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ABSTRACT 

In this paper, we propose OP-TKC (Order Preserving Top K 
Closed itemsets) algorithm for mining top-k frequent closed 
itemsets.  Our methodology visits the closed itemsets lattice in 
breadth first manner and generates all the top-k closed itemsets 
without generating all the closed itemsets of a given dataset i.e. in 
the search space, only closed itemsets that belongs to top-k are 
expanded and all other closed itemsets are pruned off.  Our 
algorithm computes all the top-k closed itemsets with O(D+ k) 
space complexity, where D is the dataset.  Experiments involving 
publicly available datasets show that our algorithm takes less 
memory and running time than TFP algorithm. 

Categories and Subject Descriptors 

H.2.8 [Database Management]: Database Applications – Data 
Mining 

General Terms 

Algorithms, Design, Experimentation. 

Keywords 

Data Mining – Closed Itemsets – Algorithms – Mining Methods. 

 

1. INTRODUCTION 
The Frequent itemset mining is fundamental to several data 
mining tasks including Association Rule Mining [14][17], life 
science data analysis [3] and social network analysis [7]. The 
problem is stated as follows. Given a collection of transactions 
with each transaction consisting of set of items, a frequent itemset 
is a subset of set of items that occurs in at least user specified 
percentage (support) of the transactions.  Frequent itemset mining 
is a computationally demanding task and requires more memory, 

I/O traffic, high computational power and building efficient 
algorithms for frequent itemset mining has been an active area of 
research in the field of data mining. Several algorithms have been 
proposed to mine frequent itemsets including Apriori, F-Apriori 
[21], FP-growth [16], FP-growth* [5] and Transaction Mapping 
Algorithm [4]. But frequent itemset mining suffers from several 
drawbacks. The main drawback is “too many frequent itemsets”. 
For example, if the frequent itemset length is x, then 2x frequent 
itemsets would be generated.  In many applications with long 
frequent itemsets, enumerating all possible subsets is 
computationally infeasible. To overcome the “too many itemsets” 
disadvantage, closed itemset concept was proposed [8].  The set 
of closed itemsets of the given transactional database is the 
condensed representation of set of all frequent itemsets without 
any loss of information i.e. from the given set of closed itemsets it 
is possible for us to generate all the frequent itemsets.  A frequent 
itemset is said to be closed if it has no superset with the same 
support.  Several algorithms have  been proposed in the literature 
including A-Close, FP-Close [5], AFOPT-Close [25], B-Miner & 
C-Miner [3] , and DCI-Close [1].  However, for datasets with 
large number of items and long itemsets, the number of closed 
itemsets generated is still large in number. For some real datasets, 
generating all closed itemsets takes huge running time and for a 
particular dataset, it took 45 days of running time to generate all 
the closed itemsets [1].  Moreover, it is difficult to come up with 
appropriate minimum-support threshold since it requires 
comprehensive domain knowledge, the mining query and task 
specific data.  It is to be noted that closed itemsets are extensively 
used in bioinformatics [3][27][28], web usage mining and 
association rules.  Since setting a good threshold is a tedious task, 
the concept of top-k frequent closed itemsets was proposed in [2].  
Top-k frequent closed itemsets are first k closed itemsets obtained 
by sorting all the closed itemsets of the given dataset in support 
descending order. If the support is same then the cardinality of the 
dataset is given precedence.  The brute force approach for mining 
top k closed itemsets is to generate all closed itemsets, sort all the 
closed itemsets in support descending order and output first k 
itemsets in the sorted list.  However, this is a computationally 
expensive task and also requires huge memory to store all the 
closed itemsets. For many datasets, storing all closed itemsets in 
memory require more than the available main memory.  Hence, an 
efficient algorithm is required to mine all top-k closed itemsets.   
To our knowledge, TFP [2] is the only algorithm reported in the 
literature for mining top-k closed itemsets.  TFP algorithm uses 
FP-tree for mining top-k closed itemsets.  It should be noted that 
fp-tree based algorithms are optimal only when the dataset is 
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dense with short itemsets.  For sparse datasets, fp-tree occupies 
large amount of main memory since prefix sharing is very less in 
sparse datasets.  Moreover, for long itemsets, fp-tree based 
algorithm quickly runs out of main memory [1] which we have 
validated experimentally by conducting experiments on synthetic 
datasets generated using IBM dataset generator. The reason is, fp-
tree based algorithms store all the frequent itemsets of single 
prefix path fp-tree in main memory for closure checking.  When 
we run FP-Close algorithm for a support value of 1 for a Boolean 
dataset of size 25 x 25 with diagonal elements set to zero, the 
execution terminated outputting “all the buckets are used up”.  It 
is because the entire fp-tree of the dataset is a single prefix path 
tree and there are 225-1 closed itemsets present in the tree.  

In this paper, we propose a novel, fast and memory efficient 
algorithm based on order preserving closed itemset generation [1]  
to mine all the top-k closed itemsets without generating all of the 
closed itemsets of given dataset. Our approach processes only top-
k closed itemsets and prunes away all other closed itemsets.  
Moreover, the space complexity of our approach is O(D+ k) 

where D is the dataset.  We have conducted huge number of 
experiments and our algorithm takes less running time and less 
memory than TFP algorithm.  Moreover, our approach uses same 
amount of main memory and the main memory usage does not 
depend on itemset length and nature (sparse or dense) of the 
dataset.  Apart from running time of executions, we have also 
computed the peak memory usage of executions.  To our 
knowledge, memory usage of execution is not reported in many of 
the previously reported work on closed itemset mining.   

The rest of the paper is organized as follows.  Section 2 presents 
the preliminaries associated with closed itemsets, order preserving 
closed itemset generation algorithm and problem definition. In 
Section 3 we present our algorithm, its limitations and theoretical 
correctness. In section 4, we give our experimental results, while 
section 5 concludes the paper. 

2. PRELIMINARIES 
We give the basic definition of closed itemset in this section.  In 
the context of association rule mining, a database D is a triple, 
D=(T,I,R), where T is the finite set of transactions and I is the 
finite set of items. R ⊆ T x I  is a binary relation between 

transactions and items.  Each pair (t, i)∈ R denotes the fact that 
the transaction t ∈  T is related to the item i ∈ I i.e. the item i is 
present in the transaction t. An itemset P ⊆ I is frequent if 

support count of P exceeds user defined minimum support. An 
itemset P ⊆ I is closed if h(P)=P, where h(P)=f(g(P)), 

g(P)={t∈ T | ∀ i∈ P (t,i)∈ R}  and f(T)= { i∈ I | ∀ t∈ T, (t,i)∈ R 

}. In other words, the function g takes a set of items as input and 
outputs the set of transactions that are related to all items i∈P .  

The function f takes a set of transactions as input and outputs the 
set of items that is common to all the transactions. Closed itemset 
is a condensed representation of frequent itemsets without any 
loss of information. For more details on closed itemsets and its 
properties, readers may refer [7].  

Order preserving closed itemset generation algorithm [1] is based 
on the following principle: “every closed itemset is a superset of 
another closed itemset”.  The algorithm visits the search space 
(item space) in the depth first manner and it outputs the closed 
itemsets. The procedure attempts to build valid generators, which 

are subsets of another closed itemset and all the valid generators 
lead to a closed itemset. The order preserving algorithm takes 
three parameters as input: closed_set, which is initially empty, 
pre_set, which is also initially empty and post_set, which contains 
all the items.  post_set contains the set of items to be processed 
whereas pre_set contains the processed items from post_set that 
lead to valid generators.  pre_set is updated when the recursive 
call returns and it does not change when the recursive call 
deepens. The algorithm builds all the possible generators by 
adding items from the post_set to closed_set.  If the supporting 
transactions of the generator is subset to any one of the supporting 
transactions of the element i ∈  pre_set, then the generator is 

invalid i.e. the closed itemset of the current generator has already 

been generated while processing item i . The algorithm finds all 

the valid generators and then computes the closed itemsets.   

3 MINING TOP-K CLOSED ITEMSETS 
Order preserving closed itemset generation algorithm reported in 
[1] explores the closed itemset lattice in depth first manner to save 
memory.  There are several problems associated with depth first 
exploration to mine top-k closed itemsets.  Firstly, we cannot 
output top-k unless we explore the complete search space.  
Secondly, all the closed itemsets visited during the exploration of 
search space should be stored in main memory.  Hence, 
generation of top-k closed itemsets using depth first exploration is 
both CPU and memory intensive.  To efficiently mine the top-k 
closed itemsets, we explore the search space in breadth first 
manner.  However, breadth first exploration requires huge 
memory and to optimize the memory usage, we use heuristics 
obtained from problem definition knowledge and the properties of 
order preserving algorithm.  The problem definition knowledge is, 
we want only first k closed itemsets of high support.  It should be 
noted that the order preserving algorithm explores the closed 
itemset lattice in depth first manner starting from closed itemset 
with high support to closed itemsets with low support i.e. all of 
the closed itemsets of level 1 will have more support than the 
closed itemsets of other levels. As the depth increases, support of 
the closed itemset decreases and length of the closed itemset 
increases.  Since closed itemsets are explored in support 
descending order, we only allocate k memory locations to store k 
closed itemsets explored in breadth wise manner.  When we visit 
closed itemset, C, with support less than kth – closed itemset, C is 
discarded and the entire subtree of C is pruned as not belonging to 
top-k closed itemsets.  However, if we have only p closed 
itemsets, where p < k, then the closed itemset C is added at the 
end if support is less than pth closed itemset or inserted in 
appropriate position if the support is greater than pth closed 
itemset.   

Proposition 1:  At any time, all the closed itemsets in top-k list is 

maintained in support descending order. 

Lemma 1:  Order preserving algorithm generates all and only 

closed itemsets. 

Proof:  Refer [1]. 

Lemma 2:  Let C be the closed itemset in the search space. Then 

C′ ⊇  C  where C′  ∈ P(C) and P(C) is the set of closed itemsets 

obtained by processing C.  

Proof: The proof is straightforward.   



Lemma 3:  Let C be the closed itemset in the search space and 

P(C) be the set of closed itemsets obtained by processing C. Then 

support(C′) < support(C) where C′  ∈ P(C).   

Proof:  The proof is straightforward.   

Lemma 4:  Let C be the mth closed itemset in top-k list where m ≤ 

k. Then all the closed item sets C′ where C′ ⊇  C will occupy only 

nth position in the top-k list where n ≥ m and n ≤ k.   

Proof:  According to lemma 3, C′ will have less support than C.  
According to proposition 1, the position of C′ in top-k list is less 
than the position of C.  

Lemma 5: Closed Itemset Pruning:  let C be the newly generated 

closed itemset. If ¬∃ C′ ∈  top-k list such that support(C) > 

support(C′) then C does not belong to top-k list and can be 

pruned. 

Proof:  The proof is straightforward.   

3.1 OP-TKC Algorithm 

Let D be the dataset with I items and T transactions.  OP-TKC 

algorithm maintains a top-k list with each element of top-k list 
consisting of pre_set, post_set closed_set and support_set.  The 

first element of list is initialized with { Φ },  { I }, { Φ }, { T } for 

pre_set, post_set, closed_set and support_set respectively.  The 
algorithm processes the first element of top-k list in breadth first 
manner and appends the resulting closed itemsets in support 
descending order along with its respective pre_set, post_set, 

closed_set and support_set. Processing of a node is done by 
removing an item, p, from post_set and adding it to the 
closed_set.  pre_set has the already processed items and is used 
for avoiding duplicate generation. Then the closure of closed_set 

∪ p is computed and the resulting closure along with its pre_set, 

post_set and support_set are inserted in the appropriate position 
in top-k list. Once the first element is fully processed i.e. when the 
post_set becomes null, the algorithm processes the second 
element of list and inserts the resulting closed itemsets in 
appropriate position in top-k list.  Till the top-k is not full, all the 
generated closed itemsets are inserted along with its supporting 
information.  Once the top-k list is full, all the closed itemsets 
along with its pre_set, post_set and support_set are discarded as 
not belonging to top-k list if the support is less than kth closed 
itemset of top-k list.  Otherwise, the closed itemset and its 
supporting information are inserted in appropriate position.  After 
inserting, the kth closed itemset now occupies k+1th position and 
all the elements starting from k+1th position are deleted from the 
list if |support_set(k)| > support(k+1). If the support is same, then 
the length is checked i.e. we check whether |closed_set(k)| is 
equal to |closed_set(k+1)|.  If both are same, then k+1th element is 
also retained in the list.  The same procedure is continued until all 
the elements in the linked list have been explored and the top-k 
closed itemsets are generated. 

3.2   OP-TKC Pseudo code 

 INPUT: transactional dataset, k value 

OUTPUT: All top-k closed itemsets satisfying size constraints. 

 

1. sort all the items with respect to its support, map the sorted 

items to continuous integers  and store it in set F1 

2. construct vertical bit-vector in the mapped space 

3. initialize top-k list 

4. call OP-TKC ( k ) 

 

5. OP-TKC ( k ) 

6. { 

7.      for ( i=0;  i<k; i++ ) 

8.           closed_set = list[i].closed_set 

9.           post_set = list[i].post_set 

10.           pre_set = list[i].pre_set 

11.           support_set=list[i].support_set 

12.           while (post_set != null ) 

13.                i'=min(post_set) 

14.                post_set = post_set \ i' 

15.                post_set' = post_set 

16.                closed_set' = closed_set  ∪ i' 

17.                support_set' = support_set ∩ g(i') 

18.                if (( ∀ j∈pre_set, support_set′ ⊄ g(j)) && 

                           |support_set'| ≥ minsupp(kth top-k element ) 

19.                     ∀ k∈post_set 

20.                          if support_set' ⊆ g(k)    

21.                              closed_set' = closed_set'  ∪ k 

22.                              post_set' = post_set' \k 

23.                          endif 

24.                      insert closed_set', pre_set , pre_set'   

                             and  support_set' in list in correct position 

25.                     pre_set = pre_set ∪ i'    

26.              endif 

27.           endwhile 

28.      endfor 

29. } 

 

3.3  Pseudo code Description  
The pseudo code uses the set variables pre_set, post_set, 

closed_set and support_set to store the current element of top-k 
list that is being processed (line no 8 – 11). The set variables 
pre_set′, post_set′, closed_set′,  and support_set′ are used to store 
the current closed itemset and its supporting information to be 
added to the list.  While processing the current element of list, 
pre_set monotonically increases and post_set monotonically 
decreases. The closed_set and supporting set remains same.  The 
processing of the current element of top-k list gets completed 
when its associated post_set becomes null i.e. no other closed 
itemsets could be generated by extending the current closed_set 
with elements from the post_set.  Whenever a generator is created 
for new closed itemset (line no 16 ), the generator is checked for 
duplication (line no 18).  If the support set of generator is a subset 
to any one of the supporting set of an element of pre_set, then the 
current generator is discarded as duplicate. Otherwise, the closure 
of the new generator is computed (line no 19-23) and the resulting 
closed itemset along with its necessary parameters are inserted in 
the top-k list in appropriate position (line no 24).  

 

3.4 Other Optimizations 
We have included several optimization techniques to reduce the 
computation time of top-k closed itemset generation.   



Lemma 6:  Let s be the support of kth element of top-k list. Then 

we only need to generate closed item of support ≥ s 

Proof: Let C be the newly generated closed itemset. C is inserted 
into top-k list iff support(C) is greater than kth element of top-k list 
(lemma 5). Thus all closed itemsets of support less than s need not 
be generated. 

Lemma 7: Raising minimum support: once the top-k list is full we 

can safely raise the minimum support to support(kth element) of 

top-k list. 

Proof: The proof follows from lemma 6. 

Based on lemma 6, we dynamically reduce the dataset by 
removing all items that does not satisfy the minimum support.  
Reducing the dataset is a costly operation and we perform dataset 
reduction only when the difference of current support and kth 
element support of top-k list is very large. This technique is highly 
efficient for sparse datasets with very large number of items. Since 
the minimum support value is dynamically updated based on the 
kth element of top-k list, we exploit the following lemma to further 
reduce the computation time associated with closed itemset 
generation.   

 

Lemma 8:  Let C be the closed itemset that is being processed.  

Let post_set(C) be the post_set associated with C.  If ∃ i ∈C and 

j ∈  post_set(C) such that IG[i][j] < current  support value, then 

j can be removed from the post_set.  

Proof: The proof easy and thus omitted. 

 

To efficiently implement Lemma 8, we construct special array 
called interaction array(IG). Interaction array is a 2D array, where 
the 1st and 2nd dimension are sets of items and each cell of row r 
and column c specifies the total transaction in which both r and c 
are present.  At every updation of support value, we just scan this 
array to remove unpromising elements from post_set.   

3.5 Correctness 
Theorem 1 shows that OP-TKC can correctly generate all and 
only all top-k closed itemsets. 
Theorem 1:  Let K be the set of top-k closed itemsets of a 
transactional dataset.  Let K′ be the set of top-k closed itemsets 
derived from applying OP-TKC on the dataset.  Then K′ = K. In 
other words, OP-TKC can correctly generate all and only all top-k 
closed itemsets. 

Proof: First, we prove that K ⊆  K′ by contradiction. Assume ∃ C 

∈  K  but C ∉  K′  where C is a closed itemset. Let � be the set of 

closed itemsets that does not belong to top-k list and removed by 

the pruning strategy of lemma 5.  Then C ∈  (K′ ∪ �).  As shown 

in lemma 5, closed itemset pruning strategy only removes closed 

itemsets that does not belong to top-k list.  So, C∉ � and  C ∈  K.′ 

Hence, our assumption that C ∉  K′  is wrong and we conclude K 

⊆  K′.  Next, we prove K′ ⊆  K by contradiction. Assume ∃ C ∈  

K′  but C ∉  K. Then C is either not closed or does not belong to 

top-k closed itemsets. If C is not closed, then it would not have 
been generated (lemma 1).  Also lemma 5 prunes only closed 
itemsets that do not belong to top-k list.  Hence our assumption 

that C ∈  K′  and C ∉  K  is wrong.  Thus OP-TKC correctly 

generates all and only top-k closed itemsets. 

3.6 Limitations 
There are certain limitations in our approach when we include the 
length constraint.  The limitation is large main memory usage. If 
we include length constraint, then all the closed itemsets of length 
< l, where l is the user specified minimum length, should be 
stored in the top-k list.  We can remove a closed itemset of length 
< l only if its associated post_set is null. i.e. only after generating 
all of its immediate supersets which are closed.  Hence, we may 
need to store more than k closed itemsets in the top-k list and the 
peak number of closed itemsets stored in the list is determined by 
the dataset and the given length. 
 

4 EXPERIMENTS AND RESULT 

ANALYSIS  

We have implemented our algorithm using C language and the 
code was compiled using 32-bit Microsoft Visual C++ compiler. 
All the experiments are conducted on Pentium 4 machine with 1 
GB of main memory loaded with windows XP operating system.  
The executable file of TFP algorithm was obtained from the 
respective authors. To obtain the accurate peak memory usage of 
executions, we have written our own stub code using windows 
process library API that will fetch the main memory usage 
statistics whenever a process is terminated. Since we extract the 
needed information from the windows kernel itself, the load made 
by this program on the memory and the processor is completely 
negligible.  Moreover, the entire coding is only a few lines of 
code and just fetches memory usage data from the windows 
kernel. We have checked the running times while running this 
piece of code in background and while this software was not 
running in background.  The observed differences are only in 
microseconds and in most cases we didn’t observe any difference. 
The dataset generator is downloaded from Illimine project 
website.  For TxIyDz, x indicates the average transaction length, y 
indicates the average pattern length and z indicates the total 
number of transaction instances. To make the comparison fair, we 
have set the length parameter of TFP code to 1. We have done 
huge number of experiment and we present only representative 
results here. The plots in Fig. 1 and Fig. 2 show the performance 
comparison in terms of running time and peak memory usage of 
executions for OP-TKC and TFP. The data given in Table 1 
presents the running time of algorithm and peak memory usage for 
chess dataset. The data given in Table 2 gives the experimental 
results for T50I45D10K dataset.  The peak memory usage data 
given in our results only include the main memory usage and not 
the page file usage. We have also collected the peak page file 
usage data but we have not reported the results here because the 
page file usage was negligible for most of our experimental 
executions.  In our future work, we are planning to experiment 
with very large datasets to correctly assess the performance in 
terms of peak page file usage.  It is to be noted that our 
implementation is still being optimized and we may get better 
results in our future work.  
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Figure 1: Algorithm runtime Vs K Value for T25I20D50k dataset  
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Figure 2: Memory Usage Vs K Value for T500I450D250 dataset  

 

Table 1: Algorithm Running time in Seconds and Peak Memory 
usage in Bytes for chess dataset. 

TFP OP-TKC k-
value Running 

time 
Peak 

Memory 
Usage 

Running 
Time 

Peak 
Memory 
Usage 

100 0.188 9773056 0.093 880640 

300 0.203 9805824 0.192 1175552 

500 0.256 9838592 0.246 1503232 

700 0.289 9871360 0.3 1847296 

1000 0.29 9936896 0.392 2338816 

2000 0.296 10035200 0.412 3993600 

Table 2: Algorithm Running time in Seconds and Peak Memory 
usage in Bytes for T50I45D10K dataset. 

TFP OP-TKC k-
value Running 

time 
Peak 

Memory 
Usage 

Running 
Time 

Peak 
Memory 
Usage 

100 1.062 48803840 0.828 2740224 

300 1.822 48804902 1.234 4341760 

500 2.625 48840704 2.140 5943296 

700 2.766 49045504 2.750 7544832 

1000 2.925 49270784 3.025 9977856 

2000 3.515 49537024 3.411 18038784 

 

Table 3: Algorithm Running time in Seconds and Peak Memory 
usage in Bytes for T25I20D10K dataset. 

TFP OP-TKC k-
value Running 

time 
Peak 

Memory 
Usage 

Running 
Time 

Peak 
Memory 
Usage 

100 0.794 28065792 0.203 1327104 

300 0.988 28143616 0.500 2850480 

500 1.066 28241920 0.812 3825664 

700 1.162 28307456 1.109 5050368 

1000 1.252 28409856 1.352 6942720 

2000 1.292 28708864 1.382 13127680 

 

5   CONCLUSION 
We have introduced a novel algorithm which explores the closed 
itemset lattice in breadth first manner to generate all the top-k 

closed itemsets without examining all the closed itemsets.  Our 
algorithm is highly memory efficient since it stores only the input 
dataset and top-k itemsets in memory. Also, our algorithm is time 
efficient since it expands only nodes in the search space that 
belongs to top-k closed itemsets.  We have also discussed the 
limitations of our approach to mine all top-k closed itemsets with 
size constraint.  We are currently working on to design fast and 
memory efficient framework for mining top-k closed itemsets with 
size constraint.   
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