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Abstract

In general, unexpected failures in sensorless brushless DC (BLDC) motors can

result in production downtime, costly repairs, and safety concerns. BLDC

motors are commonly used in home appliances, the medical sector, aerospace,

small-scale, and large-scale industries under uncertain operating conditions.

Therefore, the fault detection and diagnosis (FDD) of BLDC motor drives can

play a very important role in increasing their performance, reliability, robust-

ness control, and operational safety under uncertain operating conditions in

critical real-time applications. To satisfy these issues of hall effect sensor, mis-

placement of a hall-effect sensor, inverter IGBT open-switch fault diagnosis,

failure of hall effect sensor, lack of robustness speed control of BLDC motor,

which has received substantial interest in academic and industry sectors to

establish the proposed work optimization techniques approach FDD strategy

for speed control of sensorless BLDC motor under uncertain operating condi-

tions. The proposed optimization techniques such as Bat Algorithm (BA), Grey

Wolf Optimization (GWO), and Whale Optimization Algorithm (WOA)

approach FDD strategies for BLDC motor drives. These FDD strategies simu-

lated by the above optimization techniques on a sensorless BLDC motor with

numerical Matlab/Simulink 2020a simulation results are verified. From the

simulation results, out of three optimization techniques, the WOA-based FDD

strategies are very effective for both bearing and stator winding faults detection

and diagnosis in sensorless BLDC motor drives.
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1 | INTRODUCTION

The brushless DC (BLDC) motors have become essential elements of modern production and manufacturing lines. In
many applications, the motors are operated in unfavorable environments involving high temperatures and over-
loading.1 These stresses together with the aging of parts may lead to motor faults. Once a failure occurs, it usually
results in loss of productivity, downtime, and costly repairs. Condition monitoring leading to fault detection and diag-
nosis (FDD) in electric motors is therefore of a great value and has received much attention in the past few years.2 The
BLDC motor is reported for the greater sales market share in 2017, and its expected sales market growth is at 10% com-
pound annual growth rate (CAGR) by 2026. The Figure 1 shows the electric motor expected sales market report.

Fault detection and diagnosis is a process where the condition of the equipment is monitored for signs of faults
or deterioration so that maintenance or repair can be performed to prevent system failures. Instrumentation is an
important consideration in FDD. Ideally, the scheme should minimize the requirement of additional sensors and
use existing signals. Furthermore, it needs to avoid false positives, be reliable, and provide a clear indication of
incipient faults on time. In this study, two FDD approaches were developed and implemented on a permanent
magnet synchronous motor. To demonstrate their effectiveness, the FDD methods were validated by physically
simulating fault conditions on a permanent magnet BLDC motor.3 Figure 2 shows the percentage of failure of
BLDC motor components.

Faults can arise in the motor rotor/motor field, stator winding/armature winding, and mechanical components of
the BLDC motor. It has been shown that mechanical components cause 40% of the bearing faults, the stator winding
causes 35% of the problems, the permanent magnet rotor causes 15% of the problems, and “other” defects cause the
remaining 10%.4,5

FIGURE 1 Electric motor expected sales market report. Source: Grand View Research

FIGURE 2 Percentage of failure of BLDC motor components
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The main goal of an FDD method is to detect a fault before the performance of the machine is compromised. The
absolute requirement is to detect the fault before the machine reaches catastrophic failure. In some applications, it is
important to notice a fault at an early stage before they are close to compromise the performance of the machine. An
example of this kind of application is the automotive industry, where performance issues will directly reduce the safety
of the driver and other road users. The automotive industry also requires online FDD as well as the possibility to find
fault in a disruptive environment. A disruptive environment means that signals such as mechanical torque, vibrations,
and acoustics might be difficult to read due to noise.6

This article aims to model and simulate a faulty BLDC motor for the automotive industry. The fault should then be
detected by an FDD method at an early stage. To find a suitable FDD method to predict fault with, several different
methods will be considered. The most suitable FDD methods will be implemented and tested to ensure their reliability.
The overall features and contributions of this study are summarized as follows:

• The bearing and stator winding issues of BLDC motor, which employs optimization approaches such as Bat Algo-
rithm, Grey Wolf Optimization (GWO), and Whale Optimization Algorithm (WOA), dramatically improve the per-
centage of accuracy, robustness speed control, quick response time, reduced the percentage of fault reduction, and
better transient performance of the proposed systems.

• To determine bearing fault using vibration sensor through wavelet analysis and determine stator winding fault/
sensorless speed estimation using Kalman filter algorithm.

This article is organized as follows. Section 2 reviews the main literature on the fault diagnosis of electric motors,
including mechanical and electrical faults. In Section 3, the methods and materials of the proposed FDD for speed con-
trol of BLDC motor are described in detail. A classification of FFD for permanent magnet BLDC motor drive based on
wavelet denoising is also provided. The proposed intelligent FDD approach for speed control of sensorless BLDC motor
drive using optimization techniques is presented in Section 4. In Section 5, simulation results are presented with com-
parisons and discussions on the performance of the proposed methods. It is shown that all simulated fault conditions
were successfully detected, which demonstrates the effectiveness of the proposed methods in motor FDD with recom-
mendations for future research. Concluding remarks are provided in Section 6.

2 | PRELIMINARY WORKS

This section focuses on the literature on FDD and their application to motors, particularly in BLDC motors. As a key
component, their malfunction can harm the production line or even have severe consequences and cause heavy finan-
cial losses. For that reason, the development of FDD tools for electric motors has received much attention since the
1920s.7 Several survey articles have been published and can be found in Reference 8. The major faults of electric motors
can be broadly classified into two groups: mechanical faults such as the bearing faults, broken rotor bar, and bent shaft
and electrical faults such as opening and shorting of a stator phase winding. A recent study revealed that the main cau-
ses of failure in electric motors are bearing (69%), stator windings (21%), rotor bar (7%), and shaft/coupling (3%).9 The
various types of fault in the BLDC motor are shown in Figure 3.

The bearing failure mechanism has been studied for almost four decades.10 As such, the theoretical foundation of
bearing failure modes has been considered comprehensively.11 While there are monitoring techniques based on differ-
ent measurement sources, such as acoustic emission (AE) and motor current signature analysis (MCSA), vibration
monitoring is probably the most widely used approach.

Vibration in an electric motor can come from many sources including bearings, electromagnetic forces, unbalanced
rotors, etc. Each will have its signature in the frequency domain that can manifest itself as discrete frequency bands. To
extract fault signatures buried in vibration signals from the machine, advanced signal processing techniques are com-
monly used. These include filtering and feature extraction of the vibration data.12

In the analysis of vibration measurement, signal modulation effect and noise are two major barriers in detecting the
presence of bearing faults at early stages. Due to the amplitude-modulated effect, the BPFs usually appear as sidebands
of resonance frequency in the spectrum. This makes identifying the specific frequency components difficult. Thus, an
effective signal demodulation technique should be used. Meanwhile, weak signatures produced by incipient bearing
faults can easily be masked by noise in a real environment, making fault detection even more difficult. Hence, a
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denoising algorithm is also necessary to enhance the extraction of characteristic features of bearing faults. To overcome
these barriers, numerous studies have been conducted on signal processing techniques for bearing diagnosis.13,14

During electrical fault in BLDC motors, the permanent magnets replace the rotor windings, thus the electrical faults
are mostly stator-related. Two mains classes of stator winding fault are: (a) the open-phase fault and (b) the shorted turns
or the turn-to-turn insulation fault. The former may allow the machine to operate with reduced torque, while the latter
can quickly develop into an insulation failure and the complete breakdown of the machine. An insulation failure nor-
mally starts with an interturn short circuit, which induces a high current and much heat that burns the insulation. If left
undetected, turn-to-turn faults will propagate to the stator core and lead to phase–phase or phase–ground failure.15 This
failure can occur within 60 seconds for small low-voltage motors and usually lead to irreversible damage to the machine.

Condition monitoring and fault diagnosis of electric motors are important features that can improve the reliability
of industrial machinery. In general mechanical faults and electrical faults of electric motors, with a special focus on
bearing and stator winding faults. In terms of bearing faults, vibration-based techniques are the most reliable.16 To
enhance the characteristic features of a fault, several signal processing techniques have been proposed. Among them,
the wavelet analysis has shown its superiority in signal denoising and feature extraction. In terms of stator winding
faults, the model-based parameter estimation techniques were found to be most promising. These methods are non-
intrusive and can track the variation of actual physical parameters. Most of the reviewed literature, however, only con-
siders the bearing faults or the stator winding faults exclusively.17

A combined strategy that can handle both of these faults would be more capable for practical use. Besides, for the
wavelet-based methods applied on bearing diagnosis, the merits of complex wavelet transform in improving the signal
denoising performance are not fully exploited. Moreover, the influence of modeling uncertainties on the parameter esti-
mation of electric motors should be considered to provide a robust fault diagnosis scheme.18 Accordingly, FDD strategy
based on wavelet analysis and robust state estimation techniques was proposed in this article; the implementation of
the proposed methods on a BLDC motor was also investigated. Details of the proposed strategy and its implementation
will be discussed in the following sections.

2.1 | Formula for the cost function

The sampling frequency is defined as fsample = 1/sample, which functions as a fast counter k in this example. The com-
mutation interval can be “counted” by the fast counter k, which is reset at each change of the Hall sensor state, yielding
the saw-tooth curves. The time interval from the last commutation instant can be computed using this fast counter k as
follows:

ƒcost 1 ¼ τ¼k:τsample: ð1Þ

FIGURE 3 Types of fault in BLDC motor
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The setting a threshold for the value of is important for diagnosing abnormal circumstances. This limit is defined in
relation to the predicted or average value, which may be determined using the preceding 180 electrical degrees as

ƒcost 1 ¼ τn ¼ 1
3

X3
i¼1

τ n� ið Þ: ð2Þ

After the single defect has been identified, the average value of commutation intervals should be adjusted to main-
tain the BLDC motor drive's FFD. When a single defect occurs, one of the Hall sensors' transitions evaporates, leaving
only two commutation intervals for 180 electrical degrees. As a result, (3) can be changed to n, with the superscript
“SF” denoting a single fault.

ƒcost 1 ¼ τn
SF ¼ 1

3

X2
i¼1

τ n� ið Þ: ð3Þ

Tm equals T0 in a steady-state operation, hence Equation (4) can be reduced to:

ωr ¼ 1
Ј

Z
�Tccos ωctð Þdt¼ωro� Tc

Jωc
sin ωctð Þ, ð4Þ

t¼ 1
P
2 6�ωrefð Þ , ð5Þ

ωh ¼ 6� 5
ρ�ΔTx

, ð6Þ

ωsect ¼ 5
ρ�ΔTy

: ð7Þ

3 | METHODS AND MATERIALS

Methods and materials of the proposed FDD strategy of sensorless approach speed control of BLDC motors are studied
in this section. As well as the formation of objective functions, bearing faults, stator winding fault, electrical faults,
vibration, and noise estimation of sensorless BLDC motors are discussed. The fault taxonomy of BLDC motor derives is
shown in Figure 4.

FIGURE 4 Fault taxonomy for BLDC motor drives
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3.1 | Formation of objective functions

• The objective of this research has been to develop optimization techniques (a) BA-, (b) GWO-, (c) and WOA-based
FDD strategy for sensorless BLDC motor bearing faults and motor winding faults at their inception.

• These bearing and motor winding faults were numerically simulated on a sensorless BLDC motor using matrix labo-
ratory 2020a.

• The FDD strategies involving wavelets and state estimation were successfully implemented. Numerical simulation
results are confirmed that the proposed optimization techniques based FDD schemes were very effective in detecting
bearing and winding faults in BLDC motors. The proposed FDD scheme for the BLDC motor is shown in Figure 5.

3.2 | Bearing fault of BLDC motor

Rolling bearings of various kinds are widely used in industrial machines. They provide fundamental mechanical sup-
port for rotating parts. Most rotating shafts use a rolling element bearing. To ensure the effectiveness and robustness of
these bearings, their performance under various and extremely demanding conditions has been extensively studied.19

While there are various kinds of rolling bearings in the market, their associated fault detection approaches are analo-
gous. Therefore, one of the most commonly used types of bearings, the single-row deep-groove radial ball bearing, is
selected in this research. These bearings consist of an inner ring, an outer ring, rolling elements (balls), and a cage
(retainer). The inner ring has a groove on its outside diameter with a smooth finishing surface and extremely tight toler-
ances to form a path for the balls.

The inner ring is mounted on the shaft of the motor and rotates with the shaft at the same speed. The outer ring is
the counterpart of the inner ring and has a groove on its inside diameter with a high precision finish. The outer ring is
placed into the housing on the motor case and thus held stationary concerning the motor. The rolling balls are located
between the inner ring and outer ring. These balls have slightly smaller diameters than the grooved ball track, which
allows them to contact the rings at a single point.20 This point contact enables the bearing to rotate with minimal fric-
tion. To achieve point contact, the tolerances are strictly controlled to a micro inch level, as well as the dimensions of
the balls and rings. Accordingly, the performance of a bearing is closely related to the critical surfaces, particularly
those entering the load zone at a given time.21 The structure of the ball bearing in the BLDC motor is shown in
Figure 6.

3.3 | Stator winding fault

The control of a BLDC motor has become easy and reliable, allowing the motor to be operated over a wide range of
speeds with ease. It has several advantages, including excellent speed-torque characteristics, decent static and dynamic
characteristics, high performance, higher speed ranges up to 10 000 rpm, long service life, and quiet operation. The sta-
tor winding of the BLDC motor is made of stacked laminated steel.22 There are two types of connections: star relation
and delta. The star connection provides high starting torque at slow speeds, while the delta connection provides low
starting torques at slow speeds. The BLDC motors can run on single-phase, two-phase, or three-phase alternating cur-
rents. The three-phase BLDC motor is well-known and widely used.23

FIGURE 5 Proposed fault detection and diagnosis scheme for BLDC motor
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The rotor parts are made of permanent magnets (PM), which are composite or ferrite magnets that can be used in
2 to 8 PM pole arrangements with the north pole and the south pole alternating. The magnetic flux interaction in the
rotor varies depending on the magnetic material used. The best magnetic material available increases performance. The
majority of rotors used recently are rare earth alloy PM. Figure 7 depicts the schematic diagram of the stator winding in
the BLDC motor.

Furthermore, these alloy magnets improve the size-weight ratio and provide more torque for the same size. The
BLDC motor's commutation is operated electronically using an electronic commutator. The stator windings A1A2,
B1B2, and C1C2 must be energized to operate the BLDC motor. Sensors and sensing elements installed into the stator
winding side at 120� displacement are used to detect the location of the PM rotor. Knowing the location of the PM rotor
using Hall Effect sensors to determine the stator winding (A1A2, B1B2, and C1C2) would be energized first.

3.4 | Electrical faults

For BLDC motors, the permanent magnets replace the rotor windings, thus the electrical faults are mostly stator-related.
Two mains classes of stator winding fault are: (a) the open-phase fault and (b) the shorted turns or the turn-to-turn insula-
tion fault. The former may allow the machine to operate with reduced torque, while the latter can quickly develop into an
insulation failure and the complete breakdown of the machine. An insulation failure normally starts with an interturn
short circuit, which induces a high current and much heat that burns the insulation. If left undetected, turn-to-turn faults
will propagate to the stator core and lead to phase-phase or phase-ground failure. This failure can occur within 60 seconds
for small low-voltage motors and usually lead to irreversible damage to the machine.24

3.5 | Vibration and speed estimation using kalman filter

A Kalman filter evaluates the past estimate and the most current input data to create new estimate data using the recur-
sive approach. As a consequence, the filter just needs to save the previous estimate and may fit the real-time

FIGURE 6 Structure of ball bearing in BLDC motor

FIGURE 7 Schematic diagram of the stator winding in BLDC motor. (A) Connecting type of winding. (B) Structure of stator winding
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requirements of the system.25 Furthermore, the Kalman filter is a computer-implemented recursive method. The vibra-
tion and rotor speed of the BLDC motor are determined by using the Kalman filter.

The control strategy of a Kalman filter based on line back—EMF and the terminal voltage model of the BLDC
motor as

eAB¼ uAG� uBG� L –Mð Þ d iA�iBð Þ
dt

�R iA�iBð Þ

eAC ¼uAG� uCG� L –Mð Þ d iA�iCð Þ
dt

�R iA�iCð Þ

eBC ¼ uBG� uCG� L –Mð Þ d iB�iCð Þ
dt

�R iB�iCð Þ

8>>>>>><
>>>>>>:

, ð8Þ

eBC ¼ eAC� eAB: ð9Þ

The voltage model is simplified as

U1 ¼
2 Rþ d

dt
L�Mð Þ

� �
0

Rþ d
dt

L�Mð Þ 3 Rþ d
dt

L�Mð Þ
� �

2
6664

3
7775I1þE1: ð10Þ

State model is established as

Xkþ1 ¼ФkKkþRkUkþGk w kð Þ, ð11Þ

yk ¼HkXkþ v kð Þ, ð12Þ

where,

Xk ¼ iAB kð Þ iAC kð Þ eAB kð Þ eAC kð Þω kð Þ½ �T , ð13Þ

Rk ¼
T

2 L –Mð Þ � T
6 L�Mð Þ

0
T

3 L�Mð Þ

0 0 0

0 0 0

2
664

3
775
T

, ð14Þ

Uk ¼ uAB kð ÞuAC kð Þ½ �T , ð15Þ

yk ¼ iAB kð Þ iAC kð Þ½ �T , ð16Þ

Фk ¼

1� RT
L�M

0 � T
2 L�Mð Þ

0 1� RT
L�M

T
6 L�Mð Þ

0

0

0

0

0

0

1

0

0

0 0

� T
3 L�Mð Þ 0

0

1

0

0

0

1

2
666666666664

3
777777777775
, ð17Þ

Hk ¼
1 0 0 0 0

0 1 0 0 0

� �
, ð18Þ
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where,
tkþ1—state equation and estimation error covariance matrices.
tk—state equation and inputs at time.
The state equation is

bX
Kþ1│K ¼ΦkbXK│K�1 þKk yk�HkbXK│K�1

� �
ð19Þ

¼ Φk�KkHkð ÞbX
K│K�1 þKkyk: ð20Þ

In which,

Kk ¼ΦkPkjk�1H
T
K HkPkjk�1H

T
k þRk

� ��1
: ð21Þ

The estimation error covariance matrix prediction equation is,

Pkþ1jk ¼Φk Pkjk�1�Pkjk�1H
T
k HkPkjk�1H

T
k þRk

� ��1
HkPkjk�1

h i
ΦT

K þ GkQG
T
k : ð22Þ

The estimation and the error covariance can be updated by

bX
K│K ¼ bX

K│K�1 þPkjk�1H
T
k HkPkjk�1H

T
k þRk

� ��1
yk�HkbXK│K�1

� �
, ð23Þ

Pkjk ¼Pkjk�1�Pkjk�1H
T
k HkPkjk�1H

T
k þRk

� ��1
HkPkjk�1, ð24Þ

Thus, based on the line back-EMF and vibration estimated by a Kalman filter, a novel commutation strategy is
obtained.

4 | FDD-BASED SPEED CONTROL OF SENSORLESS BLDC MOTOR DRIVE
USING OPTIMIZATION TECHNIQUES

This section firstly presents the various categories of fault in BLDC motor and proposed FDD for speed control of
sensorless BLDC motor drive are discussed. Secondly, the FDD methods to implement in BLDC motor drives are pres-
ented in detail and thoroughly discussed. Figure 8 shows the taxonomy of FDD.

4.1 | Optimization algorithms

The BA or bat-inspired algorithm was introduced by Yang,17 and GWO is an optimization algorithm is developed by
Mirjalili.18 The GWO imitates the hierarchy hunting leadership of grey wolves for survival in nature. Grey wolves are
naturally a powerful predator of prey, and it has a characteristic to live in a group size of 5 to 12 wolves.

Seyedali Mirjalili and Andrew Lewis proposed important optimization techniques, namely WOA.19,20 It is a similar
procedure for the hunting behavior of whales21 that identifies the finest search agent to chase the prey and uses a spi-
rally simulated. The humpback whale can detect the distance and surrounding coverage location with the desired tar-
get. It is noted that humpback whale able to migrate up a coiled track at a depth of about 15 m with the diverse size of
bubbles. It covers the desired target tightly with a massive spider-knotted web and makes the desired target toward the
middle of the coverage location.22,23

The optimal search as shown in Equations (17) and (18)
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D¼ C: X� tð Þ�X tð Þj j, ð25Þ

X tþ1ð Þ¼X� tð Þ�A:D: ð26Þ

The paths A and C are considered as follows

A¼ 2a:r:a, ð27Þ

C¼ 2:r: ð28Þ

Humpback is created as shown in the following equation

X tþ1ð Þ¼D0:ebl:cos 2πlð ÞþX� tð Þ: ð29Þ

Keep informed of the position as follow

X tþ1ð Þ¼ X� tð Þ�A:D if p≤ 0:5

D0:ebl: cos 2πlð ÞþX� tð Þ if p≥ 0:5

�
: ð30Þ

The equation of the exploration phase as follows

D¼ C:Xrand�Xj j, ð31Þ

X tþ1ð Þ¼Xrand�A:D, ð32Þ

FIGURE 8 Taxonomy of fault detection and diagnosis

FIGURE 9 Bearing and stator winding of fault detection and diagnosis
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where, t is the current iteration, X* is the position vector, X indicates the position vector of a solution, r is random vector, A is
a random value, b is a constant, p is a random number, Xrand is a random position path, and A and C are coefficient paths.

4.2 | Bearing fault diagnosis using wavelet transforms

The signal denoising methods based on wavelet shrinkage and Dual-Tree Complex Wavelet Transform are described.
Moreover, the kurtosis and the envelope analysis are introduced, both of which are essential tools in bearing fault

FIGURE 10 Functional blocks of optimization techniques–based FDD for speed control scheme of BLDC Motor Drive

FIGURE 11 Representation of knowledge-based fault diagnosis

TABLE 1 Parameters of optimization algorithm

Bat algorithm (BA) Grey wolf optimization (GWO) Whale optimization algorithm (WOA)

Population size (Xi) 10 Population 10 Population size (Xi) 10

No of dimension 3 S. diffusion 2 Random vector 0; 1

Number of iteration 10 Number of iterations 10 Number of Iterations 10

Loudness (A) 90 Lower bounds [0.001 0.001 0.001] Random number (p) �1; +1

Pulse rate (R) [1, 10] Upper bounds [20 20 20] Reference whale >1 or <1

Changing frequency 1-90 kHz Random walk 0.75 Probability percentage 50%

Echolocation 8-10 ms - - - -

Wavelength 2-14 mm - - - -
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diagnosis.26 The implementation of these tools on the fault diagnosis of bearings is discussed. The bearing and stator
winding faults of FDD using optimization techniques are shown in Figure 9.

4.3 | Proposed FDD for speed control of sensorless BLDC motor drive using
optimization techniques

The optimization techniques approach FDD for speed control of sensorless BLDC motor are mainly focused on
two important faults; (a) bearing faults and (b) stator winding faults. The ball or rolling element bearings are used
in the majority of electrical equipment. Each bearing is made up of two rings: an inner and an outer ring. Inside
these rings, a set of balls or rolling components are positioned in raceways and revolve. The mechanical stress fail-
ures can occur even under normal operating circumstances with a balanced load and acceptable alignment. Bear-
ing flaking or spilling can occur when minor components of the bearing come off due to mechanical stress. Other
sources of bearing failure include vibration, intrinsic eccentricity, and bearing currents, in addition to regular
internal working loads.27

The switching timing is determined by the switching logic. In the sensorless technique, voltage and current values
are measured, and the actual rotor speed is estimated by the Kalman filter algorithm.28 Figure 10 shows the functional
blocks of the FDD for sensorless speed control of the BLDC motor.

The WOA approach is used for the following two purposes: (a) To reduce the error value(s) between given set speed
(Ns) and obtained estimated speed (Ne) from system models. A variety of diagnostic procedures have been developed to
date to diagnose BLDC motor defects.

TABLE 2 Bearing and BLDC motor parameters

Bearing parameters Values BLDC motor parameters Values

Model number (N.O) 6207NSE Rated speed (ωr) 3000 rpm

Outer diameter (D) 72 mm Number of poles (P) 8

Inner diameter (d) 35 mm Moment of inertia (Ј) 4.8 � 10�3 kgm2

Width (B) 17 mm Torque constant (Kr) 1.52 Nm/A

Number of rolling balls (Nb) 11 Voltage constant (Ke) 0.77 V/(rad/s)

Contact angle (θ) 0� Winding resistance (R) 4.8 � 10�3 H

FIGURE 12 shows the three-phase currents
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FIGURE 13 (A) Fault detection for stator current in stator winding of BLDC motor. (B) Fault detection for stator current in stator

winding of BLDC motor. (C) Fault detection for stator current in stator winding of BLDC motor. (D) Fault detection for stator current in

stator winding of BLDC motor
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4.4 | Knowledge-based fault diagnosis

The knowledge-based method uses artificial intelligence (AI) techniques to achieve fault detection through machine
learning, reasoning, and decision making, without the need for a mathematical model of the PM machine. BA, GWO,

TABLE 3 Simulation test results under variable speed conditions

S. No Operating conditions
Optimization
techniques

Number of
misclassifications

Maximum
misclassification time (s) Response time (s)

1 500 rpm, variable load BA-FDD 2 0.08 0.20

GWO-FDD 2 0.13 0.28

WOA-FDD 1 0.06 0.30

2 1000 rpm, variable load BA-FDD 3 0.52 0.36

GWO-FDD 1 0.43 0.36

WOA-FDD 1 0.28 0.42

3 1500 rpm, variable load BA-FDD 3 0.64 0.55

GWO-FDD 2 0.51 055

WOA-FDD 1 0.43 0.67

4 2000 rpm, variable load BA-FDD 2 0.79 0.64

GWO-FDD 2 0.64 0.72

WOA-FDD 1 0.56 0.76

5 2500 rpm, variable load BA-FDD 2 0.88 0.77

GWO-FDD 1 0.72 0.84

WOA-FDD 1 0.65 0.88

6 3000 rpm, variable load BA-FDD 1 0.95 0.86

GWO-FDD 1 0.75 0.95

WOA-FDD 1 0.60 0.96

TABLE 4 Simulation test results under variable load conditions

S. No Operating conditions
Optimization
techniques

Number of
misclassifications

Maximum misclassification
time (s)

Response
time (s)

1 20% load, variable speed BA-FDD 3 0.7 1.08

GWO-FDD 3 0.75 1.16

WOA-FDD 2 0.68 1.18

2 40% load, variable speed BA-FDD 4 1.14 1.24

GWO-FDD 2 1.05 1.24

WOA-FDD 2 0.9 1.3

3 60% load, variable speed BA-FDD 4 1.26 1.43

GWO-FDD 3 1.13 1.49

WOA-FDD 2 1.05 1.55

4 80% load, variable speed BA-FDD 3 1.41 1.52

GWO-FDD 3 1.26 1.6

WOA-FDD 2 1.18 1.64

5 100% load, variable speed BA-FDD 3 1.5 1.65

GWO-FDD 2 1.34 1.72

WOA-FDD 2 0.99 1.76
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FIGURE 14 (A) WOA-based fault diagnosis for stator current in stator winding of BLDC motor. (B) WOA-based fault diagnosis for

stator current in stator winding of BLDC motor. (C) BA-, GWO-, and WOA-based fault diagnosis for sensorless BLDC motor
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and WOA are some of the most often adopted. The representation of knowledge-based fault diagnosis is shown in
Figure 11.

Deals with the BA, GWO, and WOA approached FDD for speed control of BLDC motor drive under varying load
conditions, varying set speed conditions, and integrated conditions. The effectiveness of the BA-, GWO-, and WOA-
based FDD MATLAB simulation results is analyzed.

5 | RESULTS AND DISCUSSION

This section provides MATLAB/Simulink simulation results of the FDD methods applied to a sensorless BLDC motor,
for the bearing faults and the stator winding faults. In terms of bearings, previous studies show that 90% of faults that
occur in rolling bearings are due to cracks in the inner and outer races.29 Accordingly, four bearing conditions were
considered in this study, namely the normal condition, the outer race fault, the inner race fault, and the presence of
both the inner and outer race faults.30 The vibration of the machine was measured, and optimization techniques were
applied for the diagnosis of these faults. The parameters of the optimization algorithm are shown in Table 1.

The bearing and BLDC motor parameters are shown in Table 2. The evaluate the performance of FDD for sensorless
BLDC motor using optimization techniques such as BA, GWO, and WOA in terms of different simulation setup. Those
optimization techniques are used for the FDD in speed control of the BLDC motor. The proposed design is

FIGURE 15 (a) WOA-based fault diagnosis for stator back EMF of BLDC motor. (B and C) WOA-based fault diagnosis for stator back

EMF of BLDC motor
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TABLE 5 Accuracy of FDD in sensorless BLDC motor using optimization techniques

S.No
Operating
conditions

Optimization
techniques

Percentage of accuracy (%)

Principle component
analysis

Empirical mode
decomposition

Dynamic neural
networks

Orthogonal fuzzy
neighborhood
discriminant analysis

1 1000 rpm BA-FDD 86.5 89.5 91 92.5

GWO-FDD 87.5 90.5 91.5 93.5

WOA-FDD 87.5 91 93 94

2 2000 rpm BA-FDD 85 88 91.5 93

GWO-FDD 85 88.5 92.5 93.5

WOA-FDD 86 90 93 95

3 3000 rpm BA-FDD 85 89 94 94

GWO-FDD 87 91.5 95 95.5

WOA-FDD 88.5 91.5 93 96

4 No Load BA-FDD 84 89 91 92.5

GWO-FDD 84 89 93 93

WOA-FDD 86 91 93 94.5

5 50% Load BA-FDD 84 88 92 93

GWO-FDD 85 89.5 92.5 93.5

WOA-FDD 86 90 93 95

6 100% Load BA-FDD 88 91 92 95

GWO-FDD 88.5 91 93.5 96

WOA-FDD 89.5 92 93.5 97

TABLE 6 Accuracy of bearing fault under various operating conditions

S.No Operating conditions Bearing faults Percentage of accuracy in simulation test Percentage of fault reduction

1 1000 rpm Inner 98.60 6

Outer 97.54 5

Ball 96.23 6

2 2000 rpm Inner 97.56 6

Outer 96.11 5

Ball 95.25 6

3 3000 rpm Inner 96.47 5

Outer 95.72 5

Ball 95.12 6

4 No load Inner 96.33 6

Outer 97.52 5

Ball 95.61 6

5 50% Load Inner 96.23 5

Outer 95.14 6

Ball 95.06 7

6 100% Load Inner 97.25 6

Outer 96.45 7

Ball 95.36 9
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FIGURE 16 (A and B) Fault detection for electromagnetic torque of BLDC motor. (C) WOA-based fault diagnosis for electromagnetic

torque of BLDC motor. (D) BA-, GWO-, and WOA-based FDD for sensorless BLDC motor
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implemented using MATLAB/SIMULINK simulation tool. The performance of the proposed FDD methods is compared
with the existing techniques in sensorless speed control of BLDC motor using BA, GWO, and WOA techniques.
Figure 12 shows the three-phase current in the BLDC motor.

TABLE 7 Results of 10 consecutive fault diagnosis in the MATLAB simulations

Operating conditions Optimization techniques

Accuracy of optimization techniques iteration (%)

1 2 3 4 5 6 7 8 9 10 Average

1000 rpm BA-FDD 88.5 86.5 84.5 82.6 85.6 87.4 86.5 89.5 89.0 83.6 86.4

GWO-FDD 88.6 89.4 87.6 92.5 96.5 94.8 92.8 93.4 95.6 91.4 92.3

WOA-FDD 91.5 92.6 90.5 93.6 97.5 94.9 95.6 96.8 96.5 96.0 94.6

2000 rpm BA-FDD 89.3 87.3 85.3 83.4 86.4 88.2 87.3 90.3 89.8 84.4 87.1

GWO-FDD 89.3 90.2 88.3 93.3 97.3 95.6 93.6 94.2 96.4 92.2 93.0

WOA-FDD 92.3 93.3 91.3 94.4 98.3 95.6 96.4 97.6 97.3 96.7 95.3

3000 rpm BA-FDD 90.7 88.7 86.6 84.7 87.7 89.6 88.7 91.7 91.2 85.7 88.5

GWO-FDD 90.8 91.6 89.7 94.8 98.9 97.2 95.1 95.7 98.0 93.7 94.6

WOA-FDD 93.8 94.9 92.8 95.9 99.9 97.2 98.0 99.2 99.0 98.4 96.9

No Load BA-FDD 88.5 86.5 84.5 82.6 85.6 87.4 86.5 89.5 89.0 83.6 86.4

GWO-FDD 88.6 89.4 87.6 92.5 96.5 94.8 92.8 93.4 95.6 91.4 92.3

WOA-FDD 91.5 92.6 90.5 93.6 97.5 94.9 95.6 96.8 96.5 96.0 94.6

50% Load BA-FDD 90.7 88.7 86.6 84.7 87.7 89.6 88.7 91.7 91.2 85.7 88.5

GWO-FDD 90.8 91.6 89.7 94.8 98.9 97.2 95.1 95.7 98.0 93.7 94.6

WOA-FDD 93.8 94.9 92.8 95.9 99.9 97.2 98.0 99.2 99.0 98.4 96.9

100% Load BA-FDD 92.0 90.0 87.9 85.9 89.0 90.9 90.0 93.1 92.6 86.9 89.8

GWO-FDD 92.1 93.0 91.1 96.2 97.0 98.6 96.5 97.1 99.4 95.1 95.6

WOA-FDD 95.2 96.3 94.2 97.3 96.5 98.6 97.0 97.3 97.6 99.8 97.0

FIGURE 17 Simulated vibration signal from faulty bearing

FIGURE 18 Simulated vibration signal from a faulty bearing
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5.1 | WOA-based FDD for stator current in stator winding of BLDC motor

Analyzing only the bearing fault of the BLDC motor is not sufficient to detect the variations in phase currents. There-
fore, the BLDC motor stator current in stator winding is analyzed by FDD components using BA, GWO, and WOA.
Figure 13A-D represents the fault detection for stator current in the stator winding of the BLDC motor.

Tables 3 and 4 show the simulation test results for the BLDC motor under variable speed and load situations,
respectively. Forty percentage of each table dataset acquired from the simulation results was set aside for evaluating the

FIGURE 19 WOA-based fault diagnosis for vibration signal of BLDC motor

FIGURE 20 WOA-based fault diagnosis for amplitude modulation phenomenon

FIGURE 21 (A) Simulated vibration signal from a faulty bearing using BA, (B) denoised signal using GWO, and (C) denoised signal

using WOA
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WOA-based FDD. A series of optimization from the healthy case was prefixed to the data acquired for each operating
condition and BA, GWO, and WOA. From a faulty condition, the WOA-based diagnosis test for motors running at vari-
able speed and maximum loading circumstances. The WOA based Fault Diagnosis for stator current in stator winding
of BLDC motor is shown in Figure 14A-C.

5.2 | WOA-based FDD for bearing faults in BLDC motor drives

The WOA-based denoising scheme consists of three processes, namely vibration sensor, wavelet analysis, and fault identi-
fication. The core of this scheme is the vibration sensor and wavelet denoising process, where the input signal is firstly
transformed into wavelet coefficients. Then, the wavelet coefficients using bivariate shrinkage to denoise the coefficients.
Finally, the denoised coefficients are inversely transformed back to the time domain to obtain the denoised signal. In the
following part of this section, the WOA-FDD results obtained using the aforementioned methods will be presented. The
FDD results were obtained using the proposed WOA-based FDD for back EMF of the motor are shown in Figure 15A-C.

Under various operating conditions, the accuracy of FDD and bearing fault in sensorless BLDC motor using optimi-
zation techniques are shown in Tables 5 and 6, respectively. From the tables, it can be observed that the WOA-based
FDD methods with a good percentage of accuracy score in the above qualitative analysis and minimum level of percent-
age of fault reduction under the above operating conditions.

The WOA-based fault diagnosis for electromagnetic torque of BLDC motor is shown in Figure 16A-C, and the
results of 10 consecutive fault diagnoses in the MATLAB simulations are shown in Table 7. It is noted that WOA-based
fault diagnosis is better iteration accuracy when compared to BA and GWO for speed control of BLDC motor under var-
ious operating conditions.

5.3 | Simulated vibration signal from a faulty bearing

A bearing contains a fault; the resulting vibration signal exhibits characteristic features that can be utilized to detect the
fault. However, the vibration signal from a bearing with an incipient fault is usually masked by machine noise, making
it difficult to detect the fault signature.

TABLE 8 Mean, standard deviation, and computation time

S.No Operating conditions Optimization techniques Mean SD Computation time (s)

1 1000 rpm BA-FDD 0.356582 0.45326 521.87

GWO-FDD 0.350125 0.43876 512.53

WOA-FDD 0.347352 0.37425 502.35

2 2000 rpm BA-FDD 0.356215 0.44325 550.36

GWO-FDD 0.354265 0.42354 536.68

WOA-FDD 0.345684 0.40213 521.87

3 3000 rpm BA-FDD 0.369322 0.47156 531.87

GWO-FDD 0.360435 0.40155 512.53

WOA-FDD 0.354153 0.37153 502.35

4 No Load BA-FDD 0.369254 0.44256 5440.36

GWO-FDD 0.361242 0.41356 536.68

WOA-FDD 0.350124 0.38245 511.87

5 50% Load BA-FDD 0.364258 0.42356 532.53

GWO-FDD 0.371452 0.39564 512.35

WOA-FDD 0.368452 0.37245 504.36

6 100% Load BA-FDD 0.363108 0.39525 536.68

GWO-FDD 0.370482 0.40885 526.36

WOA-FDD 0.362586 0.37985 512.16
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In this work, optimization techniques BA-, GWO-, and WOA-based FFD method for speed control of sensorless
BLDC motor from the measured vibration signal. The simulated vibration signal from the faulty bearing is shown in
Figures 17 and 18.

Figures 19 and 20 illustrate the WOA-based fault diagnosis for vibration signal of BLDC motor and amplitude mod-
ulation phenomenon. From the figures, it is noted that the faulty signal can be identified and denoised signal using
WOA instantly under uncertain operating conditions. The simulated vibration signal from a faulty bearing using BA,
GWO, and WOA is shown in Figure 21A-C.

In this research, bearing faults representing the mechanical elements of the motor and stator winding faults from
the electrical elements of the motor were studied. For mechanical faults, further studies should involve applying the
proposed methods on fault diagnosis of all components of the motor. In addition, the influence of the external load on

FIGURE 22 (A) BA-, GWO-, and WOA-based FDD for sensorless BLDC motor. (B) BA-, GWO-, and WOA-based FDD for sensorless

BLDC motor
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fault diagnosis should be investigated. In terms of parameter estimation of the motor, further studies should involve the
implementation of other types of electric motors, such as induction and switched reluctance motors. The mean, SD,
and computation time are shown in Table 8.

It is also suggested WOA-based FDD method has enhanced the sensorless-controlled BLDC motor drive's dependabil-
ity by efficiently detecting, isolating, and compensating the problem in the bearing and stator winding under various
operating conditions such as varying set speed conditions and varying load conditions. The BA-, GWO-, and WOA-based
FDD for sensorless BLDC motor is shown in Figure 22A,B

5.4 | Recommendations and future work

In this work, bearing faults representing the mechanical elements of the motor and stator winding faults from the elec-
trical elements of the motor were studied. For mechanical faults, further studies should involve applying the proposed
methods on fault diagnosis of all components of the motor. In addition, the influence of the external load on fault diag-
nosis should be investigated. In terms of parameter estimation of the motor, further studies should involve the imple-
mentation of other types of electric motors, such as induction and switched reluctance motors.

For further work, the parameters for the BLDC motor should be acquired by conduct measurements on a real
machine to get more precise values. The BLDC motor could be simulated with added noise to verify if the FDD method
could still find the fault at nonideal conditions since that would more accurately represent a real machine. The FDD
method should be tested on a real machine since the analytically modeled machine has estimated parameters and ideal
conditions. This would be the most accurate way to validate the FDD method. The FDD method should lastly be
implemented on a live machine to test if it works as intended. The experimental verification of speed control of
sensorless BLDC motor could be an interesting base for a WOA-based FFD method and is suggested for further work.

6 | CONCLUSION

An efficient fault detection and diagnosis for speed control of sensorless BLDC motor drive using BA, GWO, and WOA
are presented. It can be an improved the reliability, robustness speed control, and transient characteristics of industrial
machinery. This work provided an overview of the mechanical faults and the electrical faults of BLDC motors, with a
special focus on bearing and stator winding faults. In terms of bearing faults, vibration-based techniques are the most
reliable. To enhance the characteristic features of a fault, the optimization techniques BA-, GWO-, and WOA-based
FDD have been proposed. Among them, the wavelet analysis has shown its superiority in signal denoising and feature
extraction. In terms of stator winding faults, the model-based parameter estimation techniques were found to be most
promising.

From the simulation results, it is concluded that WOA-based FDD methods with a good percentage of accuracy
score in the various qualitative analysis, quick response time, and high accuracy of optimization techniques iteration in
percentage uses in the speed control of sensorless BLDC motor under uncertain operating conditions.
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