B * Homeomorphisms in Topological Spaces

Article in International Journal of Computer Applications · April 2013			
DOI: 10.512	10/11452-7052		
CITATIONS		READS	
0		4,854	
2 autho	rs, including:		
	Palanimani Ganesan		
	Erode Sengunthar Engineering College		
	11 PUBLICATIONS 45 CITATIONS		
	SEE DROEILE		

β * Homeomorphisms in Topological Spaces

P.G. Palanimani Research Scholar Karpagam University Coimbatore, India

R. Parimelazhagan Department of Science and Humanities, Karpagam college of Engineering, Coimbatore-46, India

ABSTRACT

In this paper the authors define $oldsymbol{eta}^*$ homeomorphisms which are generalization of homeomorphisms and investigate some of their basic properties and also investigate generalized $oldsymbol{eta}^*$ closed maps.

Mathematics subject classification: 54C10,54C55

Keywords: $oldsymbol{eta}^*$ closed set , $oldsymbol{eta}^*$ closed map , $oldsymbol{eta}^*$ - continuous $oldsymbol{eta}^*$ homeomorphisms

1. INTRODUCTION

Malghan[4] introduced the concept of generalized closed maps in topological spaces. Biswas[1], Mashour[5], Sundaram[9], Crossley and Hildebrand [2], and Devi[3]have introduced and studied semi-open maps, α -open maps, and generalized open maps respectively.

Several topologists have generalized homeomorphisms in topological spaces. Biswas[1], Crossley and Hildebrand[2], Sundaram[5s] have introduced and studied semi-homeomorphism and some what homeomorphism and generalized homeomorphism and gc-homeomorphism respectively.

Throughout this paper (X, \mathcal{T}) and $(Y, \mathcal{\sigma})$ (or simply X and Y) represents the non-empty topological spaces on which no separation axiom are assumed, unless otherwise mentioned. For a subset A of X, cl(A) and int(A) represents the closure of A and interior of A respectively.

2. PRELIMINARIES

The authors recall the following definitions

Definition [9] 2.1: A subset A of a space X is g-closed if and only if $cl(A) \subset G$ whenever $A \subset G$ and G is open.

Definition [3] 2.2: A map $f: X \to Y$ is called g-closed if each closed set F of X, f(F) is g-closed in Y.

Definition [4] 2.3: A map $f: X \to Y$ is said to be generalized continuous if $f^{-1}(V)$ is g-open in X for each set V of Y

Definition [8] 2.4: A subset A of a topological space X is said to be β^* closed set in X if cl(int(A)) contained in U whenever U is G-open

Definition 2.5[7]: Let $f: X \to Y$ from a topological space X into a topological space Y is called β^* -continuous if the inverse image of every closed set in Y is β^* closed in X.

3. β^* Closed map

Definition 3.1: A map $f: X \to Y$ is called β^* closed map if for each closed set F of X, f(F) is β^* closed set.

Theorem 3.2: Every closed map is a $oldsymbol{eta}^*$ -closed map.

Proof: Let $f: X \to Y$ be an closed map. Let F be any closed set in X. Then f(F) is an closed set in Y. Since every closed set is $\boldsymbol{\beta}^*$, f(F) is a $\boldsymbol{\beta}^*$ -closed set. Therefore f is a $\boldsymbol{\beta}^*$ closed map.

Remark 3.3:The converse of the theorem 3.4 need not be true as seen from the following example.

Example 3.4: Let $X = Y = \{a, b, c\}$ with topologies $\mathcal{T} = \{X, \phi, \{a\}, \{a,b\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{c\}, \{a,c\}\}$ Let f(a) = a, f(b) = c, f(c) = b be the map. Then f is β^* -closed but not closed, Here f is β^* -continuous. But f is not continuous since for the closed set $\{b, c\}$ in X is $\{a, b\}$ which is not closed in Y.

Definition 3.5: A map $f: X \to Y$ is called β^* closed map if for each closed set F of X, f(F) is β^* closed set.

Remark 3.6: Every g-closed map is a β^* closed map and the converse is need not be true from the following example.

Example3.7:Let $X = \{a, b, c\}$ and $\mathcal{T} = \{\phi, x, \{a\}, \{a, b\}\}, \mathcal{T}^c = \{\phi, x, \{b,c\}, \{c\}\}$ be topologies on X. $f: X \to Y$ each closed set f(F) is g-closed. Here $\{a, c\}$ is g-closed but not $\boldsymbol{\beta}^*$ -closed.

Theorem 3.8: A map $f: X \to Y$ is β^* closed if and only if for each subset S of Y and for each open set U containing

 $f^{-1}(S)$ there is a $oldsymbol{eta}^*$ -open set V of Y such that $S \subset V$ and $f^{-1}(V) \subset U$

Proof: Suppose f is β^* closed. Let S be a subset of Y and U is an open set of X such that $f^{-1}(S) \subset U$, Then $V = Y - f^{-1}(X - U)$ is a β^* -open set V of Y Such that $S \subset V$ such that $f^{-1}(V) \subset U$.

For the converse suppose that F is a closed set of X. Then $f^{-1}(Y - f(F)) \subset X - F$ and X - F is open. By hypothesis there is $\boldsymbol{\beta}^*$ -open set V of Y such that $Y - f(F) \subset V$ and $f^{-1}(V) \subset X - F$. Therefore $F \subset X - f^{-1}(V)$. Hence $Y - V \subset f(F) \subset f(X - f^{-1}(V)) \subset Y - V$ which implies f(F) = Y - V. Since Y - V is $\boldsymbol{\beta}^*$ -closed if f(F) is $\boldsymbol{\beta}^*$ -closed and thus f is a $\boldsymbol{\beta}^*$ -closed map.

Theorem 3.9: If $f: X \to Y$ is continuous and β^* -closed and A is a β^* -closed set of X then f(A) is β^* -closed.

Proof: Let $f(A) \subset O$ where O is an open set of Y. Since f is g-continuous, $f^{-1}(O)$ is an open set containing A. Hence $cl(int(A)) \subset f^{-1}(O)$ is A is $\boldsymbol{\beta}^*$ -closed set. Since f is $\boldsymbol{\beta}^*$ -closed, f(cl(int(A))) is a $\boldsymbol{\beta}^*$ -closed set contained in the open set O which implies than $cl(int(f(cl(int(A))))) \subset O$ and hence $cl(int(f(cl(int(A))))) \subset O$. f is a $\boldsymbol{\beta}^*$ -closed set.

corollary 3.6: If $f: X \to Y$ is g-continuous and closed and A is g-closed set of X the f(A) is β^* -closed.

Corollary 3.10: If $f: X \to Y$ is β^* -closed and continuous and A is β^* -closed set of X then

 $f_A:A \to Y$ is continuous and ${\boldsymbol{\beta}}^*$ -closed set.

Proof: Let F be a closed set of A then F is β^* closed set of X. From above theorem 3.5 follows that $f_A(F) = f(F)$ is β^* closed set of Y. Here f_A is β^* -closed and continuous.

Theorem 3.11: If a map $f: X \to Y$ is closed and a map $g: Y \to Z$ is β^* -closed then $f: X \to Z$ is β^* -closed.

Proof: Let H be a closed set in X. Then f(H) is closed and $(g \circ F)(H) = g(f(H))$ is β^* -closed as g is β^* -closed. Thus $g \circ f$ is β^* -closed.

Theorem 3.12: If $f: X \to Y$ is continuous and β^* -closed and A is a β^* -closed set of X then $f_A: A \to Y$ is continuous and β^* -closed.

Proof: If F is a closed set of A then F is a $\boldsymbol{\beta}^*$ closed set of X. From Theorem 3.4, It follows that $f_A(F) = f(F)$ is a $\boldsymbol{\beta}^*$ closed set of Y. Hence f_A is $\boldsymbol{\beta}^*$ -closed. Also f_A is continuous.

Theorem 3.13: If $f: X \to Y$ is β^* -closed and $A = f^{-1}(B)$ for some closed set B of Y then $f_A: A \to Y$ is β^* -closed.

Proof: Let F be a closed set in A. Then there is a closed set H in X such that $F = A \cap H$. Then $f_A(F) = f(A \cap H) = f(H) \cap f(B)$. Since f is $\boldsymbol{\beta}^*$ -closed. f(H) is $\boldsymbol{\beta}^*$ -closed in Y. so $f(H) \cap B$ is $\boldsymbol{\beta}^*$ -closed in Y. Since the intersection of a $\boldsymbol{\beta}^*$ -closed and a closed set is a $\boldsymbol{\beta}^*$ -closed set. Hence f_A is $\boldsymbol{\beta}^*$ -closed.

Remark 3.14: If B is not closed in Y then the above theorem does not hold from the following example.

Example 3.15: Take $B = \{b,c\}$. Then $A = f^{-1}(B) = \{b,c\}$ and $\{c\}$ is closed in A but $f_A(\{b\}) = \{b\}$ is not $\boldsymbol{\beta}^*$ -closed in Y .{a} is also not $\boldsymbol{\beta}^*$ -closed in B.

4. β^* Homeomorphism

Definition 4.1 : A bijection $f: X \to Y$ is called $oldsymbol{eta}^*$ homeomorphism if f is both $oldsymbol{eta}^*$ continuous and $oldsymbol{eta}^*$ closed

Theorem 4.2 : Every homeomorphism is a $oldsymbol{eta}^*$ homeomorphism

Proof: Let $f: X \to Y$ be a homeomorphism. Then f is continuous and closed. Since every continuous function is $\boldsymbol{\beta}^*$ continuous and every closed map is $\boldsymbol{\beta}^*$ closed, f is $\boldsymbol{\beta}^*$ continuous and $\boldsymbol{\beta}^*$ closed. Hence f is a $\boldsymbol{\beta}^*$ homeomorphism.

Remark 4.3: The converse of the theorem 4.2 need not be true as seen from the following example.

Example 4.4:Let $X = Y = \{a, b, c\}$ with topologies $\mathcal{T} = \{X, \phi, \{a\}, \{a, b\}\}$ and $\mathcal{O} = \{Y, \phi, \{a\}, \{c\}, \{a, c\}\}$. Let $f: X \to Y$ with f(a)=a,f(b)=c,f(c)=b. Then f is $\boldsymbol{\beta}^*$ homeomorphism but not a homeomorphism, since the inverse image of $\{a, c\}$ in Y is not closed in X.

Theorem 4.5: For any bijection $f: X \to Y$ the following statements are equivalent.

(a) Its inverse map f-1 : Y \rightarrow X is β^* continuous.

- (b) f is a β^* open map.
- (c) f is a β^* -closed map.

Proof: (a) \Longrightarrow (b)

Let G be any open set in X. Since f^{-1} is β^* continuous, the inverse image of G under f^{-1} , namely f(G) is β^* open in Y and so f is a β^* open map.

(b) \Longrightarrow (c)

Let F be any closed set in X. Then F^c open in X.Since f is $\boldsymbol{\beta}^*$ open, $f(F^c)$ is $\boldsymbol{\beta}^*$ open in Y . But $f(F^c) = Y - f(F)$ and so f(F) is $\boldsymbol{\beta}^*$ closed in Y. Therefore f is a $\boldsymbol{\beta}^*$ closed map.

 $(c) \Longrightarrow (a)$

Let F be any closed set in X. Then the inverse image of F under f^{-1} , namely f(F) is $\boldsymbol{\beta}^*$ closed in Y since f is a $\boldsymbol{\beta}^*$ closed map. Therefore f^{-1} is $\boldsymbol{\beta}^*$ continuous.

Theorem 4.6: Let $f: X \to Y$ be a bijective and $\boldsymbol{\beta}^*$ continuous map. Then, the following statements are equivalent.

- (a) f is a $oldsymbol{eta}^*$ open map
- (b) f is a $oldsymbol{eta}^*$ homeomorphism.
- (c) f is a β^* closed map.

Proof: (a) \Longrightarrow (b)

Given $f: X \to Y$ be a bijective, β^* continuous and β^* open. Then by definition, f is a β^* homeomorphism.

 $(b) \Longrightarrow (c)$

Given f is $oldsymbol{eta}^*$ open and bijective. By theorem 4.5, f is $oldsymbol{eta}^*$ closed map.

 $(c) \Longrightarrow (a)$

Given f is $oldsymbol{eta}^*$ closed and bijective. By theorem 4.5,f is a $oldsymbol{eta}^*$ open map.

Remark 4.7: The following example shows that the composition of two $oldsymbol{eta}^*$ homeomorphism is not a $oldsymbol{eta}^*$ homeomorphism.

Example 4.8: Let $X = Y = Z = \{a, b, c\}$ with topologies $\mathcal{T} = \{X, \phi, \{a\}, \{a,b\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{c\}\}$ and $\eta = \{Z, \phi, \{a\}, \{b\}, \{a,b\}\}$. Let $f: X \to Y$ and $g: Y \to Z$

be the map with f(a)=a, f(b)=c, f(c)=b. Then both f and g are $\boldsymbol{\beta}^*$ homeomorphisms but their composition $g\circ f:X\to Z$ is not a $\boldsymbol{\beta}^*$ homeomorphism, since $F=\{a,c\}$ is closed in X, but $g\circ f(F)=g\circ f(\{a,c\})=\{a,b\}$ which is not $\boldsymbol{\beta}^*$ -closed in Z.

5. REFERENCES

- N.Biswas, On some mappings in topological spaces, Bull. Cal. Math. Soc. 61(1969), 127-135.
- [2] S.G. Crossley and S.K. Hildebrand, semi-topological properties, Fund Math; 74(19720, 233-254.
- [3] R. Devi, H.Maki, and K. Balachandran, Associated topologies of generalized _-closed sets and \(\mathcal{O}\) generalized closed sets Mem. Fac. Sci. Kochi. Univ. Ser. A. Math. 15(1994), 51-63.
- [4] S.R.Malghan, Generalized closed maps, J.Karnatak.Univ.Sci., 27(1982), 82-88.
- [5] A.S. Masnhour, I.A. Hasanein and S.N. EI-Deeb, On _continuous and _-open mapping, Acta Math.Hungar, 41(1983), 213-218.
- [6] A.A.Omari and M.S.M.Noorani, On Generalized bclosed sets, Bull. Malays. Math.Sci.Soc(2),32(1)(2009), 19-30.
- [7] P.G.Palanimani and R.Parimelazhagan , $oldsymbol{eta}^*$ closed sets in topological Spaces, IOSR-journal of mathematics vol 5,issue1 pp-47-50
- [8] P.G.Palanimani and R.Parimelazhagan , $oldsymbol{eta}^*$ Continuous Maps and Pasting Lemma in Topological Spaces, IJSER, vol 4 issue-1
- [9] P.Sundaram, Studies on Generalizations of continuous maps in topological spaces, Ph.D. Thesis, Bharathiar University, Coimbatore(1991).