efficient.   

 
TABLE 1  

TABULATION FOR JOB COMPLETION TIME 

 

Number of 

user 

requested 

tasks 

(Number) 

Job Completion Time (ms) 

HPSO MtMR 

Method 

Scalable dataset 

popularity 

prediction 

pipeline 

10 17 28 35 

20 20 29 37 

30 22 32 39 

40 19 30 36 

50 17 27 34 

60 18 29 37 

70 21 31 40 

80 24 33 42 

90 27 36 45 

100 30 39 48 

 

Table 1 explains the job completion time performance 

with respect to the number of user requested tasks ranging 

from 10 to 100. Job completion time comparison takes place on 

existing High Performance Scheduling Optimizer (HPSO), 

Merkle tree-based verification method (MtMR) and scalable 

dataset popularity prediction pipeline. The graphical 

representation of job completion time is explained in Fig 2. 

 

 
Fig 2. Measure of Job Completion Time 

 

From Fig 2, job completion time for different number 

of user requested task is described. It is clear that the job 

completion time using High Performance Scheduling 

Optimizer (HPSO) is lesser when compared to the scalable 

dataset popularity prediction pipeline and Merkle tree-based 

verification method (MtMR). This is because HPSO forecasted 

and allocated the appropriate map tasks to the node time. 

When scheduling decisions were taken, nodes preloaded the 

associated input data from remote nodes or local disk to 

memory before launching tasks. HPSO combined the task 

scheduler, prediction and prefetching mechanism to develop 

data locality and to reduce the network overhead. HPSO 

overlapped the data transmission process of next map task 

with data processing of running map task. The job completion 

time of High Performance Scheduling Optimizer (HPSO) is 

46% lesser than scalable dataset popularity prediction pipeline 

and 32% lesser than Merkle tree-based verification method 

(MtMR).  

 

4.2 Error Rate 
 

Error rate is defined as the ratio of number of user requested 

tasks that are incorrectly predicted to the total number of user 

tasks. It is measured in terms of percentage (%). It is 

formulated as,  

 

                   
 

From (2), the error rate is determined. When the error rate is 

lesser, the method is said to be more efficient. 

 
TABLE 2  

TABULATION FOR ERROR RATE 

Number of 

user 

requested 

tasks 

(Number) 

Error Rate (%) 

HPSO MtMR 

Method 

Scalable dataset 

popularity 

prediction 

pipeline 
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10 25 18 39 

20 27 21 42 

30 24 20 38 

40 21 17 35 

50 19 15 32 

60 20 16 34 

70 18 14 33 

80 21 17 35 

90 23 19 37 

100 24 21 39 
 

Table 2 describes the error rate performance with 

respect to the number of user requested tasks ranging from 10 

to 100. Job completion time comparison takes place on existing 

High Performance Scheduling Optimizer (HPSO), Merkle tree-

based verification method (MtMR) and Scalable dataset 

popularity prediction pipeline. The graphical representation of 

error rate is described in Fig 3. 
 

 
Fig 3. Measure of Error Rate 

 

From Fig 3, error rate for different number of user 

requested task is described. It is observed that the error rate 

using Merkle tree-based verification method (MtMR) is lesser 

when compared to the High Performance Scheduling 

Optimizer (HPSO) and scalable dataset popularity prediction 

pipeline. This is because of using Merkle tree-based 

verification framework to improve the integrity performance 

of MapReduce computations. MtMR built hybrid cloud 

architecture depending on the advantages of private cloud and 

public cloud. MtMR sampled small portion of reduce task 

input/output records and performed the Merkle tree based 

verification on all task input/output records. The error rate of 

Merkle tree-based verification method (MtMR) is 20% lesser 

than High Performance Scheduling Optimizer (HPSO) and 

51% lesser than scalable dataset popularity prediction 

pipeline.  

 

4.3 Classification Accuracy 
 

Classification accuracy is defined as the ratio of number of 

user tasks that are correctly classified to the total number of 

user requested tasks. It is measured in terms of percentage 

(%). It is given by, 

 

 
 

From (3), the classification accuracy is calculated. When the 

classification accuracy is higher, the method is said to be more 

efficient.  

 
TABLE 3  

TABULATION FOR CLASSIFICATION ACCURACY 

Number of 

user 

requested 

tasks 

(Number) 

Classification Accuracy (%) 

HPS

O 

MtMR 

Method 

Scalable 

dataset popularity 

prediction 

pipeline 

10 75 88 95 

20 72 86 92 

30 70 84 90 

40 68 81 88 

50 65 79 86 

60 62 77 84 

70 60 75 82 

80 58 72 79 

90 55 69 76 

100 52 66 72 

 

Table 3 explains the classification accuracy 

performance with respect to the number of user requested 

tasks ranging from 10 to 100. Classification accuracy 

comparison takes place on existing High Performance 

Scheduling Optimizer (HPSO), Merkle tree-based verification 

method (MtMR) and Scalable dataset popularity prediction 

pipeline. The graphical representation of classification 

accuracy is illustrated in Fig 4. 

 

 
Fig 4. Measure of Accuracy 
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From Fig 4, classification accuracy for different 

number of user requested task is explained. It is observed that 

the classification accuracy using scalable dataset popularity 

prediction pipeline is higher when compared to the High 

Performance Scheduling Optimizer (HPSO) and Merkle tree-

based verification method (MtMR). This is because of using 

scalable data mining pipeline on CMS Hadoop data store to 

forecast popularity of new datasets accessed by jobs 

processing for any event type stored in distributed CMS 

infrastructure. Popularity Prediction Caching (PPC) attained 

the popularity predictions through classifier for optimizing 

the eviction policy at each CMS infrastructure. The 

classification accuracy of scalable dataset popularity 

prediction pipeline is 33% higher than High Performance 

Scheduling Optimizer (HPSO) and 9% higher than Merkle 

tree-based verification method (MtMR).  

 

5 DISCUSSION AND LIMITATION ON PREFETCHING AND 

MAPREDUCE TECHNIQUES FOR USER QUERY 

PROCESSING 
 
HPSO predicted the suitable nodes for future map tasks 

depending on pending tasks and preload the required data to 

memory without any delay on launching new tasks. HPSO 

minimized the map tasks resulting in remote data delay and 

enhanced the Hadoop clusters performance. HPSO developed 

the task scheduler to preload essential input data for 

launching tasks to the TaskTracker. It minimized the waiting 

period of map tasks with rack and rackoff locality. A 

scheduling optimizer was incorporated into the HPSO to 

enhance the prefetching rate. But, the job completion time was 

not minimized using HPSO. 

 

 Merkle tree-based verification method guaranteed 

high integrity results of MapReduce jobs. Semi-honest worker 

not performed safe cheating by MtMR framework. MtMR 

improved the integrity results while acquiring moderate 

performance overhead. MtMR employed the hybrid cloud 

architecture for Merkle-tree based verification to guarantee 

high integrity on the job results. However, prefetching was not 

carried out at earlier stage to reduce the job completion time. 

 Scalable pipeline of components was constructed on 

the Spark engine for large-scale data processing. It collected 

the data from different areas into weekly snapshots for 

forecasting purpose. The high accuracy represented ability of 

learned model to separate the popular datasets from 

unpopular ones. CMS data placement policy has significant 

improvement of resource usage and resultant reduction of 

large cost. But, the latency was not reduced because 

prefetching was not performed. 

 

 5.1 Future Direction 
 

The future direction of the work is to perform the user query 

processing through prefetching and mapreduce function by 

using machine learning and ensemble learning techniques 

with higher accuracy and lesser time consumption. 

6 CONCLUSION 

The comparison of different existing prefetching and 

mapreduce techniques for user query processing is carried out 

in this paper. From the survival study, it is clear that the 

latency was not reduced because prefetching was not 

performed. The review explains that prefetching was not 

carried out at earlier stage for minimizing the job completion 

time. In addition, the classification accuracy was not 

improved. The wide range of experiments on existing 

techniques describes the performance of many prefetching 

and mapreduce techniques with its limitations. Finally from 

the result, research work can be carried out using machine 

learning techniques for minimizing job completion time and 

for improving the accuracy during user query processing 

Although a conclusion may review the main points of the 

paper, do not replicate the abstract as the conclusion. A 

conclusion might elaborate on the importance of the work or 

suggest applications and extensions. Authors are strongly 

encouraged not to call out multiple figures or tables in the 

conclusion—these should be referenced in the body of the 

paper. 
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