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Abstract
Electroencephalogram (EEG) signal is mostly utilised to monitor epilepsy to revitalize
the close loop brain. Several classical methods devised to identify seizures rely on visual
analysis of EEG signals which is a costly and complex task if channel count increases. A
novel method, namely, a rag‐Rider optimisation algorithm (rag‐ROA) is devised for
training a deep recurrent neural network (Deep RNN) to discover epileptic seizures. Here
the input EEG signals are splitted to different channels wherein each channel undergoes
feature extraction. The features like Holoentropy, relative energy, fluctuation index, tonal
power ratio, spectral features along with the proposed Taylor‐based delta amplitude
modulation spectrogram (Taylor‐based delta AMS) are mined from each channel. The
proposed Taylor‐based delta AMS is designed by integrating the delta AMS and Taylor
series. The probabilistic principal component analysis (PPCA) is employed to reduce the
feature dimension. The dimensionally reduced feature vector is classified with Deep
RNN using rag‐ROA, which is designed by integrating rag‐bull rider along with the four
other riders available in the Rider optimisation algorithm (ROA). Thus, the resulted
output of the proposed rag‐ROA‐based deep RNN is employed for EEG seizure
detection. The proposed rag‐ROA‐based Deep RNN showed improved results with
maximal accuracy of 88.8%, maximal sensitivity of 91.9%, and maximal specificity of
89.9% than the existing methods, such as Wavelet þ SVM, HWPT þ RVM, MVM‐
FzEN, and EWT þ RF, using the TUEP dataset.

1 | INTRODUCTION

The illness in nerve caused due to electrical ejection from
cortical neurons present in the brain is called epilepsy, which is
vulnerable to generate different kinds of seizures. Such seizures
are unanticipated, unpredicted, and motiveless due to instan-
taneous aspects. There are peoples over 65 million who suffer
from such disorders. There are 75% of cases of epileptic sei-
zures that are treated with therapy [1]. In the remaining 25%
cases, the seizures remain in spite of antiepileptic drugs, and
such drug insolent patients should survive with seizures [2].
Epilepsy affected patients are usually separated throughout the
night and are susceptible to various corporeal injuries or suf-
focation caused by blocked airway after swallowing their
tongues. There is a requirement of assistance in short delays
after the inception of seizures, which cascade rupture and
Sudden Unexpected Death in EPilepsy (SUDEP). Seizures are

mostly hazardous at night time while patients are separated and
could not call for help. There are some night‐time seizures
which may not be noticed by patients and might lead to various
medical impediment or even death. There is a requirement to
devise a real‐time seizure detection model which can elevate
warning for people residing nearby when a seizure is discov-
ered. The provision of proper help may lead to a reduction in
mortality and avert complexities [3].
Epilepsy is treated medically by undergoing various as-

sessments like computed tomography (CT), EEG [4], positron
emission tomography (PET), magnetic resonance imaging
(MRI), or magneto‐encephalogram (MEG). The EEG is
considered to be one of the best as compared to other
methods due to its elevated temporal resolution and is termed
to be inexpensive. The provision of direct measurement is
possible by EEG due to the electrical activities of the brain.
The EEG is the leading technique which is utilised for
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observing and discovering epileptic seizures, which frequently
generate deviations in computed EEG signal. There are many
methods that are devised for determining epileptic seizures
using EEG signals [3,5,6]. Nevertheless, observing the EEG of
a patient from a number of days is typically needed for precise
analysis and recognition of seizures. The scrutinizing of EEG
manually is a complex task. Thus, a trustworthy detection the
seizure can avoid long‐standing monitoring process and diag-
nosis of epileptic seizures. In addition, the involvement of
medical staff throughout seizure activity is essential to examine
a patient suffering from seizures. Continuous interaction with
patient support monitoring of patient's responsiveness and
capability to respond which in turn helps in the determination
of pertinent effects of seizure‐like severity, and establishes
exaggerated brain region [7]. Therefore, automatic detection of
seizure can alert clinicians at the beginning of the seizure,
wherein instantaneous medicinal interference can occur [8,9].
Numerous automatic detection strategies are devised which

makes the effort of neurologists more straightforward and
faster [10]. These methods include pre‐processing, extraction
of features, and categorisation. Preprocessing actions like
filtering and removal of artefacts from input EEG signals [11]
are imperative for improving the efficiency of the algorithm.
Feature extraction is another important stage for cataloguing
seizure and non‐seizure on the basis of performance and
complication of the classifier. The frequency domain and time
are mostly utilised features in automatic seizure detection. The
features can be mean, lacunarity, entropy, fractal intercept,
energy Hurst component, Renyi entropy, power spectral den-
sity, and zero‐crossing [12]. Moreover, there are numerous
optimisation algorithms [13] and classifiers like extreme
learning machine (ELM), artificial neural network (ANN),
Back Propagation Neural Network (BPNN) [14], fuzzy c‐
means [15], linear discriminate analysis (LDA), support vector
machine (SVM) [16], and K‐nearest neighbour (K‐NN), which
are introduced for classifying the issues of epileptic seizures
[17], and various fields, such as the archaeology [18],medical
and so on. There are many challenges that are addressed for
the detection of seizure using time‐frequency methods using
the off‐line dataset [19]. Real‐time seizure analysis for instant
medical elucidation is extremely indispensable and preface of
automated biomarker improves clinical decision. The trust-
worthiness of seizure decision resides in apposite feature se-
lection considering EEG recordings [20].
The goal of the research is to design an epileptic seizure

detection method using the EEG signal. Several classical
methods devised to identify seizures rely on visual analysis of
EEG signals, which is a costly and complex task if channel
count increases. Herein a novel method, namely, a rag‐ROA for
training a Deep RNN to discover epileptic seizures is devised.
The input data signal is extracted from the dataset in which the
EEG signals are splitted into multi‐channels pursued by the
mining of features from individual channels. The features, such
as Holoentropy, relative energy, fluctuation index, tonal power
ration, spectral features, and proposed Taylor‐based delta AMS
are extracted from the channels. The proposed Taylor‐delta
AMS is a combination of Taylor series and delta AMS. The

extracted features from each channel form a feature vector,
which is the concatenation of all features. The dimension of
the feature vector is minimised with PPCA. The dimensionally
reduced feature vector is classified using the Deep RNN, which
is trained by the proposed rag‐ROA, which is devised by
integrating rag‐bull rider along with the four other riders
available in ROA. In ROA, in addition to the Bypass rider,
Follower, Overtaker and Attacker along, a Rag bull rider is
added. Thus, the proposed rag‐ROA‐based deep RNN offers
improved results with maximal accuracy, sensitivity and
specificity.
The key contributions are:

� Proposed Taylor‐based delta AMS feature: The
Taylor‐based delta AMS feature is generated by integrating
the Taylor series in delta AMS features.

� Proposed rag‐ROA‐based Deep RNN for elliptical
seizure detection: The proposed rag‐ROA based deep
RNN is a combination of proposed rag‐ROA and the Deep
RNN. Here the rag‐ROA is developed by integrating the
rag‐bull rider and the ROA for training the Deep RNN.

Other sections are arranged as: Section 2 elaborate illus-
tration of conventional elliptical seizure detection strategies
utilised in literature and challenges faced, which are considered
as the inspiration for developing the proposed technique. The
proposed method for elliptical seizure detection using modi-
fied Deep RNN is portrayed in Section 3. The outcomes of the
proposed strategy with other methods are portrayed in Sec-
tion 4 and Section 5 present conclusion.

2 | MOTIVATIONS

Epilepsy is a major nerve chaos which is originated by irregular
electrical activities of brain regions. Here, EEG is extensively
adapted for monitoring seizures, but the complicated human
EEG signals dynamics are complex to understand. Thus, the
automatic detection of elliptical seizures using EEG is essential
for earlier detection. This section illustrates the analysis of
eight classical elliptical seizure detection strategies using EEG
signals along with its drawbacks.

2.1 | Literature review

The eight classical strategies using elliptical seizure detection
are illustrated along with its disadvantages. Liu et al. [21]
devised a wavelet‐based automatic seizure detection method
for seizure detection. Here, the methods adapt wavelet
decomposition of EEG using different scales and choose three
frequency bands for the consequent processing. The method
extracted effective features like relative amplitude, fluctuation
index, relative energy, relative amplitude, and variation coeffi-
cient at chosen scales, and the features are provided to SVM
for classification. The method employs post‐processing for
initiating precise outcomes. The post‐processing was
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performed using multi‐channel decision fusion and smoothing
for enhancing the efficiency of detection, but this method
failed to extract the appropriate subset of uncorrelated fea-
tures. To overcome this problem, in the proposed method, the
features are selected based on the highest covariance. Vidyar-
atne and Iftekharuddin [9] devised automatic epileptic seizure
onset detection method considering EEG. The method ob-
tained self‐similarity‐based fractal features and harmonic multi‐
resolution features for seizure detection. Here harmonic
wavelet packet transform (HWPT) was adapted for attaining
resolutions with higher frequency. The fractal dimension (FD)
was generated for capturing repetitive patterns from the EEG
signal. The features were extracted for reflecting the temporal
information of EEG. The relevance vector machine was uti-
lised for classifying the feature vector to detect seizures.
However, the method failed to consider patient‐specific
localisation. In the proposed method, the signals from the
datasets are splitted into series of channels, wherein, each
channel undergoes feature extraction and seizure detection,
which considers the patient‐specific localisation. Raghu et al.
[20] devised a method, namely minimum variance modified
fuzzy entropy (MVMFzEn) for recognition of epileptic sei-
zures in real‐time using EEG recordings. The EEG recordings
were considered for the analysis. Moreover, Signal processing
strategies were adapted for reducing noise and considering
membership function. The method provided improved classi-
fication efficiency for data validation. However, the complexity
of the classifier is the major disadvantage of this method. Due
to the chronological pattern of information, Deep RNN is
termed as the excellent classifier amongst the classical deep
learning strategies. Hence, the complexity of the classifier is
avoided in the proposed method. Bhattacharyya and Pachori
[22] employed multivariate oscillatory property of EEG signals
based on adaptive frequency scales for discovering epileptic
seizures. The method employed empirical wavelet transform
(EWT) using multivariate signals for determining joint instant
amplitudes and frequencies. The method utilised moving‐
window‐based analysis for selecting the channels for defining
features to detect seizures. However, the method failed to use a
larger EEG database for seizure detection. In the proposed
method, the larger datasets, like the TUEP dataset, and CHB‐
MIT Scalp EEG database are considered for the experimen-
tation. Wu et al. [23] devised the seizure detection technique by
integrating an aEEG‐based seizure detection algorithm and
cEEG‐based seizure detection algorithm for determining sei-
zures. Here the EEG signals were partitioned into different
epoch and every epoch is employed for extracting multi‐
domain features. The classification was done by random forest
(RF) for seizure detection. Anyhow, the accuracy needs to be
improved. In the proposed method, the rag‐ROA‐based deep
RNN is adapted for detecting EEG seizures, which offers
better accuracy. Salem et al. [3] devised a lightweight method
for earlier discovery of nocturnal epileptic seizures using
muscle contractions. The method utilised an overlapping
sliding window for deriving the variance of data using single‐
channel surface ElectroMyoGram (sEMG). The Exponentially
Weighted Moving Average (EWMA) was utilised for predicting

the present value of variance. The method was devised for
enhancing the performance of detection models using an
accelerometer. Here the sEMG was utilised for determining
noiseless seizures exclusive of jerky movements. However, the
method did not use massive datasets for optimizing the per-
formance of seizure detection models. In the proposed
method, the larger datasets, like the TUEP dataset, and CHB‐
MIT Scalp EEG database are considered for the experimen-
tation. Rodriguez Aldana et al. [24] devised a strategy for
determining non‐convulsive seizures and epileptic diagnosis.
For distinguishing normal and seizure EEG, a Radial Basis
SVM, K‐NN, and Linear Discriminant Analysis classifier were
utilised. The features were generated from Block Term
Decomposition (BTD) and Canonical Polyadic Decomposition
(CPD) of EEG signal and were signified with third‐order
tensor. Moreover, the tensor of the EEG signal was expanded
using the Hilbert‐Huang transform or Wavelet transform. The
method offered an opposite model for non‐convulsive seizure
detection but failed to consider the noise in the signals. In the
proposed method, the AMS features maintain the robust
recognition of signal and they are able to provide valuable
information even with the existence of noisy signals. Fan et al.
[25] devised the spatial‐temporal synchronisation pattern of
epileptic human brains considering the features of spectral
graph mined from EEG. The multivariate approach was
adapted for discovering the seizure in real‐time. In addition,
the complex network was utilised for presenting the re‐emer-
gence pattern of EEG signals. Moreover, the statistical control
chart was adapted for extracting the features overtime to
convert from normal to epileptic states. However, the method
failed to include adaptive threshold parameters for sliding
windows to explore. In the proposed method, to overcome
this problem fine‐tuning is used in the windowing. Hassan
et al. [26] developed a feedforward neural network (FfNN) for
the detection of Epileptic Seizure, by using multiband features.
In this method, the feature vector was formed from the fea-
tures of the sub‐bands. Hence, the detection process was done
by a reasonable time. Anyhow, for larger datasets, the robust-
ness of this method needs improvement. In the proposed
method, the Taylor series facilitates precise evaluation of
common function and acquires convergence effortlessly, which
improves the robustness. Bouaziz et al. [27] implemented an
Epileptic Seizure Detection by using the convolutional neural
network (CNN). Here in the feature extraction, the high‐level
features are extracted from the input images. The classification
accuracy was the major advantage of this method. Anyhow, this
method was not applicable to the larger datasets. In the pro-
posed method, the larger datasets, like the TUEP dataset, and
CHB‐MIT Scalp EEG database are considered for the
experimentation. Akyol [28] proposed a stacking ensemble
approach (SEA) based model for the detection of epileptic
seizures. Here the multi‐class ensemble learning was per-
formed by the Stacking algorithm. This method offered better
performance in accuracy, specificity, and sensitivity, when
compared with the classifiers, such as ANN, complex‐valued
neural networks, deep neural networks (DNN), CNN, and
SVM. However, the effectiveness in real‐world problem
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solving was difficult in this method, but the proposed method
is applicable in real time applications. Li et al. [29] developed an
automatic seizure detectionmethod, by using Fisher vector (FV)
encoding andmulti‐scale radial basis function (MRBF). Here the
feature extraction was done by using the high‐resolution time
frequency (TF) and the detection of seizures were carried out
using SVM classifier. This method offered good classification
accuracy, but when using larger datasets, the robustness was
reduced. In the proposed method, the experimentation is done
with larger datasets, and the robustness is improved by using the
Taylor series. Li et al. [30] developed an end‐to‐end EEG seizure
detection framework with the help of channel‐embedding
spectral‐temporal squeeze and‐excitation network (CE‐stSE-
Net). Here the implementation was done by integrating the
multi‐scale temporal and multi‐level spectral analysis. This
method was useful in the seizure monitoring and to reduce the
burden of clinicians. Over fitting problem was the major
drawback of this method. In the proposed method, to avoid the
over fitting issue, the best solution is detected with fitness
function, which is chosen based on least MSE.

3 | PROPOSED RAG‐ROA‐BASED DEEP
RNN FOR SEIZURE DETECTION

The purpose of the research is to devise an epileptic seizure
detection strategy using the EEG signal. At first, the input
EEG signals are extracted from the dataset and are splitted
into multiple channels. Then, the extraction of the features
from each of the channels is done separately. The features like
Holoentropy, relative energy, fluctuation index, spectral fea-
tures along with the proposed Taylor‐based delta AMS spec-
trogram are extracted from the channels. The proposed Taylor‐
based delta AMS is designed by integrating the Taylor series
[31] on delta AMS [32]. The extracted features from each
channel form a feature vector, which represents a concatena-
tion to establish a feature vector. The dimension of the feature
vector is minimised with PPCA [33,34]. The dimensionally
reduced feature vectors are classified using Deep RNN [35].
The Deep RNN is trained with the proposed Rag‐ROA, which
is devised by integrating rag‐bull rider with four other riders
available in ROA [36]. In ROA, in addition to the Bypass rider,
Follower, Overtaker and Attacker along a Rag bull rider are
added. Here the rag bull rider is inspired by the modified
particle swarm optimisation [37]. Thus, the rag‐ROA‐based
deep RNN is employed for the EEG seizure detection and the
resulted output is considered for the EEG seizure detection.
Figure 1 presents the architecture of the proposed Rag‐ROA
for seizure detection.
Assume a dataset containing EEG signals in which the

seizure detection is done for determining the patients suffering
from elliptical seizures. Consider the input EEG signal be rep-
resented as LðmÞ which is available as a signal in which the
detection is considered as an imperative task for further pro-
cessing. These signals are splitted to series of channels wherein
each channel undergoes feature extraction and seizure detection.

3.1 | Extraction of features using signal

Here the extraction of imperative features with input EEG
signals and the implication of the extraction are deliberated.
The feature extraction is employed for generating highly rele-
vant features to facilitate the better discovery of seizures with
EEG. Moreover, the intricacy of evaluating the signal is
reduced as the signal is modelled with the reduced feature set.
Furthermore, the accuracy is allied with the detection and is
ensured with the effectual extraction of features. The features
extracted from input EEG signal involve spectral kurtosis,
spectral skewness, relative energy, fluctuation index, holoen-
tropy, Tonal power ratio, and proposed Taylor‐based delta
AMS.
a) Spectral Skewness.
Spectral skewness [38] is defined as a skewness coefficient

of a spectrum and it is the quantity of symmetry for the dis-
tribution. It is also defined as a measure of the asymmetry of a
distribution around the mean value μ. The skewness coefficient
is defined as the ratio of skewness with respect to the third‐
order moment j3 of the standard deviation σ, and is expressed
as,

j3 ¼ ∫ ðg � μÞ3:pðgÞdg ð1Þ

γ1 ¼
j3
σ3

ð2Þ

where μ indicates mean value of spectrums of the input signal,
σ indicates standard deviation, pðgÞ indicates probability dis-
tribution of spectrum, g signifies individual spectrum. The
Spectral skewness feature is represented by A1:
b) Spectral kurtosis.
The spectral kurtosis [38] represents the peakedness or

flatness of distributed energies. High the kurtosis means more
the variance of extreme deviations. It is evaluated with fourth
order moment j4 using mean value μ and standard deviation σ
which is expressed as,

j4 ¼ ∫ ðg � μÞ4:pðgÞdg ð3Þ

γ2 ¼
j4
σ4

ð4Þ

The Spectral kurtosis feature is represented by A2:
c) Relative energy.
The relative energy [21] presents signal strength as it offers

an area underneath the curve of power at any time instance.
Using wavelet, the summation of the square of coefficients of
wavelet series is EEG signal energy. The EEG signal energy
with limited length is represented as,

εðXÞ ¼ ∑
T

s¼1
Z2s ∗

α
T

ð5Þ
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where α represents sampling interval, T indicate count of
DWT coefficients, Zs denotes sthcoefficient at scale X. The
relative energy εrðXÞ of scale X is expressed as,

εrðXÞ ¼
εðXÞ

∑
Y

s¼1
εðsÞ

ð6Þ

where Y indicates the total number of wavelet scales. The
relative energy feature is represented by A3:
d) Fluctuation index.
The EEG is employed for displaying huge variation

amidst the period between seizures. The fluctuation in-
dex [21] is devised for evaluating the changes in EEG
signal intensities. The fluctuation index of scale X is
formulated as,

FðXÞ ¼
1
T

∑
T

s¼1
|Zsþ1 � Zs| ð7Þ

where T represents the number of DWT coefficient Zs at scale
X . It is observed that the fluctuation index of the EEG signal
becomes higher during seizures and lowered in non‐seizure
periods. The fluctuation index feature is represented by A4:

e) Tonal power ratio.
The tonal power ratio [39] is employed for computing the

tonalness of the input EEG signal. The tonal power ratio is
modelled by computing the ratio of tonal power of spectrum
components and complete power. Assume af indicate input
EEG signal and Y ðo; pÞindicates the spectrum of the input
EEG signal. Then the tonal power ratio R of the input EEG
signal af is formulated as,

R¼
XðpÞ

∑
f
2� 1

w¼0
|Y ðo; pÞ|2

ð8Þ

where XðpÞ represents tonal power which is evaluated by
adding all bins 0 that are local maximum and ranges from zero.
The tonal power ratio varies from 0 to one wherein the lower
values indicate noise pattern and the higher value signifies
tonal spectrum. The tonal power ratio feature is represented by
A5:
f) Holoentropy
The product of weight function and entropy is represented

as holoentropy [40], which is utilised for extracting the features
from the complete set of signal and is formulated as,

H
�
qr
�
¼ ω� Ε

�
qr
�

ð9Þ

F I GURE 1 Architecture of the proposed Rag‐ROA model for seizure detection
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where ωindicates inertia weight and ΕðqrÞrepresents entropy
measure. Here, ΕðqrÞ is defined as the sum of entropies of
individual attribute values and is expressed as,

Ε
�
qr
�
¼ � ∑

zðqrÞ

r¼1
Pr log Pr ð10Þ

where zðqrÞ represents the number of unique values in signal.
The holoentropy determines the entropy weight of each

signal such that it provides more significance to the signal with
small entropy values which subsequently maximizes the se-
lection of signal and enhances the seizure detection process.
The inertia weight is formulated as,

ω¼ 2
�

1 �
1

exp
�
E
�
qr
��

�

ð11Þ

The holoentropy feature is represented by A6:
g) Proposed Taylor‐based delta AMS feature.
For extracting proposed Taylor‐delta AMS features, the

delta AMS [32] are combined with Taylor series [31] which
illustrates chronological values for effectual categorisation.
Here, the input signal L is fed to a number of processing steps.
The AMS features maintain the robust recognition of signal
and they are able to provide valuable information even with the
existence of noisy signals. The combination of Taylor series
and extracted delta AMS features facilitate precise classification
in such a way that chronological data features are adapted for
extracting features.

i. Interpret input EEG signal: Before feature extraction,
the input signal is fed to pre‐processing that involves
quantisation and sampling in such a way that signal is made
suitable for further processes associated with feature
extraction.

ii. Relevance of band pass filter to produce time‐fre-
quency channels: At first, the bandpass filters are adapted
to eliminate noisy EEG signals as time‐frequency modules
that result in 85 framing modules with each module
represent a channel. The importance of bandpass filter is
that the filter allows input signals of given frequencies and
stops additional signals, which signifies that each channel
bear upper and lower bound frequencies.

iii. Configuration of envelop with refinement: The goal of
refinement is to outline encase for each channel i.e. anni-
hilated with a factor, three considering 64 overlapping
segments for 128 samples. The produced segments are fed
to windowing with the Hamming window which plays a
key function in eliminating the redundant signals and
enable compilation of valuable information using input
signals.

iv. Framing signal with windowing: Here, the different
input speech signal is transformed into incessant streams
known as frames in such a way that speech signal is
modified and the process of framing process to keep hold

of motionless properties of the signal. In framing, the edge
contains the capability to devise harmonics in the signal.
Thus, fine‐tuning is performed which undergoes tuning in
such a way that frames overlap amongst themselves. The
second frame contributes to half of the preceding frame
and half from the next frame in such a way that edge level
information is protected. The Hann window is adapted in
windowing and window size is ½1� 255� using an overlap
rate of 0.5. Further, the features are zero‐padded and
offered for feature extraction.

v. Extraction of Taylor‐based delta AMS features: The
output obtained by framing is fed to FFT to determine the
modulation spectrum of frames. The multiplication of FFT
outputs and triangular shape windows are employed for
producing AMS features. Assume the AMS feature vector
as M ðh; iÞ, which is of dimension ½255� 85�. Thus, the
delta AMS [32] are given as,

ΔMQ ðh; iÞ ¼M ðh; iÞ −M ðh − 1; iÞ when
q¼ 2;…;Q

ð12Þ

where ΔMQ ðh; iÞ indicate delta feature vector, Q denote total
segments, Mðh; iÞ represent delta AMS feature of signal.
The benefit of the Taylor series is that this technique is easy

and straightforward for computation despite the existence of
intricate functions. Moreover, the Taylor series facilitates pre-
cise evaluation of common function and acquires convergence
effortlessly. Here, the solution of subsequent iteration is pre-
dicted using the solution of prior iterations which undergoes
multiplication with definite constants. According to Taylor
series [31], the equation is represented as,

M ðh; iÞ ¼ 0:5 Mðh − 1; iÞ þ 1:3591 Mðh − 2; iÞ

−1:3591Mðh − 3; iÞ þ 0:6795 Mðh − 4; iÞ
−0:2259 Mðh − 5; iÞ þ 0:0555 Mðh − 6; iÞ

−0:0104 Mðh − 7; iÞ þ 1:38 e−3 Mðh − 8; iÞ

−9:92 e−5 Mðh − 9; iÞ ð13Þ

The proposed Taylor‐based delta AMS feature is evaluated
by substituting Equation (13) in Equation (12) and is repre-
sented as

ΔMQ ðh; iÞ ¼ 0:5 Mðh − 1; iÞ þ 1:3591 Mðh − 2; iÞ

−1:3591Mðh − 3; iÞ þ 0:6795 Mðh − 4; iÞ
−0:2259 Mðh − 5; iÞ þ 0:0555 Mðh − 6; iÞ

−0:0104 Mðh − 7; iÞ þ 1:38 e−3 Mðh − 8; iÞ

−9:92 e−5 Mðh − 9; iÞ −M ðh − 1; iÞ ð14Þ

Equation (15) reveals the Taylor‐AMS feature which is
formulated as
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ΔMQ ðh; iÞ ¼ 1:3591 Mðh − 2; iÞ − 0:5 Mðh − 1; iÞ
−1:3591Mðh − 3; iÞ þ 0:6795 Mðh − 4; iÞ
−0:2259 Mðh − 5; iÞ þ 0:0555 Mðh − 6; iÞ

−0:0104 Mðh − 7; iÞ þ 1:38 e−3 Mðh − 8; iÞ

−9:92 e−5 Mðh − 9; iÞ ð15Þ

The extracted proposed Taylor‐based delta AMS feature is
represented by A7:

3.1.1 | Formation of feature vector

The features obtained from the input EEG signal are repre-
sented in Equation (16), which is formulated as,

A¼ fA1; A2; A3; A4;A5;A6;A7g ð16Þ

where A indicate feature vector extracted with input EEG
signal, A1 symbolize spectral skewness, A2 indicate spectral
kurtosis, A3 represent relative energy, A4 signifies fluctuation
index, A5 represent tonal power ratio, A6 indicate holoentropy
and A7 denote proposed Taylor‐based delta AMS features. The
feature vector undergoes dimension reduction using PPCA,
which is illustrated in the next section.

3.2 | Dimension reduction using PPCA

Principal component analysis (PCA) is an extensively adapted
strategy for dimensionality reduction and is widely employed
for multivariate analysis. The probabilistic modelling of PCA
using the Gaussian latent variable model is employed for
providing statistical testing. The probability model provides a
perspective for extending the scope of classical PCA also
known as probabilistic PCA, namely PPCA [33,34]. The input
EEG signals are extracted from the dataset and are splitted
into multiple channels. Then, the extraction of the features,
such as Spectral Skewness, Spectral kurtosis, Relative energy,
Fluctuation index, Tonal power ratio, Holoentropy, and
Proposed Taylor‐based delta AMS feature, from each of the
channels is done separately. Then, the PPCA is illustrated for
dimensionality reduction, which is based on the covariance, in
order to select effective features from these extracted fea-
tures. Initially, the dimension of the feature is 1 x 9650, and
after applying the PPCA the dimension of the feature is
reduced to 1 x 15.

zt ¼ αAt 0 þψ þ βðtÞ; t ∈ f1; 2;…; zg ð17Þ

where At0 indicate the feature with standardised value, αis
S � T parameter matrix having mapping between input and
latent space, ψ represent S � 1 parameter vector having mean
of each variable, βðtÞ indicate vector having B� 1 dimension
and represent random error.

zt ∼ ð0; 1Þ; t ∈ f1; 2; ; ; ; zg ð18Þ

The distributed Normal with variance σ2 is termed to be
zero.

βðtÞ ∼ X
�
0; σ2V

�
; t ∈ f1; 2;…; zg ð19Þ

It is characteristically predictable that T < S. Maximum
likelihood αML is evaluated for α projection matrix. The ei-
genvectors of the PCA covariance matrix is expressed as,

αML ¼ ST
�
ΔT � σ2v

�1=2R ð20Þ

where ST is a S � T matrix with the T principal eigenvectors
of the sample covariance matrix, ΔT is the T � T diagonal
matrix with corresponding eigenvalues λ1; λ2;…; λT on the
diagonal, and R is an arbitrary T � T orthogonal rotation
matrix.

3.3 | Proposed Rag‐ROA algorithm

Here, the steps of Rag‐ROA are presented by devising a
consistent mathematical model and are elaborated in the
following subsection. Figure 2 portrays the principle of pro-
posed Rag‐ROA.

3.3.1 | 1) definition considered for initiating
rag‐ROA

It is essential to describe the imperative terms that are
considered for the algorithmic steps. In rag‐ROA, five groups
are considered as the fundamental terms in the technique and
are briefed below:
a) Bypass rider:
The first set of the rider is a bypass rider whose motive is

to accomplish the target by getting over the leading rider.
Thus, it can be noted that bypass rider does not pursue leading
rider rather it bypasses leading rider to reach the target
position.
b) Follower:
The follower is considered as a rider who relies on the

leading rider and follows positions of the leading rider to
achieve the target.
c) Overtaker:
The overtaker is the rider who pursues its own position for

reaching the target based on the nearby locations.
d) Attacker:
The attacker is considered as an aggressive player who

adapts the position of other riders to accomplish target by
using its utmost speed.
e) Rag‐bull rider.
The rag bull rider is the rider who pursues its own position

for reaching the target based on velocities.
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In accordance with these five definitions there exist a term,
namely winner who is considered as the final winner of the
race.

3.3.2 | Algorithm

The proposed rag‐ROA is motivated by riders, who compete
to reach the intended location. The steps considered in pro-
posed rag‐ROA algorithm are described below:
Step 1) Initialisation of Rider and other algorithmic

parameters.
The initialisation of the algorithm is done using four

groups of riders given by V , and initialisations of its positions
are done in a random manner. The initialisation of the group is
expressed as,

Sℓ ¼ fSℓðν; κÞg; 1 ≤ ν ≤ P; 1 ≤ κ ≤W ð21Þ

where P represents the number of riders, and Sℓðν; κÞ repre-
sents the position of νth rider in κth dimension at ℓth time
instant.
The count of riders is computed using the count of riders

of each group and is denoted by,

P ¼ Bþ J þOþ Aþ K ð22Þ

where B represents bypass rider, J indicates follower, O de-
notes overtaker, A signifies attacker, and K is rag bull rider.
Thus, the relationship amongst the aforementioned attributes
is expressed as,

Bþ J þOþ Aþ K ¼
P
5

ð23Þ

Considering the above relationship, the positions of each
rider are evaluated. The positions of bypass rider, follower,
overtaker, attacker, and rag bull rider are in the ranges
½S1; SP=5�;½SP=5þ1; S2P=5�, ½S2P=5þ1; S3P �, ½S3P=5þ1; S4P=5� and
½S4P=5þ1; SP�.
Based on the initialisation of groups, the parameters of

riders like gear, accelerator, steering, and brake are initialised.
Step 2) Determination of the success rate:
After the initialisation of rider group parameters, the suc-

cess rate considering each rider is evaluated. The success rate is
devised using distance, which is computed between the rider
location and the target and is expressed as,

Success rate¼
1

| | Sν � ℓt | |
ð24Þ

where Sν represents the position of νth rider and ℓt specifies
the target position. To increase the success rate, the distance
must be minimised and thus, the distance reciprocal provides
the success rate of rider.
Step 3) Discovery of leading rider:
The success rate is considered as an imperative part of

finding the leading rider. The rider who is residing near the target
location is assumed to pose the highest success rate and that
rider is termed as a leading rider as the rider is close to target.
Step 4) Update position of the riders:
The position of the rider in every set is updated to deter-

mine leading rider and thus winner. Hence, the rider update the

F I GURE 2 Principle of proposed Rag‐ROA
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position considering the characteristics of each rider described
on the definition. The position update of each rider in each set
is illustrated below:
The follower has a tendency to update position on the

basis of the location of the leading rider to reach the target in a
rapid manner and is formulated as,

Sflþ1ðv; οÞ ¼ S
GðG; οÞ þ

h
Cos
�

ϕlν;ο ∗ SGðG; οÞ ∗ ∂lν
�i
ð25Þ

where ο is coordinate selector, SG indicates the position of the
leading rider, Grepresents the index of leading rider, ϕlν;ο
represents the steering angle of νth rider in οth coordinate, and
∂lν is the distance.
The updated position of the overtaker is utilised in the

update process to maximize success rate by detecting the
overtaker position and is expressed as,

Solþ1ðν; οÞ ¼ Slðν; οÞ þ
�
Dl ∗ ðνÞ ∗ SGðG; οÞ

�
ð26Þ

where Dl ∗ ðνÞ represent the direction indicator.
The attacker poses a tendency to seize the leaders’ position

by following the leader's update process and is given as,

Salþ1ðν; ρÞ ¼ S
GðG; ρÞ þ

h
Cos ϕlν;ρ ∗ SGðG; ρÞ

i
þ ∂lν ð27Þ

The bypass riders pursue a familiar path without following
leading rider. In this context, the update rule of the bypass
riders is exhibited in which the standard bypass rider is given
as,

Sblþ1ðν; ρÞ ¼ λ½Slðχ; ρÞ ∗ δðρÞ þ Slðξ; ρÞ ∗ ½1 � δðρÞ�� ð28Þ

where λ is random number, χ represents ransom number be-
tween one to P, ξ specifies a random number ranging
between one to P and δ indicating random number between
0 and 1.
The update of Rag bull rider is done using standard HPSO

which is devised on the basis of human behaviour and is
formulated as,

SKlþ1ðν; οÞ ¼ S
K
l ðν; οÞ þ e

ν
lþ1 ð29Þ

where eνlþ1is the velocity of each rider and is formulated as,

eνlþ1 ¼ ω:eνl þ n1
�
SNl ðν; οÞ � S

K
l ðν; οÞ

�
þ n2

�
SGðG; νÞ

� SDl ðν; οÞ
�
þ n3

�
SUl � S

K
l ðν; οÞ

�
ð30Þ

where n1; n2 and n3 indicate random numbers, ω represents
inertial weight, SNl represents local leading rider, S

U
l denotes

losing rider, and SGsignifies leading rider.
Step 5) Determination of the success rate:

After completing the update process, the success rate of
each rider is evaluated. Here, the position of rider who is in the
leading position is replaced with the position of new rider
obtained so far in such a way that the success rate of the new
rider is higher.
Step 6) Update of Rider parameter:
The rider parameter update is essential to determine an

effectual optimum solution. In addition, the steering angle,
gears are updated using the activity counter, which is updated
based on the success rate.
Step 7) Riding Off time:
The steps are iterated continuously till the time reaches the

off‐time (TOFF), within which the leading rider is discovered.
After the completion of the race, the leading rider is termed as
the winner.
The pseudo‐code of the proposed Rag‐ROA algorithm is

illustrated in Table 1.

3.4 | Proposed rag‐ROA‐based deep RNN
for epileptic seizure detection

The epileptic seizure detection with the proposed Rag‐ROA
method is offered and detection is performed with the feature

TABLE 1 Pseudo code of proposed Rag‐ROA algorithm

Input: Sl : Random Position of Rider, l: Iteration, lmax: Maximum Iteration
Output: Leading rider SG

Begin

Initialize the set of solutions

Initialize other parameter of rider like steering angle, gear, accelerator and
brake

Determine success rate (24)

While l < LOFF

For ν¼ 1 to P

Update the position of bypass rider using equation (28)

Update the position of follower using equation (25)

Update the position of overtaker using equation (26)

Update the position of attacker using equation (27)

Update the position of rag bull rider using equation (29)

Rank the riders based on success rate using equation (24)

Choose the rider with high success rate

Update steering angle, gear, accelerator and brake

Return SG

l ¼ l þ 1

End for

End while

End
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vector. The obtained features are given to classification with
deep RNN [35] and training of DeepRNN is performed with
Rag‐ROA, which is the integration of ROA [36] with the Rag
bull rider. The goal of the proposed Rag‐ROA is to determine
the epileptic seizure via input signal based on the extracted
features. ROA [36] is inspired by the behaviour of rider groups,
who travel to reach a familiar target location to become awinner.
Here the riders are selected from the total riders of each group.
Each and every group undergoes many strategies for reaching
the target. Thus, it is concluded that this technique performs
fault diagnosis with improved classification accuracy. In addi-
tion, the ROA is highly effective for obtaining the global optimal
solutions and follows steps of fictional computing to solve
optimisation problems, but poses low convergence and is highly
sensitive to hyper parameters. Also, this method considers only a
few rider groups, such as the Bypass rider, Follower, Overtaker,
and Attacker. In Rag‐ROA, in addition to the Bypass rider,
Follower, Overtaker, and Attacker, a Rag bull rider is added,
which is updated using HPSO [37]. The HPSO is inspired by the
human behaviours, which learn from the best humans. Based on
the behaviour of human, there persist some people who pose
bad behaviours around us and at the same time, these bad be-
haviours become harmful and bring some effects on the people
residing around us. In HPSO, the global worst and global best
particles are devised for improving the convergence. The
method provides a trade‐off between exploration and exploi-
tation states. Thus, the integration of ROA and Rag bull rider is
done to improve the overall performance of the algorithm.

3.4.1 | Architecture of Deep RNN

The mined features A are taken as input to Deep RNN clas-
sifier. Deep RNN [35] is the network structural design which
consists of different recurrent hidden layers in the layer of
hierarchy of network design. In Deep RNN, the recurrent
connection persists at the hidden layer. The Deep RNN clas-
sifier efficiently functions under the various input feature‐
length on the basis of information. It adapts the knowledge of
prior state as an input in the present prediction, and practice
the iteration with the hidden state information. The recurrent
feature made the Deep RNN highly effective in working with
the features. Due to the chronological pattern of information,
Deep RNN is termed as an excellent classifier amongst the
classical deep learning strategies. The structural design of Deep
RNN is illustrated in Figure 3.
The configuration of Deep RNN is made by considering

the input vector of wth layer at xth time as
Aðw;xÞ ¼ fAðw;xÞ1 ;Aðw;xÞ2 ; :::Aðw;xÞa ; :::Aðw;xÞf g and the output
vector of wth layer at xthtime as
Oðw;xÞ ¼ fOðw;xÞ1 ;Oðw;xÞ2 ; :::Oðw;xÞa ; :::Oðw;xÞf g, respectively. The
pair of each elements of input and the output vectors is
termed as the unit. Here, adenotes the arbitrary unit number
of wth layer, and f represents the total number of units of wth
layer.

In addition to this, the arbitrary unit number and the total
number of units of ðw � 1Þth layer is denoted as v and U ,
respectively. At this time, the input propagation weight from
ðw � 1Þth layer to wth layer is represented as, ωðwÞ ∈ Lf�U , and
the recurrent weight of wth layer is represented as
W ðwÞ ∈ Lf�f . Here, Ldenotes the set of weights. However, the
components of the input vector is expressed as,

Aðw;xÞi ¼ ∑
U

k¼1
pðwÞam Oðw� 1;xÞm þ ∑

f

a
oðwÞaa Oðw;x� 1Þa ð31Þ

where pðwÞam and oðwÞaa are the elements of ωðwÞand W ðwÞ. a de-
notes the arbitrary unit number of wth layer. The elements of
the output vector of wthlayer are represented as,

Oðw;xÞa ¼ γððwÞÞ
�
F ðw;xÞa

�
ð32Þ

where γðwÞ denotes the activation function. However, the
activation functions, like sigmoid function as γðFÞ ¼ tanhðFÞ,
rectified linear unit function (ReLU) as βðFÞ ¼maxðF ; 0Þ, and
the logistic sigmoid function as γðFÞ ¼ 1

ð1þe� F Þ are the
frequently used activation function.
To simplify the process, 0th weight as pwa0 and 0

th unit as
Oðw� 1;xÞ0 are introduced and hence the bias is represented as,

Oðw;xÞ ¼ γðwÞ:
�
ωðwÞOðw� 1;xÞ þW ðwÞ: Oðw;x� 1Þ

�
ð33Þ

Here, Oðw;xÞ denotes the output of the classifier.

3.4.2 | Training of deep RNN

The training of deep RNN [35] is carried out using the pro-
posed Rag‐ROA algorithm that intends to detect optimal
weights for tuning deep RNN classifiers for seizure detection.
The brief illustration of the algorithmic steps carried out in the
execution of the proposed Rag‐ROA algorithm is described in
this section. The optimal weights are devised from the pro-
posed Rag‐ROA algorithm, which helps to tune the deep RNN
for deriving the optimal classification results. The seizure
detection adapts the proposed Rag‐ROA‐based deep RNN for
classifying the input signal by devising an optimal classification
and is able to deal with the new EEG signal that is arrived
from the distributed sources. The steps of the proposed Rag‐
ROA algorithm are illustrated below:
Step 1: Initialisation:
The foremost step is weight initialisation that is expressed

as, ω and utilize the feature vector and class of input EEG
signal.
Step 2: Evaluation of error:
The best solution is detected with fitness function, which is

termed as a minimisation issue and thus, the solution with least
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Mean Square Error (MSE) is chosen as an optimal solution.
Here, the MSE is computed as follows,

MSerr ¼
1
b

∑
b

d¼1

�
Oa � Oa

∗�2 ð34Þ

where Oa symbolizes the expected output and Oa
∗ denotes the

predicted output, b represents the count of input EEG signals
where 1 < d ≤ b.
Step 3. Determination of update equation:
Here the weights to train Deep RNN are detected with

proposed rag‐ROA and the update is devised using the weights
which contribute to less error. The update equation of pro-
posed rag‐ROA is devised in section 3.3.
Step 4: Re‐computation of solution based on error.
The error is recomputed using the solution given in

Equation (20). The algorithm generating the minimum error is
utilised for training the deep RNN to detect seizures.
Step 5: Determination of optimum weight using the pro-

posed Rag‐ROA training algorithm:

The error of each solution is recomputed using the pro-
posed Rag‐ROA algorithm and is evaluated in such a way that
the solution with less error is employed for training deep RNN.
Step 6: Terminate:
The optimal weights are obtained in an iterative manner till

the utmost iterations are reached.

4 | RESULTS AND DISCUSSION

This section elaborates comparison of proposed strategy with
classical strategies through seizure detection dataset using ac-
curacy, sensitivity and specificity. The analysis is done by
varying training data. In addition, the effectiveness of proposed
Rag‐ROA þ Deep RNN is analysed.

4.1 | Experimental setup

The implementation of the proposed method is done in
MATLAB using PC using Windows 10 OS, 2 GB RAM, and
Intel i3 core processor.

F I GURE 3 Architecture of Deep RNN classifier

132 - JOHNROSE ET AL.

 17519683, 2021, 2, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sil2.12019, W

iley O
nline L

ibrary on [29/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



4.2 | Dataset description

The analysis of the proposed Rag‐ROA þ Deep RNN is
performed using two datasets considering accuracy, sensitivity,
and specificity.

4.2.1 | The TUH EEG epilepsy Corpus
(TUEP)

The TUEP [41] is a rift of TUEG that comprises 100 subject's
epilepsy and 100 subjects without epilepsy, as detected by a
specialised neurologist. The data is devised in association with
different partners that involve NIH.

4.2.2 | CHB‐MIT Scalp EEG database

CHB‐MIT Scalp EEG database [42] is a dataset containing
recordings of 23 grouped cases which is collected from 22
subjects, using the data of five males, ages 3–22; and 17 fe-
males, ages 1.5–19. Here, the file SUBJECT‐INFO consists of
gender and age of each subject. The file RECORDS consists of
664 .edf files, and the file RECORDS‐WITH‐SEIZURES lists
129.

4.3 | Experimental results

The experimentation is performed on two datasets considering
the EEG signals of both datasets to analyse epilepsy and non‐
epilepsy seizures.

4.3.1 | With TUEP database

The section portrays the experimental results that are per-
formed considering two EEG input signals with epilepsy and
without epilepsy. Figure 4a demonstrates the input signal with
epilepsy and without epilepsy. The Taylor‐based delta AMS
feature generated with epilepsy and without epilepsy are
enumerated in Figure 4b and finally Figure 4c presents the
obtained spectrogram with epilepsy and without epilepsy. Here
the analysis is done by varying the time and centre frequency,
with blue colour indicating low coefficient intensity values,
yellow indicating the intermediary coefficient intensity values
and red denoting high coefficient intensity values .

4.3.2 | With CHB‐MIT Scalp EEG database

The section portrays the experimental results that are per-
formed considering two EEG input signals with epilepsy
and without epilepsy using the CHB‐MIT Scalp EEG
database. Figure 5a demonstrates the input signal with epi-
lepsy and without epilepsy. The proposed Taylor‐based delta

AMS feature generated with epilepsy and without epilepsy is
enumerated in Figure 5b Here the analysis is done by
varying the time and centre frequency. Figure 5c pre-
sents the obtained spectrogram with epilepsy and without
epilepsy.

4.4 | Evaluation metrics

The performance of proposed Rag‐ROA þ Deep RNN is
employed for evaluating the techniques includes specificity,
accuracy, and sensitivity.

4.4.1 | Accuracy

It is defined as the degree of the nearness of predicted value in
contrast to its original value in optimal seizure detection, and is
formulated as,

Accuracy¼
Tp þ Tn

Tp þ Tn þ Fp þ Fn
ð35Þ

where Tp represents true positive, Fp indicates false positive,
Tn indicates true negative, and Fn represents false negative,
respectively.

4.4.2 | Sensitivity

This measure is described as the ratio of positives that are
properly identified by the classifier and it is represented as,

Sensitivity ¼
Tp

Tp þ Fn
ð36Þ

4.4.3 | Specificity

This measure is defined as the ratio of negatives that are
properly identified by the classifier and is expressed as.

Specif icity¼
Tn

Tn þ Fp
ð37Þ

4.5 | Performance analysis

The evaluation of proposed Rag‐ROA þ Deep RNN based on
sensitivity, accuracy, and specificity parameters is evaluated.
The analysis is carried out by varying training data using two
datasets resp..
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4.5.1 | Analysis using TUEP dataset

Figure 6 portrays the analysis of proposed Rag‐ROA‐Deep
RNN using the TUEP dataset with specificity, accuracy, and
sensitivity parameter. The analysis of proposed Rag‐ROA‐
Deep RNN using the accuracy parameter is displayed in
Figure 6a. For 50% training data, the accuracies computed by

proposed Rag‐ROA þ DeepRNN with hidden neurons 100,
hidden neurons 200, hidden neurons 300, and hidden neurons
400 are 0.641, 0.673, 0.667, and 0.704. For 90% training data,
the accuracies evaluated by proposed Rag‐ROA þ DeepRNN
with hidden neurons 100, hidden neurons 200, hidden neurons
300, and hidden neurons 400 are 0.769, 0.809, 0.835, and
0.847. The analysis of oposed Rag‐ROA‐Deep RNN using

F I GURE 4 Experimental results of the proposed Rag‐ROA þ Deep RNN using TUEP database with (a) input signal with epilepsy and without epilepsy
(b) Generated Taylor‐based delta AMS feature with epilepsy and without epilepsy (c) Spectrogram of signal with epilepsy and without epilepsy
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sensitivity parameter is displayed in Figure 6b. For 50%
training data, the sensitivities computed by proposed Rag‐
ROA þ DeepRNN with hidden neurons 100, hidden neurons
200, hidden neurons 300, and hidden neurons 400 are 0.784,
0.802, 0.734, and 0.723. For 90% training data, the sensitivities
computed by proposed Rag‐ROA þ DeepRNN with hidden
neurons 100, hidden neurons 200, hidden neurons 300, and
hidden neurons 400 are 0.884, 0.888, 0.874, and 0.892. The
analysis of proposed Rag‐ROA‐Deep RNN using specificity
parameter is displayed in Figure 6c. For 50% training data, the
specificity values computed by proposed Rag‐
ROA þ DeepRNN with hidden neurons 100, hidden neurons

200, hidden neurons 300, and hidden neurons 400 are 0.421,
0.501, 0.470, and 0.681. For 90% training data, specificity
evaluated by proposed Rag‐ROA þ DeepRNN with hidden
neurons 100, hidden neurons 200, hidden neurons 300, and
hidden neurons 400 are 0.668, 0.712, 0.809, and 0.822.

4.5.2 | Analysis using CHB‐MIT Scalp EEG
database

Figure 7 portrays the analysis of proposed Rag‐ROA‐Deep
RNN using the CHB‐MIT Scalp EEG database with

F I GURE 5 Experimental results of proposed Rag‐ROA þ Deep RNN using CHB‐MIT Scalp EEG database with (a) input signal with epilepsy and without
epilepsy (b) Generated Taylor‐based delta AMS feature with epilepsy and without epilepsy (c) Spectrogram of signal with epilepsy and without epilepsy
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specificity, accuracy, and sensitivity parameter. The analysis of
proposed Rag‐ROA‐Deep RNN using the accuracy parameter
is displayed in Figure 7a. For 50% training data, the accuracy
values computed by proposed Rag‐ROA þ DeepRNN with
hidden neurons 100, hidden neurons 200, hidden neurons 300,
and hidden neurons 400 are 0.665, 0.716, 0.729, and 0.743. For
90% training data, the accuracy obtained by proposed Rag‐
ROA þ DeepRNN with hidden neurons 100, hidden neurons
200, hidden neurons 300, and hidden neurons 400 are 0.733,
0.777, 0.846, and 0.853. The analysis of proposed Rag‐ROA‐
Deep RNN using the sensitivity parameter is displayed in
Figure 7b. For 50% training data, the sensitivity values
computed by proposed Rag‐ROA þ DeepRNN with hidden
neurons 100, hidden neurons 200, hidden neurons 300, and
hidden neurons 400 are 0.769, 0.725, 0.795, and 0.830. For
90% training data, the sensitivity obtained by proposed Rag‐
ROA þ DeepRNN with hidden neurons 100, hidden neurons
200, hidden neurons 300, and hidden neurons 400 are 0.845,
0.869, 0.912, and 0.930. The analysis of proposed Rag‐ROA‐
Deep RNN using specificity parameter is displayed in
Figure 7c. For 50% training data, the specificity values
computed by proposed Rag‐ROA þ DeepRNN with hidden
neurons 100, hidden neurons 200, hidden neurons 300, and
hidden neurons 400 are 0.543, 0.625, 0.651, and 0.641. For
90% training data, the specificity obtained by proposed Rag‐
ROA þ DeepRNN with hidden neurons 100, hidden neurons

200, hidden neurons 300, and hidden neurons 400 are 0.602,
0.705, 0.768, and 0.797.

4.6 | Comparative methods:

The methods employed for the analysis include:
Wavelet þ SVM [21], HWPT þ RVM [9], MVM‐FzEN [20],
EWT þ RF [22], and proposed Rag‐ROA þ Deep RNN.

4.7 | Comparative analysis

The comparative analysis of the proposed Rag‐ROA þ Deep
RNN with conventional methods is evaluated. The analysis is
carried out by varying the training data using two datasets resp..

4.7.1 | Analysis considering TUEP dataset

Figure 8 portrays the analysis of methods using the TUEP
dataset with specificity, accuracy, and sensitivity parameter. The
analysis of methods using the accuracy parameter is displayed in
Figure 8a. For 50% training data, the accuracy computed by
Wavelet þ SVM, HWPT þ RVM, MVM‐FzEN, EWT þ RF,
and proposed Rag‐ROA þ Deep RNN are 0.608, 0.647, 0.619,

F I GURE 6 Analysis of proposed Rag‐ROA‐Deep RNN using TUEP dataset with (a) Accuracy (b) Sensitivity (c) Specificity
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0.521, and 0.683. For 90% training data, the accuracy evaluated
byWaveletþ SVM, HWPTþ RVM, MVM‐FzEN, EWTþ RF,
and proposed Rag‐ROA þ Deep RNN are 0.619, 0.825, 0.742,
0.631, and 0.888. The analysis of methods using the sensitivity
parameter is displayed in Figure 8b. For 50% training data, the
sensitivity computed by Wavelet þ SVM, HWPT þ RVM,
MVM‐FzEN, EWT þ RF, and proposed Rag‐ROA þ Deep
RNN are 0.619, 0.790, 0.501, 0.509, and 0.809. For 90% training
data, the sensitivity evaluated by Wavelet þ SVM,
HWPTþ RVM, MVM‐FzEN, EWTþ RF, and proposed Rag‐
ROAþDeepRNNare 0.785, 0.809, 0.901, 0.919, and 0.919. The
analysis of methods using the specificity parameter is displayed
in Figure 8c. For 50% training data, the specificity computed by
Wavelet þ SVM, HWPT þ RVM, MVM‐FzEN, EWT þ RF,
and proposed Rag‐ROA þ Deep RNN are 0.507, 0.512, 0.500,
0.520, and 0.524. For 90% training data, the specificity evaluated
byWaveletþ SVM, HWPTþ RVM, MVM‐FzEN, EWTþ RF,
and proposed Rag‐ROA þ Deep RNN are 0.524, 0.749, 0.740,
0.815, and 0.899.

4.7.2 | Analysis considering CHB‐MIT Scalp
EEG database

Figure 9 portrays the evaluation of methods with CHB‐
MIT Scalp EEG database with specificity, accuracy, and

sensitivity parameter. The analysis of methods using the
accuracy parameter is displayed in Figure 9a. For 50%
training data, the accuracy computed by Wavelet þ SVM,
HWPT þ RVM, MVM‐FzEN, EWT þ RF, and proposed
Rag‐ROA þ Deep RNN are 0.608, 0.647, 0.604, 0.523, and
0.706. For 90% training data, the accuracy evaluated by
Wavelet þ SVM, HWPT þ RVM, MVM‐FzEN,
EWT þ RF, and proposed Rag‐ROA þ Deep RNN are
0.619, 0.825, 0.708, 0.612, and 0.882. The analysis of
methods using the sensitivity parameter is displayed in
Figure 9b. For 50% training data, the sensitivity values
computed by Wavelet þ SVM, HWPT þ RVM, MVM‐
FzEN, EWT þ RF, and proposed Rag‐ROA þ Deep
RNN are 0.634, 0.783, 0.512, 0.506, and 0.793. For 90%
training data, sensitivity evaluated by Wavelet þ SVM,
HWPT þ RVM, MVM‐FzEN, EWT þ RF, and proposed
Rag‐ROA þ Deep RNN are 0.776, 0.817, 0.918, 0.786, and
0.918. The analysis of methods using specificity parameter
is displayed in Figure 9c. For 50% training data, the
specificity computed by Wavelet þ SVM, HWPT þ RVM,
MVM‐FzEN, EWT þ RF, and proposed Rag‐
ROA þ Deep RNN are 0.507, 0.546, 0.503, 0.505, and
0.546. For 90% training data, the specificity evaluated by
Wavelet þ SVM, HWPT þ RVM, MVM‐FzEN,
EWT þ RF, and proposed Rag‐ROA þ Deep RNN are
0.527, 0.784, 0.736, 0.819, and 0.899.

F I GURE 7 Analysis of proposed Rag‐ROA‐Deep RNN using CHB‐MIT Scalp EEG database with (a) Accuracy (b) Sensitivity (c) Specificity
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4.8 | Comparative discussion

Table 2 illustrates the analysis of methods using two datasets
considering accuracy, sensitivity, and specificity.
Considering the TUEP dataset, the proposed Rag‐

ROA þ Deep RNN has a maximal accuracy of 0.888, which is
30.29%, 7.09%, 16.44%, and 28.94%, better than the accuracy
of the existing methods, such as Wavelet þ SVM,
HWPT þ RVM, MVM‐FzEN, and EWT þ RF, respectively.
The sensitivity of proposed Rag‐ROA þ Deep RNN tends to
be maximal with a value of 0.919. The percentage of
improvement of the sensitivity with the existing methods, such
as Wavelet þ SVM, HWPT þ RVM, and MVM‐FzEN is
14.58%, 11.97%, and 1.96%, respectively. Similarly, the speci-
ficity of the proposed method is 0.899, which is 41.71%,
16.69%, 17.69%, and 9.34%, better than the existing methods,
such as Wavelet þ SVM, HWPT þ RVM, MVM‐FzEN, and
EWT þ RF, respectively.
Considering the CHB‐MIT Scalp EEG database, the

proposed Rag‐ROA þ DeepRNN has a maximum accuracy of
0.882. The percentage of improvement of the accuracy with
the existing methods, such as Wavelet þ SVM,
HWPT þ RVM, MVM‐FzEN, and EWT þ RF is 29.82%,
6.46%, 19.73%, and 19.72%, respectively. The sensitivity of the
proposed method is 0.918, which is 15.47%, 11%, and 14.38%,

better than the existing methods, such as Wavelet þ SVM,
HWPT þ RVM, and EWT þ RF, respectively. Among the
existing methods, the EWT þ RF has a maximum specificity
of 0.819, but the proposed Rag‐ROA þ DeepRNN is 8.9%,
better than the existing EWT þ RF. Here the proposed rag‐
ROA‐based deep RNN showed improved results with maximal
accuracy, sensitivity and specificity, than the existing methods,
such as Wavelet þ SVM, HWPT þ RVM, MVM‐FzEN, and
EWT þ RF, respectively.

5 | CONCLUSION

The elliptical seizure detection is carried out with Deep RNN,
whose goal is to improve the performance of detection. The
classical techniques of automatic seizure detection with neural
networks reveal deprived performance in the existence of
murmurs, which is addressed by the proposed method. The
proposed rag‐ROA trains the Deep RNN, to derive optimal
weights and is devised by integrating rag bull rider and ROA.
The training of Deep RNN is done with extracted features
obtained from an input EEG signal. The feature involves
relative energy, fluctuation index, holoentropy, spectral fea-
tures, tonal power ratio, and, a proposed Taylor‐based delta
AMS feature. The proposed Taylor‐based delta AMS is a

F I GURE 8 Analysis of methods using TUEP dataset with (a) Accuracy (b) Sensitivity (c) Specificity
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combination of the Taylor series and delta AMS features.
Moreover, the feature dimension is reduced using PPCA. The
proposed rag‐ROA‐based deep RNN showed improved results
with maximal accuracy of 88.8%, maximal sensitivity of 91.9%,
and maximal specificity of 89.9% than the existing methods,
such as Wavelet þ SVM, HWPT þ RVM, MVM‐FzEN, and
EWT þ RF, by using the TUEP dataset. In the future, the
wavelet transform will be considered for processing the EEG
signals.

ACKNOWLEDGEMENT
This research received no specific grant from any funding
agency in the public and commercial sectors.

REFERENCES
1. Jallon, P., et al.: Detection system of motor epileptic seizures through

motion analysis with 3D accelerometers. In: 31st Annual International
Conference of the IEEE Engineering in Medicine and Biology Society,
EMBC’09, pp. 2466–2469.(2009)

F I GURE 9 Analysis of methods using CHB‐MIT Scalp EEG database with (a) Accuracy (b) Sensitivity (c) Specificity

TABLE 2 Comparative analysis

Dataset Metrics
Wavelet þ
SVM

HWPT þ
RVM MVMþ FzEN EWT þ RF

ProposedRag‐ROA þ
DeepRNN

Using TUEP dataset Accuracy 0.619 0.825 0.742 0.631 0.888

Sensitivity 0.785 0.809 0.901 0.919 0.919

Specificity 0.524 0.749 0.740 0.815 0.899

Using CHB‐MIT Scalp EEG database Accuracy 0.619 0.825 0.708 0.612 0.882

Sensitivity 0.776 0.817 0.918 0.786 0.918

Specificity 0.527 0.784 0.736 0.819 0.899

JOHNROSE ET AL. - 139

 17519683, 2021, 2, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sil2.12019, W

iley O
nline L

ibrary on [29/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



2. Conradsen, I., et al.: Seizure onset detection based on a uni‐ or multi-
modal intelligent seizure acquisition (UISA/MISA) system. In: Annual
International Conference of the IEEE Engineering in Medicine and
Biology Society, EMBC’10, pp. 3269–3272.(2010)

3. Salem, O., et al.: Nocturnal epileptic seizures detection using interial and
muscular sensors. IEEE Trans. Mobile Comput. 18(12), 2913–2925
(2018)

4. Naghsh, E., Sabahi, M.F., Beheshti, S.: Spatial analysis of EEG signals for
Parkinson's disease stage detection. Signal Image Video Proc. 14(2), 397–
405 (2020)

5. Guo, L., et al.: Automatic epileptic seizure detection in EEGS based on
line length feature and artificial neural networks. J. Neurosci. Methods.
191(1), 101–109 (2010)

6. Tzallas, A.T., et al.: Automated epileptic seizure detection methods: a
review study, Chapter 4, pp. 75–98.Intech (2012)

7. Saab, M.E, Gotman, J.: A system to detect the onset of epileptic seizures
in scalp EEG. Clin. Neurophysiol. 116(2), 427–442 (2005)

8. Jouny, C.C., Franaszczuk, P.J, Bergey, G.K.: Improving early seizure
detection. Epilepsy Behav. 22, S44–S48 (2011)

9. Vidyaratne, L.S, Iftekharuddin, K.M.: Real‐time epileptic seizure detec-
tion using EEG. IEEE Trans. Neural Syst. Rehabil. Eng. 25(11), 2146–
2156 (2017)

10. Bogaarts, J.G.: Optimal training dataset composition for SVM based, age
independent, automated seizure detection. Med. Biol. Eng. Comput.
54(8), 1285–1293 (2016)

11. Remmiya, R., Abisha, C.: Artifacts removal in EEG signal using a NARX
model based CS learning algorithm. Multimed. Res. 1(1) (2018).

12. Besio, W.G.: High‐frequency oscillations recorded on the scalp of pa-
tients with epilepsy using tripolar concentric ring electrodes. IEEE J.
Transl. Eng. Health Med. 2, 1–11 (2014)

13. NinuPreetha, N.S., et al.: Grey Wolf optimisation‐based feature selection
and classification for facial emotion recognition. IET Biom. 7(5), 490–
499 (2018)

14. Cristin, R., et al.: Image forgery detection using back propagation neural
network model and particle swarm optimization algorithm. Multimedia
Res. 3(2) (2020)

15. Sriramakrishnan, P., et al.: Knowledge based fuzzy c‐means method for
rapid brain tissues segmentation of magnetic resonance imaging scans
with CUDA enabled GPU machine. J. Ambient Intell. Human. Comput.
(2020)

16. Karlekar, N., Gomathi, N.: Ontology and whale optimization‐based
support vector machine for privacy‐preserved medical data classification
in cloud. Int J. Commun. Syst. 31(9) (2018)

17. Srinivasan, V.: Artificial neural network based epileptic detection using
time‐domain and frequency‐domain features. J. Med. Syst. 29(6), 647–660
(2005)

18. Barone, P.M., Groen, M.: Multidisciplinary approaches to forensic
archaelology. Topics discussed during the European Meetings on
Forensic Archaeology (EMFA), p. 277 (2018)

19. Raghu, S.: Classification of epileptic seizures using wavelet packet log
energy and norm entropies with recurrent Elman neural network clas-
sifier. Cogn. Neurodyn. 11(1), 51–66 (2016)

20. Raghu, S., et al.: A novel approach for real‐time recognition of
epileptic seizures using minimum variance modified fuzzy entropy.
IEEE (Inst. Electr. Electron Eng.) Trans. Biomed. Eng. 65(11), 2612–
2621 (2018)

21. Liu, Y., et al.: Automatic seizure detection using wavelet transform and
SVM in long‐term intracranial EEG. IEEE Trans. Neural Syst. Rehabil.
Eng. 20(6), 749–755 (2012)

22. Bhattacharyya, A, Pachori, R.B.: A multivariate approach for patient‐
specific EEG seizure detection using empirical wavelet transform. IEEE
(Inst. Electr. Electron. Eng.) Trans. Biomed. Eng. 64(9), 2003–2015
(2017)

23. Wu, D. et al.: Automatic epileptic seizures joint detection algorithm based
on improved multi‐domain feature of cEEG and spike feature of aEEG.
IEEE Access. 7, 41551–41564 (2019)

24. Aldana, R.Y., et al.: Nonconvulsive epileptic seizure detection in scalp
EEG using multiway data analysis. IEEE J. Biomed. Health Inf. 23(2),
660–671 (2018)

25. Fan, M., Chou, C.A.: Detecting abnormal pattern of epileptic seizures via
temporal synchronization of EEG signals. IEEE (Inst. Electr. Electron.
Eng.) Trans. Biomed. Eng. 66(3), 601‐608 (2018)

26. Hassan, K.M., et al.: Epileptic seizure detection from EEG signals using
multiband features with feedforward neural network. The Proceeding of
International Conference on Cyberworlds. (CW), Kyoto (2019)

27. Bouaziz B., et al.: Epileptic seizure detection using a convolutional neural
network. In: Digital Health Approach for Predictive, Preventive, Per-
sonalised and Participatory Medicine, vol. 10, pp. 79–86.(2019)

28. Akyol, K.: Stacking ensemble based deep neural networks modeling for
effective epileptic seizure detection. Expert Syst. Appl. 148 (2020)

29. Li, Y. et al.: Epileptic seizure detection in EEG signals using sparse
multiscale radial basis function networks and the Fisher vector approach.
Knowl. Base Syst. 164, 96–106 (2019)

30. Li, Y. et al.: Epileptic seizure detection in EEG signals using a unified
temporal‐spectral squeeze‐and‐excitation network. IEEE Trans. Neural
Syst. Rehabil. Eng. 28(4), 782–94 (2020)

31. Shen, L., Hong, R., Hao, Y.: Advance on large scale near‐duplicate video
retrieval. Front. Comput. Sci. 14(5) (2020)

32. Haridas, A.V., Marimuthu, R, Chakraborty, B.: A novel approach to
improve the speech intelligibility using fractional delta‐amplitude mod-
ulation spectrogram. Cybern. Syst. 49(7‐8), 421–451 (2018)

33. Shah, S.M.S., et al.: Feature extraction through parallel probabilistic
principal component analysis for heart disease diagnosis. Phys. Stat.
Mech. Appl. 482, 796–807 (2017)

34. Tipping, M.E, Bishop, C.M.: Probabilistic principal component analysis.
J. Roy. Stat. Soc. B. 61(3), 611–622 (1999)

35. Inoue, M., Inoue, S., Nishida, T.: Deep recurrent neural network for
mobile human activity recognition with high throughput. Artif. Life
Robot. 23(2), 173–185 (2017)

36. Binu, D., Kariyappa, B.S.: RideNN: a new rider optimization algorithm‐
based neural network for fault diagnosis in analog circuits. IEEE Trans.
Instrum. Meas. 68(1), 2–26.

37. Liu, H. et al.: Human behavior‐based particle swarm optimization. Sci.
World J. (2014). https://doi.org/10.1155/2014/194706

38. Chandwadkar, D.M, Sutaone, M.S.: Selecting proper features and classi-
fiers for accurate identification of musical instruments. Int. J. Mach.
Learn. Comput. 3(2), 172 (2013)

39. Mannepalli, K., Sastry, P.N, Suman, M.: A novel adaptive fractional deep
belief networks for speaker emotion recognition. Alexandria Eng. J.
56(4), 485–497 (2017)

40. Bhutada, S., Balaram, V.V.S.S.S, Bulusu, V.V.: Holoentropy based dynamic
semantic latent Dirichilet allocation for topic extraction. Int. J. Appl. Eng.
Res. 11(2), 1304–1313 (2016)

41. Electroencephalography (EEG) Resources. https://www.isip.
piconepress.com/projects/tuh_eeg/html/downloads.shtml (2020)

42. CHB‐MIT Scalp EEG database. https://physionet.org/content/
chbmit/1.0.0/ (2020)

How to cite this article: Johnrose PJ, Muniasamy S,
Georgepeter J. Rag‐bull rider optimisation with deep
recurrent neural network for epileptic seizure detection
using electroencephalogram. IET Signal Process.
2021;15:122–140. https://doi.org/10.1049/sil2.12019

140 - JOHNROSE ET AL.

 17519683, 2021, 2, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sil2.12019, W

iley O
nline L

ibrary on [29/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1155/2014/194706
https://www.isip.piconepress.com/projects/tuh_eeg/html/downloads.shtml
https://www.isip.piconepress.com/projects/tuh_eeg/html/downloads.shtml
https://physionet.org/content/chbmit/1.0.0/
https://physionet.org/content/chbmit/1.0.0/
https://doi.org/10.1049/sil2.12019

	Rag‐bull rider optimisation with deep recurrent neural network for epileptic seizure detection using electroencephalogram
	1 | INTRODUCTION
	2 | MOTIVATIONS
	2.1 | Literature review

	3 | PROPOSED RAG‐ROA‐BASED DEEP RNN FOR SEIZURE DETECTION
	3.1 | Extraction of features using signal
	3.1.1 | Formation of feature vector

	3.2 | Dimension reduction using PPCA
	3.3 | Proposed Rag‐ROA algorithm
	3.3.1 | 1) definition considered for initiating rag‐ROA
	3.3.2 | Algorithm

	3.4 | Proposed rag‐ROA‐based deep RNN for epileptic seizure detection
	3.4.1 | Architecture of Deep RNN
	3.4.2 | Training of deep RNN


	4 | RESULTS AND DISCUSSION
	4.1 | Experimental setup
	4.2 | Dataset description
	4.2.1 | The TUH EEG epilepsy Corpus (TUEP)
	4.2.2 | CHB‐MIT Scalp EEG database

	4.3 | Experimental results
	4.3.1 | With TUEP database
	4.3.2 | With CHB‐MIT Scalp EEG database

	4.4 | Evaluation metrics
	4.4.1 | Accuracy
	4.4.2 | Sensitivity
	4.4.3 | Specificity

	4.5 | Performance analysis
	4.5.1 | Analysis using TUEP dataset
	4.5.2 | Analysis using CHB‐MIT Scalp EEG database

	4.6 | Comparative methods:
	4.7 | Comparative analysis
	4.7.1 | Analysis considering TUEP dataset
	4.7.2 | Analysis considering CHB‐MIT Scalp EEG database

	4.8 | Comparative discussion

	5 | CONCLUSION
	ACKNOWLEDGEMENT


