
INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH, VOL 1, ISSUE 1

IJSTR©2019

Investigation Analysis on Data Prefetching
and MapReduce Techniques for User Query

Processing
S.Tamil Selvan, K.A.Dhamotharan, G.Saravanan, R.Karunamoorthi

Abstract— Big data is a group of data used for examining and extracting the useful information in recent days. Big data analytics is the

application of advanced analytic methods against large data comprising structured, semi-structured and unstructured data. The main aim is

to store, access and manipulate the data at one place. MapReduce (MR) is the principle of Big Data Processing model with distributed

large datasets. Prefetching is a suitable technique for transferring the memory objects in memory hierarchy before required by processor.

Many researchers carried out their research on the mapreduce method for responding to the user requested task through removing

repeated tasks. But, the job completion time was not reduced using existing techniques as data prefetching was not carried out in existing

methods. In order to address these problems, the existing prefetching and map reduce techniques are reviewed and drawbacks of

techniques are listed in this paper.

Index Terms— Big data, Job completion, MapReduce, Memory hierarchy, Prefetching, Unstructured data, User Query Processing.

—————————— ◆ ——————————

1 INTRODUCTION

ig data is the high-volume, high-velocity and high-variety

information that demand cost-effective for decision

making. Big data computing has large impact in recent years

as MapReduce and cloud computing methods are widespread.

MapReduce is the fundamental infrastructure of service when

public cloud experienced vulnerability problem. Prefetches are

started through explicit fetch operation within the program or

through logic that monitors the processor referencing pattern

to infer prefetching opportunities.

This paper is organized as follows: Section 2 explains the

review on different prefetching and mapreduce techniques for

user query processing, Section 3 explains the study and

analysis of existing prefetching and mapreduce techniques. In

section 4, possible comparison of existing methods is made.

Section 5 gives the discussion and limitations of the existing

prefetching and mapreduce techniques for user query

processing are discussed with future direction and Section 6

concludes the paper

2 LITERATURE SURVEY

A prefetching service based task scheduler termed High

Performance Scheduling Optimizer (HPSO) was designed in

[1] with prefetching to enhance the data locality for

MapReduce jobs. The designed method minimized map tasks

causing the remote data delay and enhanced Hadoop clusters.

But, job completion time was not reduced using HPSO. A

Merkle tree-based verification method (MtMR) was

introduced in [2] to guarantee high result integrity of

MapReduce jobs. MtMR sampled the small portion of task

input/output records on the private cloud and performed

Merkle tree-based verification on all task input/output

records. But, the prefetching was not carried out at earlier

stage to minimize the job completion time.

A scalable pipeline of components constructed on the

Spark engine for large-scale data processing in [3]. The main

aim was to collect the data from dataset access logs for

organizing them into weekly snapshots and predictive

techniques to forecast the datasets. But, the latency was not

minimized because prefetching was not carried out. An

envisioned future large-scale computing architecture were

adapted in [4] for batch processing of big data application in

MapReduce model. But, computational complexity was not

minimized by future large-scale computing architectures.

The big data processing framework was designed in

[5] to join the climate and health data and to find the

correlation between the climate parameters. But, prefetching

was not performed in big data processing framework. A novel

intermediate data partition scheme was designed in [6] to

reduce the network traffic cost for MapReduce job. Every

aggregator reduced the merged traffic from multiple map

tasks through addressing the aggregator placement issue.

However, the data partitioning was not carried out efficiently

through intermediate data partition scheme.

B

————————————————

• S.Tamil Selvan is currently working as Assistant Professor in Computer Science
and Engineering in Erode Sengunthar Engineering College, Erode, India,E-
mail: stamilselvan@esec.ac.in

• K.A.Dhamotharan is currently working as Assistant Professor in Computer
Science and Engineering in Erode Sengunthar Engineering College, Erode,
India, E-mail: dhamuerode@gmail.com

• G.Saravanan is currently working as Assistant Professor in Computer Science
and Engineering in Erode Sengunthar Engineering College, Erode, India,
E-mail: gsaravanan.esec@gmail.com

• R.Karunamoorthi is currently working as Assistant Professor in Computer
Science and Engineering in Erode Sengunthar Engineering College, Erode,
India, E-mail: karunamoorthir@gmail.com

•

mailto:stamilselvan@esec.ac.in
mailto:gsaravanan.esec@gmail.com

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH, VOL 1, ISSUE 1

IJSTR©2019

 High-Level MapReduce Query Languages was built

in [7] on MR that converted the queries into an executable

native MR jobs. But, the complexity was not minimized

through High-Level MapReduce Query Languages. A new A*

algorithm introduced in [8] reduced the Map and Reduce

tasks for running the path computation on Hadoop

MapReduce framework. The designed framework enhanced

the feasibility and reliability. A* algorithm minimized

computation time. However, MapReduce tasks was not

performed by A* algorithm.

 A novel approach was designed in [9] to improve the

metadata management performance for Hadoop in

multitenant environment based on the prefetching

mechanism. However, the map reduce function was not

employed in the multitenant environment. A new efficient

pattern mining algorithm was introduced in [10] by using

MapReduce framework and Hadoop open-source

implementation in the big data. A maximal AprioriMR

algorithm was designed for mining condensed frequent

patterns. But, the execution time was not minimized using

efficient pattern mining algorithm. Secured Map Reduce

(SMR) Layer was designed in [11] between the HDFS and MR

Layer for improving the security and privacy. The designed

model provided the privacy and security through resolving

scalability problems of privacy for data miners. Though

security problem was addressed, prefetching was not carried

out in the SMR Layer.

3 PREFETCHING AND MAPREDUCE TECHNIQUES FOR

USER QUERY PROCESSING

Prefetching in computer science is a method for increasing the

speed of the fetch operations whose result is predictable at the

earlier stage. MapReduce is the parallel programming model

and employed as distributed system on the cluster. Every

request by user is termed as job. Each job is divided into

multiple tasks. MapReduce comprised one master and

number of workers. The master manages the whole

computation through managing the jobs, scheduling the tasks

and preserving the load balance. Every job recovered the input

data from DFS and stores the result after job completion. Each

MapReduce job comprised three phases, namely map phase,

shuffle phase and reduce phase. Tasks performed in map and

reduce phase are termed as map tasks and reduce tasks

respectively. In map phase, input data are collected from DFS

and partitioned into many blocks. Each data block allocated to

one map task and processed separately. Every map task

comprised the collection of records with the <key, value> pairs

format. Records in every task result are arranged by the key

values. In reduce phase, every reduce task processes map task

output records with the particular keys. The map task output

allocated depending on the key in record termed shuffle

phase. Every reduce task collect their input and perform the

reduce function to aggregate input record into reduce task

output termed final job output.

3.1 Scheduling Algorithm Based on Prefetching in
MapReduce Clusters

High Performance Scheduling Optimizer (HPSO) employed

prefetching service based task scheduler to enhance the data

locality for MapReduce jobs during prefetching process. The

key objective was is to forecast the suitable nodes for future

map tasks depending on the current pending tasks and

preload the required data to the memory without delay on

launching new tasks. The prefetching accuracy was an

essential factor that affects the performance. In MapReduce

clusters, task scheduler identified the mapping between tasks

and nodes. The execution time of map tasks were forecasted

and identified the series where the nodes free the busy slots.

Based on node sequence, HPSO forecasted and allocated the

suitable map tasks to the nodes time. When the scheduling

decisions were taken, nodes preloaded associated input data

from remote nodes to memory before launching the tasks. An

input data prefetching was carried out with data processing

where the data transfer overhead was overlapped with the

data processing in time dimension. HPSO combined the task

scheduler, prediction and prefetching mechanism to develop

the data locality and to minimize the network overhead.

HPSO was to overlap the data transmission process of next

map task with data processing of running map task. The

architecture diagram of HPSO was described in Fig 1.

Fig 1. Architecture Diagram of HPSO

HPSO comprised three main parts, namely prediction

module, scheduling optimizer and prefetching module.

Scheduling optimizer forecasted the suitable tasktracker nodes

where the future map tasks get allocated. When scheduling

decisions were taken before map tasks get scheduled, HPSO

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH, VOL 1, ISSUE 1

IJSTR©2019

activated the prefetching module to load the expected input

data. The designed method discovered underutilized disk

bandwidth or network bandwidth in CPU-intensive process.

The pipelining hided the data transfer latency. The prediction

module in every tasktracker node predicted the remaining

execution time of map tasks for pipelining and evaluated the

sequence where slots become idle. The prefetching module

used the master-slave architecture with one prefetching

manager in JobTracker and set of workers positioned at the

TaskTrackers. Prefetching manager was responsible for

monitoring the workers status and for coordinating the

prefetching process for map tasks. Each worker completed the

loading data block by itself before receiving the map task.

When prefetching manager attained prefetching instructions

from scheduling optimizer, prefetching manager trigger

workers to load data to the memory. Prefetching manager

submitted the scheduling optimizer to data blocks in Task

Tracker prefetching buffer.

3.2 MtMR: Ensuring MapReduce Computation Integrity
with Merkle Tree-based Verifications

Merkle tree-based verification method (MtMR) was

introduced to provide better result integrity of MapReduce

jobs. MtMR was MapReduce on hybrid cloud environment

and used two round of Merkle tree-based verifications on pre-

reduce phase as well as reduce phase correspondingly.

Depending on MtMR design, theoretical studies were carried

out to improve security and overhead performance. MtMR

was promising method in terms of the higher integrity and

lesser overhead.

Merkle tree-based verification framework was

introduced to boost the integrity results of the MapReduce

computations. MtMR constructed the hybrid cloud

architecture based on the benefits of the private cloud and

public cloud. The public cloud acquired additional computing

and storage resources. The public cloud executed the majority

of computation but not guaranteed the result integrity. The

private cloud was controlled by computing trusted task

owner. The private cloud failed to possess many resources and

it used to perform security-critical computations. In MtMR,

master and less number of workers termed verifiers was

deployed on private cloud. In addition, other workers were

deployed on public cloud. Workers on the public cloud

completed majority of the work. The master and verifiers on

private cloud managed the result integrity.

The key objective was to retain the control at home

while assigning the resource-intensive computation to the

public cloud. Depending on the hybrid cloud architecture,

MtMR used Merkle-tree based verifications on various phases

of MapReduce job. MtMR used two rounds of Merkle tree-

based verification on pre-reduce phase and reduce phase

correspondingly. MtMR sampled small portion of task

input/output records and performed Merkle tree based

verification on all task input/output records. A semi-honest

worker not guaranteed successful cheating under MtMR

framework. The record error number was functioned with the

sampled record ratio. The optimal value for sampled record

ratio attained lowest error number under particular security

restrictions.

3.3 Dataset Popularity Predictions for Caching of CMS
Big Data

Predictive models based on statistical learning techniques are

suitable for studying the performance and scalability of

complex computing infrastructures. The training process

requires abstract features from variety of measurements

collected through historical logging activities and to devise

relevant metrics for estimating the behavior of the system

under investigation. Log analysis related to the processing of

structured or unstructured information collected through

several layers of monitoring architectures is a promising

research field.

The scalable dataset popularity prediction pipeline

was employed to highlight the process chain from the raw

data ingestion and preparation step up to the ML component

producing the machine learned model. The designed model

was introduced by PPC strategy driving dataset caching in

various CMS sites. The main components were described for

implementing the pipeline for data preparation and

popularity classifier training. A scalable data mining pipeline

on CMS Hadoop data store was employed to forecast the

popularity of new datasets accessed by jobs processing any

event types stored in distributed CMS infrastructure. The

dataset accesses problem were casted to binary classification

problem. The predictive models improved the accuracy

denoting the ability to separate datasets from unpopular ones.

A new intelligent data caching policy termed

Popularity Prediction Caching (PPC) was carried out to attain

the popularity predictions by classifier for optimizing the

eviction policy at every site of CMS infrastructure. The

efficiency of caching policy was computed through measuring

the hit rates attained by PPC and caching the baselines like

Least Recently Used (LRU) in handling dataset access

requests.

4 PERFORMANCE ANALYSIS OF PREFETCHING AND

MAPREDUCE TECHNIQUES FOR USER QUERY

PROCESSING

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH, VOL 1, ISSUE 1

IJSTR©2019

In order to compare the prefetching and mapreduce

techniques for user query processing, number of user

requested tasks is taken to conduct the experiment. Various

parameters are used for improving the user query processing

using prefetching and mapreduce techniques.

4.1 Job Completion Time

Job completion time is defined as the amount of time taken for

completing the jobs. It is the difference of starting time and

ending time of job completion. It is measured in terms of

milliseconds. It is formulated as,

From (1), job completion time is calculated. When the job

completion time is lesser, the method is said to be more

efficient.

TABLE 1

TABULATION FOR JOB COMPLETION TIME

Number of

user

requested

tasks

(Number)

Job Completion Time (ms)

HPSO MtMR

Method

Scalable dataset

popularity

prediction

pipeline

10 17 28 35

20 20 29 37

30 22 32 39

40 19 30 36

50 17 27 34

60 18 29 37

70 21 31 40

80 24 33 42

90 27 36 45

100 30 39 48

Table 1 explains the job completion time performance

with respect to the number of user requested tasks ranging

from 10 to 100. Job completion time comparison takes place on

existing High Performance Scheduling Optimizer (HPSO),

Merkle tree-based verification method (MtMR) and scalable

dataset popularity prediction pipeline. The graphical

representation of job completion time is explained in Fig 2.

Fig 2. Measure of Job Completion Time

From Fig 2, job completion time for different number

of user requested task is described. It is clear that the job

completion time using High Performance Scheduling

Optimizer (HPSO) is lesser when compared to the scalable

dataset popularity prediction pipeline and Merkle tree-based

verification method (MtMR). This is because HPSO forecasted

and allocated the appropriate map tasks to the node time.

When scheduling decisions were taken, nodes preloaded the

associated input data from remote nodes or local disk to

memory before launching tasks. HPSO combined the task

scheduler, prediction and prefetching mechanism to develop

data locality and to reduce the network overhead. HPSO

overlapped the data transmission process of next map task

with data processing of running map task. The job completion

time of High Performance Scheduling Optimizer (HPSO) is

46% lesser than scalable dataset popularity prediction pipeline

and 32% lesser than Merkle tree-based verification method

(MtMR).

4.2 Error Rate

Error rate is defined as the ratio of number of user requested

tasks that are incorrectly predicted to the total number of user

tasks. It is measured in terms of percentage (%). It is

formulated as,

From (2), the error rate is determined. When the error rate is

lesser, the method is said to be more efficient.

TABLE 2

TABULATION FOR ERROR RATE

Number of

user

requested

tasks

(Number)

Error Rate (%)

HPSO MtMR

Method

Scalable dataset

popularity

prediction

pipeline

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH, VOL 1, ISSUE 1

IJSTR©2019

10 25 18 39

20 27 21 42

30 24 20 38

40 21 17 35

50 19 15 32

60 20 16 34

70 18 14 33

80 21 17 35

90 23 19 37

100 24 21 39

Table 2 describes the error rate performance with

respect to the number of user requested tasks ranging from 10

to 100. Job completion time comparison takes place on existing

High Performance Scheduling Optimizer (HPSO), Merkle tree-

based verification method (MtMR) and Scalable dataset

popularity prediction pipeline. The graphical representation of

error rate is described in Fig 3.

Fig 3. Measure of Error Rate

From Fig 3, error rate for different number of user

requested task is described. It is observed that the error rate

using Merkle tree-based verification method (MtMR) is lesser

when compared to the High Performance Scheduling

Optimizer (HPSO) and scalable dataset popularity prediction

pipeline. This is because of using Merkle tree-based

verification framework to improve the integrity performance

of MapReduce computations. MtMR built hybrid cloud

architecture depending on the advantages of private cloud and

public cloud. MtMR sampled small portion of reduce task

input/output records and performed the Merkle tree based

verification on all task input/output records. The error rate of

Merkle tree-based verification method (MtMR) is 20% lesser

than High Performance Scheduling Optimizer (HPSO) and

51% lesser than scalable dataset popularity prediction

pipeline.

4.3 Classification Accuracy

Classification accuracy is defined as the ratio of number of

user tasks that are correctly classified to the total number of

user requested tasks. It is measured in terms of percentage

(%). It is given by,

From (3), the classification accuracy is calculated. When the

classification accuracy is higher, the method is said to be more

efficient.

TABLE 3

TABULATION FOR CLASSIFICATION ACCURACY

Number of

user

requested

tasks

(Number)

Classification Accuracy (%)

HPS

O

MtMR

Method

Scalable

dataset popularity

prediction

pipeline

10 75 88 95

20 72 86 92

30 70 84 90

40 68 81 88

50 65 79 86

60 62 77 84

70 60 75 82

80 58 72 79

90 55 69 76

100 52 66 72

Table 3 explains the classification accuracy

performance with respect to the number of user requested

tasks ranging from 10 to 100. Classification accuracy

comparison takes place on existing High Performance

Scheduling Optimizer (HPSO), Merkle tree-based verification

method (MtMR) and Scalable dataset popularity prediction

pipeline. The graphical representation of classification

accuracy is illustrated in Fig 4.

Fig 4. Measure of Accuracy

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH, VOL 1, ISSUE 1

IJSTR©2019

From Fig 4, classification accuracy for different

number of user requested task is explained. It is observed that

the classification accuracy using scalable dataset popularity

prediction pipeline is higher when compared to the High

Performance Scheduling Optimizer (HPSO) and Merkle tree-

based verification method (MtMR). This is because of using

scalable data mining pipeline on CMS Hadoop data store to

forecast popularity of new datasets accessed by jobs

processing for any event type stored in distributed CMS

infrastructure. Popularity Prediction Caching (PPC) attained

the popularity predictions through classifier for optimizing

the eviction policy at each CMS infrastructure. The

classification accuracy of scalable dataset popularity

prediction pipeline is 33% higher than High Performance

Scheduling Optimizer (HPSO) and 9% higher than Merkle

tree-based verification method (MtMR).

5 DISCUSSION AND LIMITATION ON PREFETCHING AND

MAPREDUCE TECHNIQUES FOR USER QUERY

PROCESSING

HPSO predicted the suitable nodes for future map tasks

depending on pending tasks and preload the required data to

memory without any delay on launching new tasks. HPSO

minimized the map tasks resulting in remote data delay and

enhanced the Hadoop clusters performance. HPSO developed

the task scheduler to preload essential input data for

launching tasks to the TaskTracker. It minimized the waiting

period of map tasks with rack and rackoff locality. A

scheduling optimizer was incorporated into the HPSO to

enhance the prefetching rate. But, the job completion time was

not minimized using HPSO.

 Merkle tree-based verification method guaranteed

high integrity results of MapReduce jobs. Semi-honest worker

not performed safe cheating by MtMR framework. MtMR

improved the integrity results while acquiring moderate

performance overhead. MtMR employed the hybrid cloud

architecture for Merkle-tree based verification to guarantee

high integrity on the job results. However, prefetching was not

carried out at earlier stage to reduce the job completion time.

 Scalable pipeline of components was constructed on

the Spark engine for large-scale data processing. It collected

the data from different areas into weekly snapshots for

forecasting purpose. The high accuracy represented ability of

learned model to separate the popular datasets from

unpopular ones. CMS data placement policy has significant

improvement of resource usage and resultant reduction of

large cost. But, the latency was not reduced because

prefetching was not performed.

 5.1 Future Direction

The future direction of the work is to perform the user query

processing through prefetching and mapreduce function by

using machine learning and ensemble learning techniques

with higher accuracy and lesser time consumption.

6 CONCLUSION

The comparison of different existing prefetching and

mapreduce techniques for user query processing is carried out

in this paper. From the survival study, it is clear that the

latency was not reduced because prefetching was not

performed. The review explains that prefetching was not

carried out at earlier stage for minimizing the job completion

time. In addition, the classification accuracy was not

improved. The wide range of experiments on existing

techniques describes the performance of many prefetching

and mapreduce techniques with its limitations. Finally from

the result, research work can be carried out using machine

learning techniques for minimizing job completion time and

for improving the accuracy during user query processing

Although a conclusion may review the main points of the

paper, do not replicate the abstract as the conclusion. A

conclusion might elaborate on the importance of the work or

suggest applications and extensions. Authors are strongly

encouraged not to call out multiple figures or tables in the

conclusion—these should be referenced in the body of the

paper.

REFERENCES

[1] Mingming Sun, Hang Zhuang, Xuehai Zhoua, Kun Lu and

Changlong Li, “Scheduling Algorithm based on Prefetching in

MapReduce Clusters”, Applied Soft Computing, Elsevier, Volume 38,

January 2016, Pages 1109-1118

[2] Yongzhi Wang, Yulong Shen, Hua Wang, Jinli Cao and Xiaohong

Jiang, “MtMR: Ensuring MapReduce Computation Integrity with

Merkle Tree-based Verifications”, IEEE Transactions on Big Data,

Volume 4, Issue 3, September 2018, Pages 418 – 431

[3] Marco Meoni, Raffaele Perego and Nicola Tonellotto, “Dataset

Popularity Prediction for Caching of CMS Big Data”, Journal of Grid

Computing, Springer, Volume 16, Issue 2, June 2018, Pages pp 211–

228

[4] M. Goudarzi, “Heterogeneous Architectures for Big Data Batch

Processing in MapReduce Paradigm”, IEEE Transactions on Big Data,

Volume 5, Issue 1, March 2019, Pages 18 – 33

[5] Gunasekaran Manogaran, Daphne Lopez and Naveen Chilamkurti,

“In-Mapper Combiner based Map-Reduce Algorithm for Big Data

Processing of IoT based Climate Data”, Future Generation Computer

Systems, Elsevier, Volume 86, September 2018, Pages 433-445

[6] Huan Ke, Peng Li, Song Guo, and Minyi Guo, “On Traffic-Aware

Partition and Aggregation in MapReduce for Big Data Applications”,

IEEE Transactions on Parallel and Distributed Systems, Volume 27,

Issue 3, March 2016, Pages 818 - 828

[7] Marouane Birjali, Abderrahim Beni Hssane and Mohammed Erritali,

“Evaluation of high‑level query languages based on MapReduce in

Big Data”, Journal of Big Data, Springer, Volume 5, Issue 36,

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH, VOL 1, ISSUE 1

IJSTR©2019

December 2018, Pages 2-21

[8] Wilfried Yves Hamilton Adoni, Tarik Nahhal, Brahim Aghezzaf and

Abdeltif Elbyed “The MapReduce‑based approach to improve the

shortest path computation in large‑scale road networks: the case of

A* algorithm”, Journal of Big Data, Springer, Volume 5, Issue 16,

December 2018, Pages 1-24

[9] Minh Chau Nguyen, Heesun Won, Siwoon Son, Myeong-Seon Gil

and Yang-Sae Moon, “Prefetching-based metadata management in

Advanced Multitenant Hadoop” The Journal of Supercomputing,

Springer, Volume 75, Issue 2, February 2019, Pages 533–553

[10] Jose Maria Luna, Francisco Padillo, Mykola Pechenizkiy and

Sebastian Ventura, “Apriori Versions Based on MapReduce for

Mining Frequent Patterns on Big Data”, IEEE Transactions on

Cybernetics, Volume 48, Issue 10, October 2018, Pages 2851 – 2865

[11] Priyank Jain, Manasi Gyanchandani and Nilay Khare, “Enhanced

Secured Map Reduce layer for Big Data privacy and security”,

Journal of Big Data, Springer, Volume 6, Issue 30, 2019, Pages 1-17

