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Abstract. In agriculture, selecting an “appropriate plant for an.appropriate soil” is a crucial stage for all sorts of lands.
There are different types of soil found in India. It is necessary to understand the features of the soil type to predict the
types of crops cultivated in a particular soil. This leads to significant inconsistencies and errors in large-scale soil mapping.
However, manually analyzing the soil type in the laboratory is cost-effective and time-consuming, yet it produces an inaccurate
classification result. To overcome these challenges, a novel AQU-FRC Net (Aquila — Faster Regional Convolutional Neural
Neural) is proposed for the automatic prediction of soil and recommending suitable crops based on a soil-crop relationship
database. The soil images were pre-processed using a Scalable Range-based Adaptive Bilateral Filter (SCRAB) for eliminating
the noise artifacts from the images. The pre-processed images were classified using Faster-RCNN, which utilized MobileNet
as a feature extraction network. The classification results were optimized by the Aquila optimization (AQU) algorithm that
normalizes the parameters of the network to achieve better results. The proposed AQU-FRC Net achieves a high accuracy of
98.16% for predicting soil. The experimental results demonstrate that the model successfully predicts the soil when compared
to other meta-heuristic-based methods.
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1. Introduction

Agriculture is the primary source of economic
development and has a large impact on Gross
Domestic Product (GDP). Nowadays the demand for
agriculture and crop cultivation is decreasing due to
inadequate rainfall, climatic condition, and improper
maintenance of land [1]. Toward the end of 2050, the
population will increase by 9.1 billion in the world
[2]. As the population increases the demand for the
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production of food is also increasing. The United
Nations (UN) Food and Agricultural Organization
(FAO) estimates that food production necessities to
increase by nearly 70% to feed this growing popu-
lation [3]. So agricultural cultivation also needs to
be increased. To meet the increasing demands, farm-
ers must apply toxic pesticides more frequently and
also apply higher pressure on the soil [4]. As a result,
agriculture is significantly impacted, and the land
eventually becomes unproductive and dry.

To increase cultivation of the crop, soil classifi-
cation is one of the primary aspects to decide what
kind of crops can grow. Soil is a dynamic living
resource, that promotes crop yields as well as eco-
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logical processes. [, 6]. The physical and chemical
characteristics of soil change throughout time due to
several influences, including changes in both loca-
tions and time [7]. There are two ways to determine
the type of soil such as image analysis and chemical
analysis. The chemical analysis is often carried out in
a laboratory using several chemicals which is expen-
sive, not environment-friendly [8], time-consuming,
and complex to access for the common farmers.
Meanwhile, image processing identifies soil based on
its color and texture. Additionally, several classifiers,
such as Artificial Neural Network (ANN), Support
Vector Machine (SVM), and Decision Trees (DT),
are employed for classification. Deep learning (DL)
is now often used in many applications, including
object detection [9]. For agricultural applications like
plant diagnosis, disease detection, etc., Convolution
Neural Networks (CNN) in particular attracted a lot
of attention in deep learning.

The early identification and selection of soil types
is the first step before beginning crop cultivation.
Because “not all sort of soil is suited for all kind
of crop” and each soil has its own unique set of
characteristics and harvesting ability for agricultural
development in diverse ways [10]. To analyze this
issue, an efficient architecture named AQU-FRC Net,
in which MobileNet is integrated with Faster R-CNN
was developed. The main objective of the proposed
framework is as follows,

e The primary purpose of this work is to present
anovel AQU-FRC Net (Aquila — Faster RCNN)
for the automatic prediction of soil type and rec-
ommending suitable crops based on thesoil-crop
relationship database

e Anintegration of Mobilenet with Faster R-CNN
is used for real-time soil prediction.

e The proposed Faster RCNN is used to classify
the soils into black soil, red soil, alluvial soil,
yellow soil, sandy loam soil, and peat soil.

e Aquila optimization is applied to the Faster
RCNN for normalizing the appropriate parame-
ters to attain better classification results.

e The efficiency of the proposed methodology is
analyzed using the metrics like accuracy, recall,
specificity, precision, and F1-score.

The remaining section of this paper is arranged
as follows; section 2 explains the Literature survey.
Section 3 includes the proposed model of AQU-FRC
Net. Section 4 comprises the result and discussion of
the proposed method. Section 5 holds closing remarks
and future enhancements.

2. Literature survey

In recent years, many Machine Learning (ML) and
DL studies for various soil predictions based on pH
value, nutrients, and soil moisture strategies have
been discussed by researchers. This section provides
a brief overview of some of the most recent studies.

In 2022 Motwani, A., et al. [11] developed a CNN
and Random Forest (RF) Algorithm for the exam-
ination of soil and crop detection. In soil analysis,
the soil image from Soil Classification Image Dataset
is converted into pixels and further classifies the
image using CNN. In the crop prediction process,
the Crop Prediction'in India dataset is preprocessed
and encoded using hot encoding, then the RF algo-
rithm uses bagging to select sample data. Herein crop
prediction has a limited amount of data.

In 2022 Uddin, M. and Hassan, M., [12] developed
a soil prediction technique using a feature-based algo-
rithm. The soil categorization is based on frequent
¢-Pixels, quartile histogram-oriented gradients, and
a feature selection method. To evaluate the perfor-
mance of selected features four machine learning
algorithm is utilized. But this method fails to analyze
the grass in the predicted soil.

In 2022 Lanjewar, M.G et al., [13] presented a
CNN-based soil images classification. The dataset
was subjected to the image augmentation process,
and the models were subsequently trained using
these augmented images. Pre-trained weights used
in the TensorFlow and Keras DL algorithms accu-
rately classify soil images. The suggested model was
examined using the K-fold method.

In 2021 Kumar, S., et al., [14] presented a Chaotic
Spider Monkey Optimization (CSMO) algorithm and
a bag of features for soil detection. The surf method
is used for feature extraction. The CSMO approach
exhibits desirable efficiency and enhanced global
search capability and is used to cluster the key points
for soil detection.

In 2021 Dash, R., et al., [15] presented an ML
technique for the categorization of crops. The param-
eters like micronutrients, macronutrients of soil, and
climatic conditions like sunlight, rain, temperature,
humidity, and pH of soil are considered and classi-
fied using SVM and DT. The model attains 92% of
accuracy, yet SVM needed more training samples.

In 2021 Agarwal, R., et al., [16] presented chaotic
Henry’s Gas Solubility Optimization (HGSO) for soil
image classification. The soil images are categorized
using an ideal bag-of-features-based automated soil
prediction approach, and the ideal visual words are
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generated using an improved HGSO. The HGSO
model provides better convergence precision.

In 2021 Barkataki, N, et al., [17] developed a
DL-based soil classification from Ground Penetrat-
ing Radar (GPR) B scans. To train and validate the
suggested CNN model, a synthetic dataset is cre-
ated using GPRMax. Based on the suggested model,
soil types can be automatically classified and GPR
systems can be calibrated based on best penetration
depths and minimum noise levels.

In 2020 Ghazali, M.F,, et al., [18] put forward a soil
analysis based on soil salinity and moisture index. To
validate the test the Landsat 8 satellite images were
used in soil feature analysis. The test was conducted
in dry soil and a paddy farm. Soil pH is achieving an
accuracy of (2-7.59). Herein, the spectral and spatial
resolution of Landsat 8 satellite images is relatively
low.

In 2020 Suchithra, M.S. and Pai, M.L., [19] devel-
oped an Extreme Learning Machine (ELM) for soil
nutrient classification. The soil characteristics were
examined, including soil pH, phosphorus, potassium,
carbon, and boron soil fertility indices at the village
level. various activation functions were used by ELM
to classify the data. The model achieves an accuracy
of above 80%.

In 2019 Padarian, J., et al., [20] deployed a CNN
model for soil properties prediction in regional spec-
tral data. The soil properties like CEC, OC, clay, pH;
sand, and N are utilized. The LUCAS soil database is
used in validation. To fully utilize the CNN model, a
2-dimensional spectrogram displays reflectance as a
function of wavelength and frequency. However, the
multi-task CNN was ineffective on a smaller dataset.

In 2019 de Oliveira Morais, P.A., et al., [21] pre-
sented soil texture prediction using digital+image
processing. Clay and sand contents were'defined by
the pipette method. Using PLS2 multivariate regres-
sion, particle contents in the given size fractions were
related to image data. Multivariate statistics from the
sampling and validation dataset were assessed via
bootstrapping analysis. The model is eco-friendly and
does not use any chemical agents.

In 2018 Rahman, S.A.Z., et al., [22] developed
an ML algorithm for soil predicting and providing
recommendations for a crop’s production on that par-
ticular soil. soil parameters such as pH, salinity, zinc,
boron, and calcium are used in soil prediction. The
ML algorithms such as Bagged Trees, weighted k-
Nearest Neighbor, and Gaussian kernel-based SVM
are utilized in classification whereas SVM yields
higher accuracy of 94.95%.

From the related studies, various ML and DL
techniques were used for soil prediction based on
moisture, pH value, and soil nutrients. The accuracy
rate of the aforementioned methods is low with the
use of datasets. In our proposed model the real-time
images are used to improve the accuracy level. The
proposed AQU-FRCNet focused on soil prediction
and crop recommendation based on soil types. The
Faster R-CNN is used in the classification phase and
predicts the soil types. The AQU algorithm is used to
normalize the parameters to attain higher accuracy in
classification results. Table 1 shows the Comparative
analysis with existing techniques.

3. Design and methods

Soil is7a.natural body made up of different lay-
ers and different components. Soils are recognized
by their physical features such as texture, color, and
landscape region. The target of the proposed work
is to predict the soil types and recommendation of
crops=based on based soil types. In this section, the
soil prediction is based on three phases: Data collec-
tion;.data preprocessing, and data classification. A
flow diagram of the proposed soil prediction model
18 shown in Fig. 1.

3.1. Data collection

Our database contains images of six different
types of soil (yellow soil, alluvial soil, peat soil, red
soil, black soil, and sandy loam soil). Using cam-
era devices, the soil images with various resolutions
were collected under serval conditions depending on
the season (temperature, humidity) and different Agri
fields. For that purpose, serval Agri lands have been
visited in Tirunelveli, Kanyakumari, Thoothukudi,
and Assam. Figure 2 depicts some of the sample soil
images.

3.2. Data preprocessing

Pre-processing is a technique used to improve
specific aspects and remove unwanted distortions
from input images. Herein the scalable range-based
adaptive bilateral filter (SCRAB) is utilized for
preprocessing. SCRAB is a smoothening, noise-
reducing, non-linear, and edge-preserving filter. The
Gaussian distribution function first determines the
intensity pixel value and the weighted intensity mean
of each surrounding pixel. The range weight is then
determined using Euclidean distances and radiomet-
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Table 1

Comparative analysis with existing techniques

Author with Year Techniques

Advantages

Disadvantages

Motwani, A.,etal. [11] &
2022

CNN +RF

This model attains an
accuracy of 95.21 %.

Crop prediction has a limited
amount of data.

Uddin, M. and Hassan,
M., [12] & 2022

Quartile histogram-oriented
gradients and most frequent

In this model, each feature
contributes to identifying the

This model cannot identify
the soil with grass

p-Pixels soil image to a reasonable
degree.
Lanjewar, M.G et al., [13] CNN The suggested model However, CNN requires a

& 2022

classifies the soil images
accurately using TensorFlow
and Keras.

large number of training data.

Kumar, S., et al. [14] &
2021

CSMO and bag-of-features

This technique attains
desirable convergence in
SMO.

Yet, SMO can be tuned to
give more accurate results.

Dash, R., etal. [15] &
2021

SVM and DT

The developed model is 92%
accurate in forecasting a
suitable crop

Yet it is possible to improve
fitness scores by using
nonlinear curve fitting

Agarwal, R etal. [16] & Chaotic Henry’s gas

The HGSO model provides

Yet this model can map with

2021 solubility optimization better convergence precision other chaotic maps.
Barkataki, N., et al. [17] Deep CNN This model provides less Yet CNN architecture is
& 2021 noisy images. trained and tested small

dataset

Ghazali, M.F,, et al [18] soil moisture index (SMT) and

Soil pH has attained an

Herein, the spectral and

& 2020 soil salinity index (SST) accuracy of (2-7.59). spatial resolution of Landsat
8 satellite images is relatively
low.

Suchithra, M.S. and Pai, ELM This method helps to create a Yet this method can apply in

M.L.. [19] & 2020

suitable model for soil
fertility index classification

agroecological regions to
analyze the soil parameters.

Padarian, J., et al. [20] & CNN
2019

CNN has high accuracy,
which makes it ideal for
modeling soil spectral data

However, a smaller dataset
made the multi-task CNN less
effective

de Oliveira Morais, P.A.,
etal. [21] & 2019

PLS2 multivariate regression

The model is eco-friendly and
does not use any chemical
agents

However, this model requires
a higher proportion of
intermediate particle size
fractions during soil testing

Rahman, S.A.Z., et al.
[22] & 2018

Bagged Trees, weighted
k-Nearest Neighbor, and
Gaussian kernel-based SVM

SVM yields higher accuracy
of 94.95%.

Yet this algorithm will run
more slowly

ric differences. By applying this parameter, the noise
is significantly decreased but the edges of the image
pixels are retained.

Bilateral filtering b(x) for an image is defined in
Equation (1).

P(x) = k= (x) [ b(a)C (a.x) s (b(a). b(x))da
Q
(D

After normalization

Kx)= fc(a,x)s(b(a),b(x))da 2)
Q

In noisy images, edge variations are not gathered
completely, which is considered to be one of the major
weaknesses of the bilateral filter. Herein, SCRAB

filter is used to fix this defect and it is derived as,

1 llb(@) —b(x) —v@) |l

fra, x,v) = nexp(—i(

| f (x) — Mean(S2y)

0 otherwiswe

V(X)) =

RS
3)

Oy

[x—=yl<p

“4)

Where Q, refers to the pixel set of (2n + 1) *
(2n 4+ 1) pixel window where n=2. The positive
parameters are 7 and k, 2, is the average value; p
is a stable variable and v (x) is a range-based func-
tion. The three parameters used to control s.are the
scaling factor oy, the linear constant coefficients n =
2andk = 1. o, ensures the elevated rate for photo-
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Fig. 1. Flow diagram of the proposed soil prediction method.

Fig. 2. Sample soil images of different categories.
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metric resemblance among x central pixel x and its m
adjacent. Samples of before preprocessing and after
preprocessing are shown in Fig. 3.

3.3. AQU-FRC Net

The proposed AQU-FRC Net focuses on the pre-
diction of soil types. The structure of the proposed
AQU-FRC Net was illustrated in Fig. 4. The proposed
model includes three phases that include feature
extraction, classification, and optimization. Faster R-
CNNiisinvolved in the first two phases and the Aquila
optimization algorithm is used for normalizing the
parameters to obtain optimal results.

3.3.1. Faster R-CNN

For detecting the soil parameters Faster RCNN is
proposed that employed a new MobileNet for precise
detection. For object identification applications that
rely on region proposal methods to forecast the posi-
tions, a faster RCNN is used. Using Faster R-CNN
shares full soil image convolutional characteristics
with fast RCNN, making region prediction nearly
free. Even though these bounding boxes are not pre-
cise, they can still be analysed by pooling regions of
interest (Rol). When Rol pooling is done for each
region, the most accurate bounding box coordinates
can be determined.

3.3.2. MobileNet

MobileNet is used as a feature pyramid. net-
work for the input images for feature extraction.
The lightweight deep convolutional neural network
known as MobileNet is substantially smaller and
performs considerably faster. The purpose of. the
MobileNet layers is to convert the pixels from the
preprocessed image into features that characterize the
information and transmit these to the preceding lay-
ers. Depth-wise separate convolutions filter the input
data by applying a single filter to each input, followed
by a 1 x 1 convolution layer aggregate these filters
into a set of output features. The last fully connected
layer feeds into a softmax layer without nonlinearity,
so all layers have batch norms and ReLLUs. MobileNet
has 28 layers if depthwise and pointwise convolutions
are excluded.

3.3.3. Regional proposal network

The Regional Proposal Network (RPN) is a fully
convolutional network that provides region propos-
als and can predict object boundaries and scores at
every point concurrently. It accepts the feature map
as input produced by the last convolutional layer of

MobileNet. Using an input image of any size, an RPN
provides a set of rectangular object proposals along
with corresponding object scores. A reference anchor
box with n x ninitializations is created by RPN. Each
reference anchor box has its scale and aspect ratio for
each conv feature map location. The anchor box is
formatted as a rectangle box and chosen with an inter-
section over union relationship between the anchor
box and ground truth box. An anchor with a sliding
window focus is connected to scales and aspect ratios.
Asliding window is converted into a low-dimensional
vector that is then fed into two fully interconnected
neighborhood layers. In Faster R-CNN, an objective
function reduces the multi-task loss using Mobilenet,
and the loss function is derived from Equation (5).

L (rigpi)= Z(ll’ i ) L= Z rfch’g(FiJ’?)

ILC i
&)

Where 1 depicts the anchor index. L¢ (p,', p;") is
loss over two classes. R; represents the output score
from the classification branch for anchor i, and the
ground truth label is illustrated as p}. Further, this
method offers a feature map as input, reducing the
computational cost significantly and improving the
model’s learning capacity.

The input feature maps and proposals can be col-
lected through the roi pooling layer. The argmax
switches are utilized by the reverse function of the
ROI pooling layer to assess the partial derivative of
the loss function concerning each input variable sy,.

) * ad
5; z}(: z}: [m =m"(x, y)] By, (6)

Where, every mini-batch ROI and output unit #4,,
the partial derivative % is accumulated if ‘i’ is
qn

selected as the argmax for 7, by max pooling. The
convolutional procedure can be expressed as,

128 128 N
az 1 pz+1
+ b+ k—ZZ§ kabcxrz+1
a=0 b=0 ¢=0 +ub+1+ah
Q)

Where the filter bank is denoted as k, the image ten-
sor input is denoted as q, the filter number is denoted
asf, zindicates the number of layers, a filter number is
denoted as N, a and b indicate the spatial coordinates
and r denotes the convolution output.

A function was estimated for the object identifica-
tion method using equation (8)

Loss({pm}, {gm}) = ﬁc‘
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Fig. 4. Architecture of AQU-FRC Net Network.

1 3.3.4. Aquila optimization

Zmdc (Pm, P;) + )‘ﬁr Z U dr (q’"’ 47;;) ®) An AgU algorithm generally mimics the social
" behavior of Aquila to capture its prey. It is the
population-based optimization algorithm, that is the
same as other metaheuristics, which initiates with an
initialized population of N agents. The agents in the
Le (vm. vy,) = v}, logum — (1 = vy,) log (1 — v) existing population are upgraded until they find the

) best solution based on the best agent and the AQU.

Fhe log loss is defined from two classes such as Equation (10) is used to generate the initial population
object vs not object. The p} is an anchor that is m that is composed of N solutions.

indicated by the ground truth label as +(positive) (-
Negative) for 1/ (0), p};, m, is an only +(positive)
anchors activate regression loss. Ny = s1 % (iky, — jkn)
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F it = 15 2:300% N = 1525 05 w0 , Dim

In Equation (10), ik, and jk, signify the limits of
search space. s; € [0, 1] denotes a random value and
Dim is the dimension of the agent. As a next step in
the AQU technique, either exploration or exploitation
will be conducted until the best solution can be found.
In the exploration, the best agent (Na) and the aver-
age of the agents (Nb) are used, and its mathematical
formulation is provided as:

Nm(t+l)=Na(t)*(]—;[>

+ (Np () — N, (t) * rand) (1

1 X

Ny () = x;z(r),x_ 1,2, ..... Dim (12)

The search during the exploration phase is con-
trolled by (1—7_.') in Equation (12). T stands for the
maximum number of generations. The Levy flight
(Levy(D) distribution and to (Na) update the solu-
tions are used in the exploration phase, and this is
represented as:

Nm (t+ 1) = Ny (t) * Levy (p) + N; () + (u - v) * rand

V*k O

Levy(p) = d*—— (13)

1 »
vl ?

F(1+ B) x sine (”T_f‘)
") 2 ()

The random values are denoted by uand v in Equa-
tion (10), where d=0.01 and = 1.5. Additionally, H1
refers to the movements used to monitor the best
individual solution, as shown in the equation below:

) (14)

H =2xmd)—1, Hy=2x (1—;——{) (15)
Hy = 2x 1———t 16
2 = ( T ) (16)

3.4. Crop Recommendation

Different varieties of crops are grown in differ-
ent sorts of areas and soils. A conventionally placed
object exists in each space, which could be called

common sense. For instance, based on human percep-
tion crops like sugarcane, turmeric, wheat, banana,
etc. can grow in alluvial soil. Similarly, potatoes, rice,
maize, and sugarcane can grow in yellow soil. Fur-
thermore, crops like ladies’ fingers can suit all soil
series, and sugarcane can suit alluvial soil and yel-
low soil. The crop cultivation in these spaces varies
according to climatic conditions and many other fac-
tors. Generally, this part can be adjusted appropriately
according to the specific situations. The names of the
spaces and the objects are termed as “soil-crop rela-
tionship database” which was developed and shown
in Fig. 5. After predicting the soil types, the suitable
crops for that soil series for the given map were sug-
gested based on the soil-crop relationship database.

Algorithm: AQU-FRC Net Algorithm

Inputsoil images
Output: Classification of soils
Pre-process the soil images using Scalable Range-based
Adaptive Bilateral Filter (SCRAB) -
Minimization of multi-task loss by MobileNet using equation
given below

L p) =& Z (i riH) +Ag Yo"

iLc 3 iLreg (Pi~P;)

Perform classification on extracted soil features by Faster
RCNN
The Rol pooling layer was determined based on equation

ﬁzz [m :m*(x,y)jl ﬁ
X y

The procedure for convolutional can be defined as
az+1 bz+1 k =

128128 N
Z Z Zka,b.c X r‘i;+|
a=0b=0c=0
Optimized the network using Aquila optimizer
The initial population that is composed of N solutions is
generated using equation

Ny = S * (1kn = Jkn) 4
Poym=3,2,3.. 36N=1,2..: 005 Dim
For obtaining the solution either exploration or exploitation will
be conducted
The best solution is monitored using equation

Hy = 2 x rnd(-1, Hz =2 x (1)
Evaluate and test the network
Predict the soil types and recommend the crop based on the
soil-crop relationship database

+a.b+lyab

4. Results and discussion

In the proposed work, architecture is trained using
Python. The proposed AQU-FRC Net classification
technique was trained and tested with the gathered
dataset. Six common soil types are distinguished,
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Fig. 5.:Soil - Crop relationship database.

including red, black, peat, alluvial, saridy loaih, and
yellow soil. In this result analysis, the soil images are
classified based on soil types by using Faster RCNN
integrated with MobileNet. The classification results
with crop recommendation are depicted in Fig. 6.

4.1. Performance analysis

In this study, the performance analysis was cal-
culated via specificity, precision, accuracy, F1 score,
and Recall.

Accuracy = TP+ 1N 17
YT TP YTN+ FP+FN

TN
S icity = —— 18
pecficity = T T Fp (18)
TP
Precision = ——— (19)
TP + FP
TP
Recall = —— (20)
TP+ FN

21

Flscore — 2 ( precision * recall )

precision + recall
Where FP TP, FN, and TF, specify false-positives,

true-positives, false- negatives, and true-negatives,
respectively.
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Fig. 6. Classification Result with crop recommendation.
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Table 2
Efficiency of the proposed AQU-FRC Net Framework
class Accuracy Precision Specificity F1 score Recall
Alluvial soil 0.979 0.932 0.964 0.963 0914
Red soil 0.989 0.916 0.971 0.952 0.976
Yellow soil 0.976 0.945 0.954 0.896 0.879
Black soil 0.987 0.896 0.921 0.885 0913
Peat’s soil 0.981 0915 0.962 0.932 0.891
Sandy loam soil 0.978 0.934 0.932 0.897 0.932
1 -
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g 054
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Fig. 7. Performance metrics of the proposed soil prediction model.
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Fig. 8. ROC curve of the proposed soil prediction model.

Table 2 provides an illustration of different types of
soil prediction with specific parameters. The average
accuracy, specificity, precision, recall, and F1score of
the proposed AQU-FRC Net are 98.16 %, 95.08%,
92.30%, 91.75%, and 92.08% respectively. Whereas
Fig. 7 graphically presents the accuracy, specificity,
precision, recall, and F1 score.

Fig. 9. Performance curve of the proposed soil prediction model.

The ROC was generated for six classes thatinclude
black soil, red soil, Alluvial soil, peats soil, sandy
loam soil, and yellow soil illustrated in Fig. 8. The
proposed AQU-FRC Net achieved higher AUC of
0.987, 0.982, 0.979, 0.975, 0.972, and 0.969 for red
soil, black soil, peats soil, Alluvial soil, sandy loam
soil, and yellow soil respectively can be measured via
True Positive Rate and False Positive Rate metrics.
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Fig. 10. Loss curve of proposed soil prediction model.

Figure 9 displays the accuracy curve with epochs
and accuracy on both axes, the accuracy of the method
improves when the epochs are increased. The epoch
vs loss graph in Fig. 10 depicts how the loss of
the model decreases when the epochs are improved.
So, the predicted accuracy of 98. 16 % for the pro-
posed AQU- FRC Net are highly reliable for soil
prediction.
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4.2. Comparative analysis

For evaluating the effectiveness of the proposed
model, the existing soil prediction methods were
compared to the findings of the proposed technique.
The efficiency is analyzed based on the accuracy,
specificity, precision, Recall, and F1 score metrics.
The proposed model’s performance is compared with
three conventional approaches such as single-shot
detector (SSD), You Only Look Once (YOLO), and
Fast R-CNN, corresponding findings are illustrated
in Fig. 11

The plot depicts the accuracy obtained by SSD,

, YOLO, and Fast R-CNN is 93.52%, 95.16%, and

96.13% respectively. Compared to the traditional net-
work, the proposed method achieved 4.64%, 3%, and
2.03% higher performance than SSD, YOLO, and
Fast R-CNN respectively. Thus, it is seen that AQU-
FRC Net performs better than other existing models.

Table.3 compares the proposed model with other
existing methods. The proposed AQU-FRC Net
achieves 98.16 % of accuracy, which is better than
the existing model.

100
98
96
@» 9‘
£
E 92
S0
5
S 88
86
84
82
WSSD ®YOLO M™FastR-CNN ' Faster RCNN
Fig. 11. Comparison of traditional DL techniques.
Table 3
Comparison between the proposed and the existing models
Author Methods Accuracy (%)
Motwani, A., [11] CNN + RF 95.21
Kumar, S.. [14] bag-of-features + CSMO 79
Agarwal, R., [16] CHGSO based BOF 80.58
Barkataki, N., [17] Deep CNN 97
M.S. Suchithra, and M.L. Pai, [19] ELM 90
Rahman, S.A.Z., [22] SVM 94.95
Proposed AQU-FRC Net 98.16




E. Sathish and R. Muthukumar / AQU-FRC Net: Automated soil prediction based on faster RCNN With aquila optimization 179

100
98
96
94
92
90
88
86
Accuracy Specificity Predsion F1score Recall
W With optimizati | without

Fig. 12. Performance comparison in ablation study with and with-
out optimization.

4.3. Ablation study

An ablation study was made to assess the efficiency
of the Aquila optimization utilized in the optimization
stage. In this experiment, with Aquila optimization
and without Aquila optimization as illustrated in
Fig. 12. According to a comparison, the performance
was estimated in terms of Accuracy, specificity, preci-
sion, Recall, and F1 score. According to our findings,
the prediction of soil using ablation models was typ-
ically less accurate than using Aquila optimization,
which proves the usefulness of the Aquila optimiza-
tion in the prediction process of the proposed AQU-
FRC Net.

The effectiveness of the proposed AQU- FRC Net
was evaluated and the ablation is performed with
and without Aquila optimization. There is a pos-
sibility that the model without Aquila optimization
had the lowest accuracy. From this analysis, we have
concluded that the proposed model with Aquila opti-
mization gives high accuracy in the prediction of soil.

5. Conclusion

In this paper, a novel approach is proposed for
predicting the soil types using AQU-FRC Net and
recommending the crops based on soil - the crop
relationship database. Initially, the soil images were
preprocessed using a scalable range-based adaptive
bilateral filter for eliminating the noise artifacts from
the images. The pre-processed soil images were clas-
sified using Faster R-CNN which utilized MobileNet
as a feature extraction network. The classifier model
was optimized by the Aquila optimization algorithm
that normalizes the parameters of the network to
achieve better results. The proposed AQU-FRC Net
achieves a high accuracy of 98.16% and a speci-

ficity of 95.08% for predicting soil types. From this
research, it can be stated that the proposed method is
more accurate than the existing method in terms of
predicting soil types. In the future, more crops and
soil were added and the proposed model will be built
and integrated into the smartphone app. The proposed
AQU-FRC Net also provides fertilizer recommenda-
tions in future.
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