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ABSTRACT 

In this paper the authors define 
*  homeomorphisms which 

are generalization of homeomorphisms and investigate some 

of their basic properties and also investigate generalized 

* closed maps. 
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1. INTRODUCTION 

Malghan[4] introduced the concept of generalized closed 

maps in topological spaces. Biswas[1], Mashour[5], 

Sundaram[9], Crossley and Hildebrand [2], and Devi[3]have 

introduced and studied semi-open maps,  -open maps, and 

generalized open maps respectively.  

Several topologists have generalized homeomorphisms in 

topological spaces. Biswas[1], Crossley and Hildebrand[2], 

Sundaram[5s] have introduced and studied semi-

homeomorphism and some what homeomorphism and 

generalized homeomorphism and gc-homeomorphism 

respectively. 

Throughout this paper (X,  ) and (Y,  )(or simply X and 

Y) represents the non-empty topological spaces on which no 

separation axiom are assumed, unless otherwise mentioned. 

For a subset A of X, cl(A) and int(A) represents the closure of 

A and interior of A respectively. 

2. PRELIMINARIES 

The authors  recall the following definitions 

Definition [9] 2.1: A subset A of a space X is g-closed if and 

only if cl(A)   G whenever A   G and G is open. 

Definition [3] 2.2: A map f : X → Y is called g-closed if each 

closed set F of X, f(F) is g-closed in Y . 

Definition [4] 2.3: A map f : X → Y is said to be generalized 

continuous if )(1 Vf 
 is g-open in X for each set V of Y 

Definition [8] 2.4: A subset A of a topological space X is said 

to be 
* closed set in X if  cl(int(A)) contained in U 

whenever U is G-open 

Definition 2.5[7]: Let f : X → Y from a topological space X 

into a topological space Y is called 
* -continuous if the 

inverse image of every closed set in Y is 
*  closed  in X. 

 3.
* Closed map 

Definition 3.1: A map f : X → Y is called  
* closed map if 

for each closed set F of X, f(F) is  
* closed set. 

Theorem 3.2: Every closed map is a 
* -closed map. 

Proof: Let f : X → Y be an closed map. Let F be any closed 

set in X. Then f(F) is an closed set in Y. Since every closed 

set is 
* , f(F) is a 

* -closed set. Therefore f is a 

* closed map. 

Remark 3.3:The converse of the theorem 3.4 need not be true 

as seen from the following example. 

Example 3.4: Let X = Y = {a, b, c} with topologies  = 

{X, , {a},{a,b}} and  = {Y, , {a},{c},{a,c}}  Let 

f(a)= a, f(b) = c, f(c) = b be the  map. Then f is 
* -closed 

but not closed, Here f is 
* -continuous. But f is not 

continuous since for the 

closed set {b, c} in X is {a, b} which is not closed in Y. 

Definition 3.5: A map f : X → Y is called  
* closed map if 

for each closed set F of X, f(F) is  
* closed set. 

Remark 3.6: Every g-closed map is a  
* closed map and 

the converse is need not be true from the following example. 

Example3.7:Let X = {a, b, c} and   ={ , x, {a}, {a, 

b}},
c = { ,X, {b,c}, {c}} be topologies 

on X. f : X → Y each closed set f(F) is g-closed. Here  {a, c} 

is g-closed but not 
* -closed. 

Theorem 3.8: A map f : X → Y is 
* closed  if and only if 

for each subset S of Y and for each open set U containing 
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f−1(S) there is a 
* -open set V of Y such that S  V and 

f−1(V )   U 

Proof: Suppose f is 
* closed. Let S be a subset of Y and U 

is an open set of X such that f−1(S)   U, Then V = Y − f−1(X 

−U)is a 
* -open set V of Y Such that SV such that 

f−1(V )   U. 

For the converse suppose that F is a closed set of X. Then 

f−1(Y −f(F))   X −F and X −F is open. By hypothesis there 

is 
* -open set V of Y such that Y − f(F)V and 

f−1(V)X − F. Therefore FX − f−1(V).Hence Y − V  

f(F)  f(X − f−1(V )) Y−V which implies f(F) = Y − V. 

Since Y − V is 
* -closed if f(F) is

* -closed and thus f 

is a 
* -closed map. 

Theorem 3.9:If f : X → Y is continuous and 
* -closed and 

A is a 
* -closed set of X then f(A) is 

* -closed. 

Proof: Let f(A)   O where O is an open set of Y. Since f is 

g-continuous, f−1(O) is an open set containing A. Hence 

cl(int(A))   f−1(O) is A is 
* -closed set. Since f is 

* -

closed, f(cl(int(A))) is a 
* -closed set contained in the 

open set O which implies than cl(int(f(cl(int(A)))))   O and 

hence cl(int(f(cl(int(A)))))   O .f is a
* -closed set. 

corollary 3.6: If f : X → Y is g-continuous and closed and A 

is g-closed set of X the f(A)is 
* -closed. 

Corollary 3.10: If f : X → Y is
* -closed and continuous 

and A is 
* -closed set of X then 

 fA : A → Y is continuous and 
* -closed set. 

Proof: Let F be a closed set of A then F is 
* closed set of 

X. From above theorem 3.5 follows that fA(F) = f(F) is 
* -

closed set of Y. Here fA is
* -closed and continuous. 

Theorem 3.11: If a map f : X → Y is closed and a map g : Y 

→ Z is 
* -closed then f : X → Z is 

* -closed. 

Proof : Let H be a closed set in X. Then f(H) is closed and (g 

◦ F)(H) = g(f(H)) is 
* -closed as g is 

* -closed. Thus g 

◦ f is 
* -closed. 

Theorem 3.12:If f : X → Y is continuous and 
* -closed 

and A is a 
* -closed set of X then fA : A → Y is 

continuous and
* -closed. 

Proof: If F is a closed set of A then F is a 
* closed set of 

X. From Theorem 3.4, It follows that fA(F) = f(F) is a 
* -

closed set of Y. Hence fA is
* -closed. Also fA is 

continuous. 

Theorem 3.13:If f : X → Y is 
* -closed and A = f−1(B) for 

some closed set B of Y then fA : A → Y.is
* -closed . 

Proof: Let F be a closed set in A. Then there is  a closed set H 

in X such that F = A ∩ H. Then fA(F) = f(A ∩ H) = f(H) ∩ 

f(B). Since f is 
* -closed. f(H) is 

* -closed in Y. so 

f(H) ∩ B is
* -closed in Y. Since the intersection of a 

* -closed and a closed set is a 
* -closed set. Hence fA 

is 
* -closed. 

Remark 3.14: If B is not closed in Y then the above theorem 

does not hold from the following example. 

Example 3.15: Take B = {b,c}. Then A = f−1(B) = {b, c} and 

{c} is closed in A but fA({b}) = {b} is not 
* -closed in Y 

.{a} is also not 
* -closed in B. 

4. 
* Homeomorphism 

Definition 4.1 : A bijection  f : X → Y is called  
*  

homeomorphism if  f is both  
*  continuous and 

* closed 

Theorem 4.2 : Every  homeomorphism is a 
*  

homeomorphism 

Proof: Let f : X → Y be a homeomorphism. Then f is 

continuous and closed. Since every continuous function is 

* continuous and every closed map is
* closed, f is 

* continuous and 
* closed. Hence f is a 

* homeomorphism. 

Remark 4.3:The converse of the theorem 4.2 need not be true 

as seen from the following example. 

Example 4.4:Let X = Y = {a, b, c} with topologies   = 

{X, ,{a}, {a, b}} and  = {Y,  , {a},{c}, {a, c}}. Let f : 

X → Y with f(a)=a,f(b)=c,f(c)=b.Then f is 
*  

homeomorphism but not a homeomorphism, since the inverse 

image of {a, c} in Y is not closed in X. 

Theorem 4.5: For any bijection f : X → Y the following 

statements are equivalent. 

(a) Its inverse map f−1 : Y → X is 
* continuous. 
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(b) f is a 
* open map. 

(c) f is a 
* -closed map. 

Proof: (a)   (b) 

Let G be any open set in X. Since f−1 is 
* continuous, the 

inverse image of G under f−1, namely f(G) is 
* open in Y 

and so f is a 
* open map. . 

(b)   (c) 

Let F be any closed set in X. Then Fc open in X.Since f is 

* open, f(Fc) is 
* open in Y . But f(Fc) = Y − f(F) and 

so f(F) is 
* closed in Y. Therefore f is a 

* closed map. 

(c)   (a) 

Let F be any closed set in X. Then the inverse image of F 

under f−1, namely f(F) is 
* closed in Y since f is a 

* closed map. Therefore f−1 is 
* continuous. 

Theorem 4.6: Let f : X → Y be a bijective and 

* continuous map. Then, the following statements 

are equivalent. 

(a) f is a 
* open map 

(b) f is a 
* homeomorphism. 

(c) f is a 
* closed map. 

Proof: (a)   (b)  

Given f : X → Y be a bijective, 
* continuous and 

* open. Then by definition, f is a 
* homeomorphism. 

(b)   (c) 

 Given f is 
* open and bijective. By theorem 4.5, f is  

* closed map. 

(c)   (a) 

 Given f is 
* closed and bijective. By theorem 4.5,f is a 

* open map. 

 

 

 

Remark 4.7: The following example shows that the 

composition of two 
*  homeomorphism is not a 

* homeomorphism. 

Example 4.8: Let X = Y = Z = {a, b, c} with topologies   = 

{X, , {a}, {a,b}} and   =  {Y,  ,{a},{c) {a, c}} and 

  = {Z, , {a},{b},{a,b}}. Let f : X → Y and g : Y → Z 

be the map with f(a)=a,f(b)=c,f(c)=b. Then both f and g are 

* homeomorphisms but their composition g ◦ f : X → Z  is 

not a 
* homeomorphism, since F = {a, c} is closed in X, 

but g ◦ f(F) = g ◦ f({a, c}) = {a, b} which is not 
* -closed 

in Z. 
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