
A Framework for Mining Top-K Frequent Closed Itemsets
using Order Preserving Generators

R V Nataraj
Department of Information Technology

PSG College of Technology
Coimbatore, India

rvn@ieee.org

S Selvan
Department of Computer Science
St. Peter’s Engineering College

Chennai, India.

drselvan@ieee.org

ABSTRACT

In this paper, we propose OP-TKC (Order Preserving Top K
Closed itemsets) algorithm for mining top-k frequent closed
itemsets. Our methodology visits the closed itemsets lattice in
breadth first manner and generates all the top-k closed itemsets
without generating all the closed itemsets of a given dataset i.e. in
the search space, only closed itemsets that belongs to top-k are
expanded and all other closed itemsets are pruned off. Our
algorithm computes all the top-k closed itemsets with O(D+ k)
space complexity, where D is the dataset. Experiments involving
publicly available datasets show that our algorithm takes less
memory and running time than TFP algorithm.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications – Data
Mining

General Terms

Algorithms, Design, Experimentation.

Keywords

Data Mining – Closed Itemsets – Algorithms – Mining Methods.

1. INTRODUCTION
The Frequent itemset mining is fundamental to several data
mining tasks including Association Rule Mining [14][17], life
science data analysis [3] and social network analysis [7]. The
problem is stated as follows. Given a collection of transactions
with each transaction consisting of set of items, a frequent itemset
is a subset of set of items that occurs in at least user specified
percentage (support) of the transactions. Frequent itemset mining
is a computationally demanding task and requires more memory,

I/O traffic, high computational power and building efficient
algorithms for frequent itemset mining has been an active area of
research in the field of data mining. Several algorithms have been
proposed to mine frequent itemsets including Apriori, F-Apriori
[21], FP-growth [16], FP-growth* [5] and Transaction Mapping
Algorithm [4]. But frequent itemset mining suffers from several
drawbacks. The main drawback is “too many frequent itemsets”.
For example, if the frequent itemset length is x, then 2x frequent
itemsets would be generated. In many applications with long
frequent itemsets, enumerating all possible subsets is
computationally infeasible. To overcome the “too many itemsets”
disadvantage, closed itemset concept was proposed [8]. The set
of closed itemsets of the given transactional database is the
condensed representation of set of all frequent itemsets without
any loss of information i.e. from the given set of closed itemsets it
is possible for us to generate all the frequent itemsets. A frequent
itemset is said to be closed if it has no superset with the same
support. Several algorithms have been proposed in the literature
including A-Close, FP-Close [5], AFOPT-Close [25], B-Miner &
C-Miner [3] , and DCI-Close [1]. However, for datasets with
large number of items and long itemsets, the number of closed
itemsets generated is still large in number. For some real datasets,
generating all closed itemsets takes huge running time and for a
particular dataset, it took 45 days of running time to generate all
the closed itemsets [1]. Moreover, it is difficult to come up with
appropriate minimum-support threshold since it requires
comprehensive domain knowledge, the mining query and task
specific data. It is to be noted that closed itemsets are extensively
used in bioinformatics [3][27][28], web usage mining and
association rules. Since setting a good threshold is a tedious task,
the concept of top-k frequent closed itemsets was proposed in [2].
Top-k frequent closed itemsets are first k closed itemsets obtained
by sorting all the closed itemsets of the given dataset in support
descending order. If the support is same then the cardinality of the
dataset is given precedence. The brute force approach for mining
top k closed itemsets is to generate all closed itemsets, sort all the
closed itemsets in support descending order and output first k
itemsets in the sorted list. However, this is a computationally
expensive task and also requires huge memory to store all the
closed itemsets. For many datasets, storing all closed itemsets in
memory require more than the available main memory. Hence, an
efficient algorithm is required to mine all top-k closed itemsets.
To our knowledge, TFP [2] is the only algorithm reported in the
literature for mining top-k closed itemsets. TFP algorithm uses
FP-tree for mining top-k closed itemsets. It should be noted that
fp-tree based algorithms are optimal only when the dataset is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Compute 2009, Jan 9,10, Bangalore, Karnataka, India.

© 2009 ACM ISBN978-1-60558-476-8...….$5.00

dense with short itemsets. For sparse datasets, fp-tree occupies
large amount of main memory since prefix sharing is very less in
sparse datasets. Moreover, for long itemsets, fp-tree based
algorithm quickly runs out of main memory [1] which we have
validated experimentally by conducting experiments on synthetic
datasets generated using IBM dataset generator. The reason is, fp-
tree based algorithms store all the frequent itemsets of single
prefix path fp-tree in main memory for closure checking. When
we run FP-Close algorithm for a support value of 1 for a Boolean
dataset of size 25 x 25 with diagonal elements set to zero, the
execution terminated outputting “all the buckets are used up”. It
is because the entire fp-tree of the dataset is a single prefix path
tree and there are 225-1 closed itemsets present in the tree.

In this paper, we propose a novel, fast and memory efficient
algorithm based on order preserving closed itemset generation [1]
to mine all the top-k closed itemsets without generating all of the
closed itemsets of given dataset. Our approach processes only top-
k closed itemsets and prunes away all other closed itemsets.
Moreover, the space complexity of our approach is O(D+ k)

where D is the dataset. We have conducted huge number of
experiments and our algorithm takes less running time and less
memory than TFP algorithm. Moreover, our approach uses same
amount of main memory and the main memory usage does not
depend on itemset length and nature (sparse or dense) of the
dataset. Apart from running time of executions, we have also
computed the peak memory usage of executions. To our
knowledge, memory usage of execution is not reported in many of
the previously reported work on closed itemset mining.

The rest of the paper is organized as follows. Section 2 presents
the preliminaries associated with closed itemsets, order preserving
closed itemset generation algorithm and problem definition. In
Section 3 we present our algorithm, its limitations and theoretical
correctness. In section 4, we give our experimental results, while
section 5 concludes the paper.

2. PRELIMINARIES
We give the basic definition of closed itemset in this section. In
the context of association rule mining, a database D is a triple,
D=(T,I,R), where T is the finite set of transactions and I is the
finite set of items. R ⊆ T x I is a binary relation between

transactions and items. Each pair (t, i)∈ R denotes the fact that
the transaction t ∈ T is related to the item i ∈ I i.e. the item i is
present in the transaction t. An itemset P ⊆ I is frequent if

support count of P exceeds user defined minimum support. An
itemset P ⊆ I is closed if h(P)=P, where h(P)=f(g(P)),

g(P)={t∈ T | ∀ i∈ P (t,i)∈ R} and f(T)= { i∈ I | ∀ t∈ T, (t,i)∈ R

}. In other words, the function g takes a set of items as input and
outputs the set of transactions that are related to all items i∈P .

The function f takes a set of transactions as input and outputs the
set of items that is common to all the transactions. Closed itemset
is a condensed representation of frequent itemsets without any
loss of information. For more details on closed itemsets and its
properties, readers may refer [7].

Order preserving closed itemset generation algorithm [1] is based
on the following principle: “every closed itemset is a superset of
another closed itemset”. The algorithm visits the search space
(item space) in the depth first manner and it outputs the closed
itemsets. The procedure attempts to build valid generators, which

are subsets of another closed itemset and all the valid generators
lead to a closed itemset. The order preserving algorithm takes
three parameters as input: closed_set, which is initially empty,
pre_set, which is also initially empty and post_set, which contains
all the items. post_set contains the set of items to be processed
whereas pre_set contains the processed items from post_set that
lead to valid generators. pre_set is updated when the recursive
call returns and it does not change when the recursive call
deepens. The algorithm builds all the possible generators by
adding items from the post_set to closed_set. If the supporting
transactions of the generator is subset to any one of the supporting
transactions of the element i ∈ pre_set, then the generator is

invalid i.e. the closed itemset of the current generator has already

been generated while processing item i . The algorithm finds all

the valid generators and then computes the closed itemsets.

3 MINING TOP-K CLOSED ITEMSETS
Order preserving closed itemset generation algorithm reported in
[1] explores the closed itemset lattice in depth first manner to save
memory. There are several problems associated with depth first
exploration to mine top-k closed itemsets. Firstly, we cannot
output top-k unless we explore the complete search space.
Secondly, all the closed itemsets visited during the exploration of
search space should be stored in main memory. Hence,
generation of top-k closed itemsets using depth first exploration is
both CPU and memory intensive. To efficiently mine the top-k
closed itemsets, we explore the search space in breadth first
manner. However, breadth first exploration requires huge
memory and to optimize the memory usage, we use heuristics
obtained from problem definition knowledge and the properties of
order preserving algorithm. The problem definition knowledge is,
we want only first k closed itemsets of high support. It should be
noted that the order preserving algorithm explores the closed
itemset lattice in depth first manner starting from closed itemset
with high support to closed itemsets with low support i.e. all of
the closed itemsets of level 1 will have more support than the
closed itemsets of other levels. As the depth increases, support of
the closed itemset decreases and length of the closed itemset
increases. Since closed itemsets are explored in support
descending order, we only allocate k memory locations to store k
closed itemsets explored in breadth wise manner. When we visit
closed itemset, C, with support less than kth – closed itemset, C is
discarded and the entire subtree of C is pruned as not belonging to
top-k closed itemsets. However, if we have only p closed
itemsets, where p < k, then the closed itemset C is added at the
end if support is less than pth closed itemset or inserted in
appropriate position if the support is greater than pth closed
itemset.

Proposition 1: At any time, all the closed itemsets in top-k list is

maintained in support descending order.

Lemma 1: Order preserving algorithm generates all and only

closed itemsets.

Proof: Refer [1].

Lemma 2: Let C be the closed itemset in the search space. Then

C′ ⊇ C where C′ ∈ P(C) and P(C) is the set of closed itemsets

obtained by processing C.

Proof: The proof is straightforward.

Lemma 3: Let C be the closed itemset in the search space and

P(C) be the set of closed itemsets obtained by processing C. Then

support(C′) < support(C) where C′ ∈ P(C).

Proof: The proof is straightforward.

Lemma 4: Let C be the mth closed itemset in top-k list where m ≤

k. Then all the closed item sets C′ where C′ ⊇ C will occupy only

nth position in the top-k list where n ≥ m and n ≤ k.

Proof: According to lemma 3, C′ will have less support than C.
According to proposition 1, the position of C′ in top-k list is less
than the position of C.

Lemma 5: Closed Itemset Pruning: let C be the newly generated

closed itemset. If ¬∃ C′ ∈ top-k list such that support(C) >

support(C′) then C does not belong to top-k list and can be

pruned.

Proof: The proof is straightforward.

3.1 OP-TKC Algorithm

Let D be the dataset with I items and T transactions. OP-TKC

algorithm maintains a top-k list with each element of top-k list
consisting of pre_set, post_set closed_set and support_set. The

first element of list is initialized with { Φ }, { I }, { Φ }, { T } for

pre_set, post_set, closed_set and support_set respectively. The
algorithm processes the first element of top-k list in breadth first
manner and appends the resulting closed itemsets in support
descending order along with its respective pre_set, post_set,

closed_set and support_set. Processing of a node is done by
removing an item, p, from post_set and adding it to the
closed_set. pre_set has the already processed items and is used
for avoiding duplicate generation. Then the closure of closed_set

∪ p is computed and the resulting closure along with its pre_set,

post_set and support_set are inserted in the appropriate position
in top-k list. Once the first element is fully processed i.e. when the
post_set becomes null, the algorithm processes the second
element of list and inserts the resulting closed itemsets in
appropriate position in top-k list. Till the top-k is not full, all the
generated closed itemsets are inserted along with its supporting
information. Once the top-k list is full, all the closed itemsets
along with its pre_set, post_set and support_set are discarded as
not belonging to top-k list if the support is less than kth closed
itemset of top-k list. Otherwise, the closed itemset and its
supporting information are inserted in appropriate position. After
inserting, the kth closed itemset now occupies k+1th position and
all the elements starting from k+1th position are deleted from the
list if |support_set(k)| > support(k+1). If the support is same, then
the length is checked i.e. we check whether |closed_set(k)| is
equal to |closed_set(k+1)|. If both are same, then k+1th element is
also retained in the list. The same procedure is continued until all
the elements in the linked list have been explored and the top-k
closed itemsets are generated.

3.2 OP-TKC Pseudo code

 INPUT: transactional dataset, k value

OUTPUT: All top-k closed itemsets satisfying size constraints.

1. sort all the items with respect to its support, map the sorted

items to continuous integers and store it in set F1

2. construct vertical bit-vector in the mapped space

3. initialize top-k list

4. call OP-TKC (k)

5. OP-TKC (k)

6. {

7. for (i=0; i<k; i++)

8. closed_set = list[i].closed_set

9. post_set = list[i].post_set

10. pre_set = list[i].pre_set

11. support_set=list[i].support_set

12. while (post_set != null)

13. i'=min(post_set)

14. post_set = post_set \ i'

15. post_set' = post_set

16. closed_set' = closed_set ∪ i'

17. support_set' = support_set ∩ g(i')

18. if ((∀ j∈pre_set, support_set′ ⊄ g(j)) &&

 |support_set'| ≥ minsupp(kth top-k element)

19. ∀ k∈post_set

20. if support_set' ⊆ g(k)

21. closed_set' = closed_set' ∪ k

22. post_set' = post_set' \k

23. endif

24. insert closed_set', pre_set , pre_set'

 and support_set' in list in correct position

25. pre_set = pre_set ∪ i'

26. endif

27. endwhile

28. endfor

29. }

3.3 Pseudo code Description
The pseudo code uses the set variables pre_set, post_set,

closed_set and support_set to store the current element of top-k
list that is being processed (line no 8 – 11). The set variables
pre_set′, post_set′, closed_set′, and support_set′ are used to store
the current closed itemset and its supporting information to be
added to the list. While processing the current element of list,
pre_set monotonically increases and post_set monotonically
decreases. The closed_set and supporting set remains same. The
processing of the current element of top-k list gets completed
when its associated post_set becomes null i.e. no other closed
itemsets could be generated by extending the current closed_set
with elements from the post_set. Whenever a generator is created
for new closed itemset (line no 16), the generator is checked for
duplication (line no 18). If the support set of generator is a subset
to any one of the supporting set of an element of pre_set, then the
current generator is discarded as duplicate. Otherwise, the closure
of the new generator is computed (line no 19-23) and the resulting
closed itemset along with its necessary parameters are inserted in
the top-k list in appropriate position (line no 24).

3.4 Other Optimizations
We have included several optimization techniques to reduce the
computation time of top-k closed itemset generation.

Lemma 6: Let s be the support of kth element of top-k list. Then

we only need to generate closed item of support ≥ s

Proof: Let C be the newly generated closed itemset. C is inserted
into top-k list iff support(C) is greater than kth element of top-k list
(lemma 5). Thus all closed itemsets of support less than s need not
be generated.

Lemma 7: Raising minimum support: once the top-k list is full we

can safely raise the minimum support to support(kth element) of

top-k list.

Proof: The proof follows from lemma 6.

Based on lemma 6, we dynamically reduce the dataset by
removing all items that does not satisfy the minimum support.
Reducing the dataset is a costly operation and we perform dataset
reduction only when the difference of current support and kth
element support of top-k list is very large. This technique is highly
efficient for sparse datasets with very large number of items. Since
the minimum support value is dynamically updated based on the
kth element of top-k list, we exploit the following lemma to further
reduce the computation time associated with closed itemset
generation.

Lemma 8: Let C be the closed itemset that is being processed.

Let post_set(C) be the post_set associated with C. If ∃ i ∈C and

j ∈ post_set(C) such that IG[i][j] < current support value, then

j can be removed from the post_set.

Proof: The proof easy and thus omitted.

To efficiently implement Lemma 8, we construct special array
called interaction array(IG). Interaction array is a 2D array, where
the 1st and 2nd dimension are sets of items and each cell of row r
and column c specifies the total transaction in which both r and c
are present. At every updation of support value, we just scan this
array to remove unpromising elements from post_set.

3.5 Correctness
Theorem 1 shows that OP-TKC can correctly generate all and
only all top-k closed itemsets.
Theorem 1: Let K be the set of top-k closed itemsets of a
transactional dataset. Let K′ be the set of top-k closed itemsets
derived from applying OP-TKC on the dataset. Then K′ = K. In
other words, OP-TKC can correctly generate all and only all top-k
closed itemsets.

Proof: First, we prove that K ⊆ K′ by contradiction. Assume ∃ C

∈ K but C ∉ K′ where C is a closed itemset. Let � be the set of

closed itemsets that does not belong to top-k list and removed by

the pruning strategy of lemma 5. Then C ∈ (K′ ∪ �). As shown

in lemma 5, closed itemset pruning strategy only removes closed

itemsets that does not belong to top-k list. So, C∉ � and C ∈ K.′

Hence, our assumption that C ∉ K′ is wrong and we conclude K

⊆ K′. Next, we prove K′ ⊆ K by contradiction. Assume ∃ C ∈

K′ but C ∉ K. Then C is either not closed or does not belong to

top-k closed itemsets. If C is not closed, then it would not have
been generated (lemma 1). Also lemma 5 prunes only closed
itemsets that do not belong to top-k list. Hence our assumption

that C ∈ K′ and C ∉ K is wrong. Thus OP-TKC correctly

generates all and only top-k closed itemsets.

3.6 Limitations
There are certain limitations in our approach when we include the
length constraint. The limitation is large main memory usage. If
we include length constraint, then all the closed itemsets of length
< l, where l is the user specified minimum length, should be
stored in the top-k list. We can remove a closed itemset of length
< l only if its associated post_set is null. i.e. only after generating
all of its immediate supersets which are closed. Hence, we may
need to store more than k closed itemsets in the top-k list and the
peak number of closed itemsets stored in the list is determined by
the dataset and the given length.

4 EXPERIMENTS AND RESULT

ANALYSIS

We have implemented our algorithm using C language and the
code was compiled using 32-bit Microsoft Visual C++ compiler.
All the experiments are conducted on Pentium 4 machine with 1
GB of main memory loaded with windows XP operating system.
The executable file of TFP algorithm was obtained from the
respective authors. To obtain the accurate peak memory usage of
executions, we have written our own stub code using windows
process library API that will fetch the main memory usage
statistics whenever a process is terminated. Since we extract the
needed information from the windows kernel itself, the load made
by this program on the memory and the processor is completely
negligible. Moreover, the entire coding is only a few lines of
code and just fetches memory usage data from the windows
kernel. We have checked the running times while running this
piece of code in background and while this software was not
running in background. The observed differences are only in
microseconds and in most cases we didn’t observe any difference.
The dataset generator is downloaded from Illimine project
website. For TxIyDz, x indicates the average transaction length, y
indicates the average pattern length and z indicates the total
number of transaction instances. To make the comparison fair, we
have set the length parameter of TFP code to 1. We have done
huge number of experiment and we present only representative
results here. The plots in Fig. 1 and Fig. 2 show the performance
comparison in terms of running time and peak memory usage of
executions for OP-TKC and TFP. The data given in Table 1
presents the running time of algorithm and peak memory usage for
chess dataset. The data given in Table 2 gives the experimental
results for T50I45D10K dataset. The peak memory usage data
given in our results only include the main memory usage and not
the page file usage. We have also collected the peak page file
usage data but we have not reported the results here because the
page file usage was negligible for most of our experimental
executions. In our future work, we are planning to experiment
with very large datasets to correctly assess the performance in
terms of peak page file usage. It is to be noted that our
implementation is still being optimized and we may get better
results in our future work.

0

1

2

3

4

5

6

100 300 500 700 1000 2000

K-VALUE

R
u

n
ti

m
e
 i

n
 S

e
c
o

n
d

s

TFP

OP-TKC

Figure 1: Algorithm runtime Vs K Value for T25I20D50k dataset

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

100 300 500 700 1000 2000

k-value

P
e
a
k
 M

e
m

o
ry

 u
s
a
g

e
 i

n
 B

y
te

s

TFP

OP-TKC

Figure 2: Memory Usage Vs K Value for T500I450D250 dataset

Table 1: Algorithm Running time in Seconds and Peak Memory
usage in Bytes for chess dataset.

TFP OP-TKC k-
value Running

time
Peak

Memory
Usage

Running
Time

Peak
Memory
Usage

100 0.188 9773056 0.093 880640

300 0.203 9805824 0.192 1175552

500 0.256 9838592 0.246 1503232

700 0.289 9871360 0.3 1847296

1000 0.29 9936896 0.392 2338816

2000 0.296 10035200 0.412 3993600

Table 2: Algorithm Running time in Seconds and Peak Memory
usage in Bytes for T50I45D10K dataset.

TFP OP-TKC k-
value Running

time
Peak

Memory
Usage

Running
Time

Peak
Memory
Usage

100 1.062 48803840 0.828 2740224

300 1.822 48804902 1.234 4341760

500 2.625 48840704 2.140 5943296

700 2.766 49045504 2.750 7544832

1000 2.925 49270784 3.025 9977856

2000 3.515 49537024 3.411 18038784

Table 3: Algorithm Running time in Seconds and Peak Memory
usage in Bytes for T25I20D10K dataset.

TFP OP-TKC k-
value Running

time
Peak

Memory
Usage

Running
Time

Peak
Memory
Usage

100 0.794 28065792 0.203 1327104

300 0.988 28143616 0.500 2850480

500 1.066 28241920 0.812 3825664

700 1.162 28307456 1.109 5050368

1000 1.252 28409856 1.352 6942720

2000 1.292 28708864 1.382 13127680

5 CONCLUSION
We have introduced a novel algorithm which explores the closed
itemset lattice in breadth first manner to generate all the top-k

closed itemsets without examining all the closed itemsets. Our
algorithm is highly memory efficient since it stores only the input
dataset and top-k itemsets in memory. Also, our algorithm is time
efficient since it expands only nodes in the search space that
belongs to top-k closed itemsets. We have also discussed the
limitations of our approach to mine all top-k closed itemsets with
size constraint. We are currently working on to design fast and
memory efficient framework for mining top-k closed itemsets with
size constraint.

6 ACKNOWLEDGEMENTS
We thank Jianyong Wang for providing us the executables of TFP
algorithm and responding to our queries. We would like to thank
C. Luchesse and S. Orlando for providing us the executables of
DCI-Close Algorithm and responding to our numerous queries.

7 REFERENCES
[1] C. Lucchese,S. Orlando and R. Perego, "Fast and Memory

Efficient Mining of Frequent Closed Itemsets", IEEE
Transactions on Knowledge and Data Engineering, VOL 18,
No 1, pages 21-36, January 2006.

[2] J. Wang, J. Han, Y.Lu,P. Tzvetkov, "TFP: An Efficient
Algorithm for Mining Top-K Frequent Closed Itemsets, "
IEEE Trans. on Knowledge and Data Engineering, Vol 17,
No 5, pp. 652-664, May 2005

[3] Liping Ji, Kian-Lee Tan,K H. Tung, "Compressed
Hierarchical Mining of Frequent Closed Patterns from Dense

Data Sets," IEEE Trans. on Knowledge and Data
Engineering, Vol 19, No.9, Sept 2007.

[4] Mingjun Song, Sanguthevar Rajasekaran, "A Transaction
Mapping Algorithm for Frequent Itemsets Mining", IEEE
Transactions on Knowledge and Data Engineering,, VOL 18,
No 4, pages 472-481, April 2006.

[5] G. Grahne, J. Zhu, “Fast Algorithms for Frequent Itemset Mining
Using FP-Trees”, IEEE Transactions on Knowledge and Data
Engineering, Vol 17, No 10, pages 1347-1362, October 2005.

[6] D.Burdick, M.Calimlim, J.Flannick, J.Gehrke, Y.Yiu,
"MAFIA: A Maximal Frequent Itemset Algorithm", IEEE
Transactions on Knowledge and Data Engineering, VOL 17,
No 11,Pages 1490 - 1504, November 2005.

[7] Jinyan Li, Guimei Liu, Haiquan Li, Limsoon Wong,
"Maximal Biclique Subgraphs and Closed Pattern Pairs of
the Adjacency Matrix: A One-to-One Correspondence and
Mining Algorithms," IEEE Trans. Knowledge and Data

Engineering, vol. 19, No. 12, pp. 1625-1637, Dec. 2007.

[8] N. Pasquier, Y. Bastide, R. Taouil, and L.Lakhal,
"Discovering Frequent Closed Itemsets for Association
Rules", Proc. 7th Int. Conf. Database Theory (ICDT'99),
pages 398-416, January 1999.

[9] Dao-l Lin and Zvi M. Kedem, "PINCER-SEARCH: An
Efficient Algorithm for Discovering the Maximum Frequent
Set", IEEE Trans. on Knowledge and data Engineering, VOL
14, No. 3, June 2002.

[10] K. Makino and T. Uno, "New algorithms for enumerating all
maximal cliques," in Proceedings of the 9th Scandinavian
Workshop on Algorithm Theory (SWAT 2004), Springer-
Verlag, 2004, pp. 260–272.

[11] Guizhen Yang, “The complexity of Mining Maximal
Frequent Itemsets and Maximal Frequent Patterns”,
KDD’04, Seattle, Washington, August 2004.

[12] R. Agrawal, T. Imielinski, and A. Swami. "Mining
association rules between sets of items in large databases", In
Proceedings of the 1993 ACM SIGMOD International
Conference on Management of Data, pages 207-216,
Washington, DC, May 1993.

[13] T. Uno, M. Kiyomi, and H. Arimura, "LCM ver.2: Efficient
mining algorithms for Frequent/closed/maximal itemsets," In
Proc. IEEE ICDM’04 Workshop FIMI’04, 2004.

[14] K. Gouda, M.J.Zaki, “GenMax: An Efficient Algorithm for
Mining Maximal Frequent Itemsets”, Journal of Data Mining
and Knowledge Discovery, pages 1-20, 2005

[15] C. Lucchese, S. Orlando, P. Palmerini, R. Perego, and F.
Silvestri, "KDCI: A Multi-Strategy Algorithm for Mining
Frequent Sets," Proc. IEEE ICDM FIMI'03 Workshop, Dec
2003

[16] Jiawei Han, Jian Pei, Yiwen Yin, Runying Mao, “Mining
Frequent Pattern without candidate Generation : A Frequent
Pattern Approach” Journal of Data Mining and Knowledge
Discovery , Springer, pages 53-87, 2004.

[17] R. Agrawal and R. Srikant, "Fast algorithms for mining
association rules", In Proceeding of Int. Conf. Very Large
Data Bases, pages 487-499, Santiago, Chile, September.
1994.

[18] A. Savasere, E. Omiecinski, and S. Navath, "An efficient
algorithm for mining association rules in large databases", In
Proc. of Intl. Conf. on Very Large Databases (VLDB), 1995.

[19] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without
candidate generation”, In Proceeding of Special Interest
Group on Management of Data , pages 1-12, Dallas, TX,
May 2000.

[20] R.J. Bayardo, "Efficiently Mining Long Patterns from
Databases", Proc. ACM-SIGMOD Int`l Conf. Management
of Data, pages 85-93, 1998.

[21] Ferenc Bodon, "A Fast APRIORI Implementation," IEEE
ICDM FIMI'03,USA, 2003.

[22] M.J.Zaki, S. Parthasarathy, M. Ogihara and W.Li, “New
Algorithms for fast Discovery of Association Rules”, Proc.
3rd Intl. Conf. Knowledge Discovery and Data Mining,
pages: 283-286, 1997

[23] I.Rigoutsos and A. Floratos, “Combinatorial Pattern
Discovery in Biological Sequences: The Teiresias Algorithm,
Bioinformatics, Vol 14, pages 55-67,1998.

[24] J. Wang, J.Han and J.pei, "CLOSET+: Searching for the Best
Strategies for Mining Frequent Closed Itemsets", Proc. 2003
ACM SIGKDD Int. Conf. Knowledge Discovery and Data
Mining, pages 236-245, August 2003.

[25] G.Liu, “Supporting Efficient and Scalable Frequent Pattern
Mining,” PhD dissertation, Dept. of Computer Science.,
Hong Kong University., May 2005.

[26] C. Lucchese, S. Orlando, P. Palmerini, R. Perego and F.
Silvestri, "KDCI: A multistrategy Algorithm for Mining
Frequent Sets," In Proc. IEEE ICDM’03 Workshop FIMI’03,
2003.

[27] J. Besson, C. Robardet, J.F. Boulicaut and S.
Rome,”Constraint Based Concept Mining and its Application
to Microarray Data Analysis”, Journal of Intelligent Data
Analysis, pp. 59-82, 2005.

[28] F. Pan, G. Cong, A.K.H. Tung, J. Yang, M. J. Zaki,
“CARPENTER: Finding Closed Patterns in long Biological
Datasets”, SIGKDD-03, 2003.

